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A b s t r a c t - - S o l v i n g  special tridiagonal systems often arise in the fields of engineering and sci- 
ence. This special tridiagonal system is diagonally dominant  and circulant near-Toeplitz. This paper  
presents two fast vectorized algorithms for solving special tridiagonal systems. Both algorithms 
employ the matr ix per turbat ion technique and have many computat ional  advantages on vector su- 
percomputer.  The related error analysis are also given. Some experimental results are il lustrated on 
vector uniprocessor of the  CRAY X-MP EA/ l l6se .  
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1. I N T R O D U C T I O N  

In this paper, we are interested in the solution of the special tridiagonal system 

Anx = b (1) 

of order n on vector uniprocessor, where 

a ~ "), 

An = 
!3 ",/ 

and ]~1 > [a + 71. Solving (1) arises in many computational problems [1-7], in which it is 
one of the most time-consuming elements. The availability of vector supercomputers has had a 
significant impact on scientific computations [8-10]. The motivation of this research is to design 
efficient vectorized algorithms for solving (1). 
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In this paper,  two fast vectorized algorithms for solving (1) are presented. Both new algorithms 
consist of three phases and only differ in the second phase. The first phase is a Toeplitz factor- 
ization of a slightly per turbed matr ix  of An. The second phase is to solve the per turbed problem 
in a highly vectorized way, but  only scale x vector operations are involved, hence, it leads to a 
great deal of computat ional  saving. In the third phase, the solution to the original problem is 

recovered from the solution to the perturbed problem; this is called the update  procedure. Some 
error analyses are also given. In addition, some experimental results are illustrated on CRAY 

X-MP EA/l16se .  
Section 2 presents our vectorized algorithms for solving (1) and the related error analyses. The 

implementat ions on the CRAY X-MP EA/116se are illustrated in Section 3. Section 4 gives the 

conclusions. 

2. V E C T O R I Z A T I O N S  

2.1. T o e p l i t z  F a c t o r i z a t i o n  

Throughout  the remainder of this paper,  matrices are represented by uppercase letters, vectors 
by bold lowercase letters, and scalars by plain lowercase letters. The superscript 7- corresponds 

to the transpose operation; II * II denotes the sup-norm of one vector. 
In order to avoid memory  conflict in CRAY X-MP E A / l l 6 s e  [11], we enlarge (1), then per turb 

I / it to Amx = b t, where m = pq (p denotes the length of one register file in the vector computer,  
i.e., the vector length), b r = (bl, b2 , . . . ,  bn, 0 , . . . ,  0) T, and 

n n - - r / ~  

A'  = = L 'U  r, (2) 

a /3 -~ 

a /3 

- d  1 a 7 
L'-=- and U I =  

- d  1 a 

- d  1 

which implies tha t  a - "~d = /J and - a d  = a. This in turn implies tha t  d = - ( a / a )  and a = 
(/3+ x//32 - 4"ya)/2. Since we wish the matrices L ~ and U' to be diagonally dominant,  we will select 

the sign so tha t  the absolute value of a is greater than  max(la[,  171). Tha t  is, when/3 > ]a + V], 
we choose a = (/3+ V//32 - 4"ya)/2; when/3 <: - l a + 7 1 ,  we choose a -- ( /~-  x//~ 2 - 47a) /2 .  Since 
one of our choices always makes ]a] > max(lal ,  IVI), hence, the bidiagonal Toeplitz matrices L' 

and U ~ are diagonally dominant.  The computat ion of a and d provides the Toeplitz factorization 
of the matr ix  A ~, which can be done in O(1) time. 

2.2. S o l v i n g  t h e  P e r t u r b e d  System 

2.2.1.  T h e  f i rs t  m e t h o d  

In this section, our first vectorized method for solving t , b ~ Amx = in a highly vectorized way 
consists of two parts: 

(1) vectorization of a lower bidiagonal Toeplitz system, L~ny t = bt; 
(2) vectorization of an upper bidiagonal Toeplitz system, U~m x~ = yr. 

We would especially point out tha t  due to our matr ix  perturbat ion technique, all the vector oper- 
ations involved are scaled by a constant, which is very important  for the efficient implementat ion 
on the vector computer.  
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For convenience, we first describe the vectorized method  for solving the general lower bidiagonal 

Toepli tz sys tem (LBTS),  L m x  = y,  where 

(:r ) Lm = , for Irl > 
8 r 

8 r r n x m  

and y = ( y l , y 2 , . . . , Y m )  T. In Section 2.1, we know tha t  m = pq. Therefore,  we par t i t ion the 
above L B T S  into p LBTS's .  Each LBTS can be wri t ten as 

Lqxl(i) = y(O, for i = O, 1 , . . . ,  p - 1, (3) 

, , , T y ( i )  where x '(i) = (X~q+l,X~q+2,... ,Xiq+q) a n d  = (Yiq+l,Yiq+2,. . . ,Yiq+q) T. Our  vectorized 
subrout ine  for solving these p smaller LBTS ' s  is shown in Appendix  1, where Loop-5 and Loop-20 

can be vectorized with vector length p. Specifically, only scalar x vector operat ions  are involved 

in this subroutine.  
After  solving x t in a vectorized way, we have 

p - 1  

L m x  t y + s E -= X i q e i q +  l , ( 4 )  

i = 1  

where ek = ( 0 , . . . , 0 , 1 , 0 , . . . , 0 )  T for 1 < k < m. Since 

m - k  
n m e k  = rek  + Sek+l, l < k < m ,  

we have 

Let 

) s J ( _ r )  ek+j - ( s~J+ 1 

\ i = o  j=0 j=o 

= e k - -  _ e k +  t .  

e k + j + l  

(5) 

p - 1  t - 1  

x = X' - r Z__ xiq z..~ - e i a . ,+ , ,  (6) 
i = 1  j = 0  

where t denotes  the  length of the upda te  vector which will be discussed in Section 2.3, the solution 

vector  x of (6) can be computed  by using the vectorized subrout ine  as shown in Append ix  2, 

where Loop-40 can be vectorized with vector length p - 1. Only  scalar x vector operat ions  are 
involved in this subroutine.  

By  (5) and (6), we have 

L m x  = y + s X ~ q e i q + l  - 8 X i q  e i q + l  - - e i q + t + l  

i = l  i = l  

p - 1  

- _ e i q + t + l  , 

i = l  

hence, 
8 

IILm x - y l l < - I s l  r t llx']l" 

To es t imate  IIx'll , we need the following lemma. 

(7) 
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LEMMA 1. / f  

L = 

:r 
S r 

8 ?- 

ITI > Isl, 

then I]L-'Yll -< 1 / ( I r l -  IsI)I[YlI- 

PROOF. See Appendix 3. 

Using the above similar parti t ion approach, it is easy to design our two vectorized subroutines, 

VUPPERI ( r , s )  (vs. VLOWl(r , s ) )  and UPDATEUPPERI( r , s , t )  (vs. UPDATELOWI(r , s , t ) ) ,  for 
solving the general upper  bidiagona/Toepli tz  system (UBTS), Umx = y, where 

u ~  = 

r 8 

r 

7" S 

r 

for I~1 > I~1- 

For saving space, we omit  the pseudo codes for these two subroutines. 

Return to solve ' ' b'. ' ' ' LmY = b', where = A m x  = Since A m = L i n G "  , we first solve ' ' b '  
( b l , b 2 , . . . , b n , 0 , - . . , 0 )  T, then solve U ' x '  ' = y ' .  Using our previous vectorized methods for 

m - n  
solving general lower and upper bidiagonal systems, the following algorithm is used to solve 

' ' b'. A m i  

C******the entry array y represents vector b' 

C******the exit array represents vector x' 

CALL VLOWI(I,-d) 

CALL UPDATELOW(I,-d,tl) 

CALL VUPPERl(a,gamma) 

CALL UPDATEUPPER(a,g~mma,t2) 

LEMMA 2. L e t  Cl = 1/(1 - I d l )  and c2 = (1 + I d l ) b l ( 1 / ( l a l  - h i ) ) ( ( 1  + Id]) / (1 - Idl)), then 

( I lA~x' -  b'll < el ldl  ' '+1 +c2 Ilbll- 

The  term cl[d[ t l+l  will be less than ~, i f  t l  is greater  than (log~ - l ogc l ) / l og  [d[ - 1; the  term 

c2[q/a[ t~+l will be less than ~, i f  t2 is greater than ((log~ - logc2)/(log I f /a[) )  - 1. Le t  c3 = 

((1 + b / a l ) / ( l a l  - h i ) ) ( ( 1  + Id l ) / (1 - Idl)), t hen  i t  yields 

IIx'll ~ a311bll. 

PROOF. See Appendix 4. 

Lemma 2 will be used in the analysis of the update  phase in Section 2.3. 

In the following section, based on the product expansion method [12,13], we present the second 
vectorized method for solving , , Amx -- b ' ,  where m = n, since we do not need the part i t ion 
approach as described in Section 2.2.1. 
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2.2.2.  T h e  s e c o n d  m e t h o d  

Now we describe our second vectorized method for solving Lmx = y. All the vector operations 
involved are scaled only by a constant. 

Since Lm = r(I - E) with 

E = 

/o / 
s 0 
r 

S 0 

r s 0 

the system Lmx = y is equal to (I  - E ) x  -- (1 / r )y .  x can be obtained by computing x = 
(I  + E2k) . .- (I + E2) ( I  + E)((1/r)y) because 

Lmx = r(I - E ) x  

= r ( I - E ) ( I + E ) ( I + E 2 ) . . . ( I + E 2 k )  ( l y )  

Since 

we then have 

E 2k+l 

(-;) 2k+1 

( _ ~ )  2~÷1 

2k+1 

yll <- ~ Ilyll. (8) IIZ~x 

The relative residual (llLmx-yll)/llYll will be less than ~, if k is greater than log(log ~/(log Is/r[)) 
- 1 .  Therefore, the computation of x (= x (k+l)) can be accomplished by the following iterative 
formula: 

x.÷l~ _- (I  + E2')x~'~ = x~" + E2"x~'~, o < i < k, (9) 

with the initial assignment x (°) = (1 / r )y .  

From (8), we have [Ix(i+1)[[ _< (1 + [s/r]2')llx(i)[]. Thus, 

x(k+l) <_ ( 1 +  s 2 k ) ( l q - l s 2 k - 1 ) . . . ( 1  

1 - f s / r l  2~÷' 

1 < ~ l l y l l .  

+ - I ly l l  r 

(10) 

The formal vectorized subroutine for computing X ( k + l )  is shown in Appendix 5, where mainly 
scalar × vector operations are involved in this subroutine. 

Similarly, it is easy to design our vectorized subroutine for solving the general UBTS system, 
U,~x = y. The corresponding vectorized subroutine is shown in Appendix 6, where mainly 
scalar × vector operations are involved in this subroutine. 
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Using our  previous two vectorized subroutines shown in Appendices  5 and 6 for solving gen- 
eral lower and upper  bidiagonal systems, respectively, the following procedure is used to  solve 

' ' b'. Amx = 

CALL VLOU2(I,-d,kl) 
CALL VUPPER2 (a, gamma,k2) 

L E M M A  3.  L e t  c'1 = 1 and  5'2 : (1 + [d[)/(1 - [d[), then  we  have 

[IA'x '-  b'l[ _< @ldl 2~÷~ +c; Id'l ~ ' 1 )  Ilbll. 

T h e  t e r m  c'~ldl 2~'+~ will be less than  ~, i f  kl is greater  than log( log~ / log  Idl) - 1; the term 

c~]d'] 2~2+' wi]1 be  less than ~, i f  k2 is grea ter  than l o g ( ( l o g ~ -  loge '2) / log ld[ )  - 1. L e t  c' 3 = 

(1/([al-  17l)(1/(1 -Idl)), then it follows that 

IIx'll ~ c~llbll. 

PROOF. See Appendix  7. 

L e m m a  3 will be used in the following section. 

2 .3 .  U p d a t e  

After  solving the pe r tu rbed  sys tem ' ' b '  A m x  -- approximately,  the approximate  solution of x 

will be recovered from the pe r tu rbed  sys tem in this section. 
Let  z '  , / / , I T X / ~T and w = . . , z  n) ,:~ = A n ~ - b .  Since = A m x  - b ' ,  ~ (z l , z2 , .  = (x~,x ,2 , . . . ,  n,  , 

Wi ~" C~X~_ 1 -4- ~X~ -4- 7Xi.4_1! - bi = zi; for 1 < i < n, 

Wl = ~ lX~  -4- ~2X~ + Z3Xln --  51, (11)  
l l l I I wn ~3x1 + = -4- ~2Xn_l ~lX  n -- bn, 

w e  h a v e  Hw - W l e l  - Wnenll ~ IIzII ~_ IIz'[I. B y  L e m m a  2, it follows tha t  

l lAnO-b-Wle l -  w,~e,,ll <_ IIz'Jl _< @lJdJ t~+~ +e2 ~t=)Ilbll- 02) 

The  value of  [[z~[[ will be very small when t l  and t2 are large enough. Therefore,  the approximate  

solution of x to be determined equals ~ - p,  where 

A p  - w l e l  + When.  (13) 

To solve p, we t ry  to ignore the first and last equalities of  the sys tem A p  - w l e l  -4- When,  

then we must  solve the recurrence relation: ap i -1  -4- ~p~ -4- ~/P~+I -- 0 for 2 < i < n - 1. From 
a - ~d  = ~. - a d  = a ,  it follows tha t  c~ -4- Bd -4- 7d 2 = 0 and ~ -4- Bd' -4- o~d '2 = 0, where d' = - 7 / a .  

Naturally,  if we t ry  P l  = (d, d 2 . . . . .  d t3, 0 . . . . .  0) T, then 

t3 n--t3 T 

A n P l  = ( "~ld "4" ~2d2' t~d A- ~d2 "4" ~d3' " " " ' (~dtz- l  "4" ~d t ; '  ~d t z '  O' " " " ' O' n~-t3 ] 

= ld  ÷/32d2, O, . . . ,O,  ozd t3 .1  ÷ / 3 d t S , a d t 3 , o  . . . .  ,O , l~  
Y y 

ts n - t 3  

= u e l . ÷ v e n + c ~ d t Z ( - d ~ e t 3  ÷ et3+l ) , 
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where  u = (flld -t- fl2d 2) and v = ~ d .  Similarly, if we t r y  p2 = ( 0 , . . . ,  O, d t t * , . . . ,  d '2, dr) -c, then  

n-- t4  ~44 

) A n P 2  ---- u re l  4- v t e n  -1- ~ d  tt4 - d  ~ e n _ t 4 + l  4- e n _ t  4 , 

where v '  = (~[d '  + f~d  '2) and u '  = f~3d'. 
Let  

p = Sp l  + s ' p2 ,  

then  by (14) and (15), we have 

(15) 

(16) 

A n p  = (su  + stu t) e l  -t- (sv  + s 'v ' )  en + r, (17) 

where  r = s a d  t3 ( - d ( ~ / / a ) e t 3  + et3+l)  -t- st'Td 't4 ( -d t (o~/ ' ) ' )en- t4+l  -t- en- t4) .  
C o m p a r i n g  wi th  (13), we let su  + s tu  r = Wl and sv  + sty t = wn,  and it follows t h a t  

1211 vr - -  W n  U / 
S - -  

?AC t - -  VU r 

s' -- UWn - v w l  (18) 
UV t - -  y U  / 

A n p  = Wlel  + When ~- r. 

After  de te rmin ing  p ,  the  subrout ine  for comput ing  x (=  :~ - p)  is shown in Append ix  8, where  
the  above concerning opera t ions  are the  well-known pref ix-product  operat ions .  

Fur the rmore ,  combining  the  vectorized subrout ines  described in Section 2.2.1, and  the  above 
subrout ine  shown in Append ix  8, our  first vectorized a lgor i thm for solving (1) is cons t i tu ted  by 
the  following five subrout ines .  

CALL VLOWI (l,-d) 

CALL UPDATELOW(I,-d, ti) 

CALL VUPPERI (a,g~mma) 

CALL UPDATEUPPER (a, gmmm~a, t 2) 

CALL FINAL(t3,t4) 

Similarly, combining  the  vectorized subrout ines  described in Section 2.2.2, and the  subrout ine  
F INAL( t3 ,  t4), our  second vectorized a lgor i thm for solving (1) is shown below. 

CALL gLOW2(l,-d,kl) 

CALL VUPPER2 (a, gamma, k2) 

CALL FINAL(t3,t4) 

2.4.  E r r o r  A n a l y s e s  

2 .4 .1 .  F o r  t h e  f i r s t  m e t h o d  

T h e  following t heo rem gives the  error analysis of our  first vectorized a lgor i thm for solving (1). 

THEOREM 4. Let  c4 = 1 + (11311 + If~21 + If~31)c3, c5 = 1 + (IBm] + 13~1 + 13~1)c3, c6 = (c41v'[ 4- 

c s l u ' l ) / ( l u v '  - v u ' l ) ,  and c7 = (cslul + c 4 1 v l ) / ( l u v '  - v u ' l ) ,  w e  have 

[[Anx - bll 

IIbtl 
~__ (cl[d[  t `+ l  4- c2 Idt[ t2 4- csldl t3 4- (29 [d t[ t4 )  , 

w h e r e  Cs = c6[a[ and  c9 -- e7['7[. 

PROOF. See Append ix  9. 
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For simplicity, by  Theorem 4 we define the following notat ions:  t l(~) = min{t  • N : clld[ t+l  < 
~/4}; t2(~) = rnin{t • N : c2[d'[ t < ~/4}; t3(~) = min{t  • N :  cs[d[ t < ~/4}; t4(~) = min{t  • 

N :  c91d'l t < ¢/4},  where ~ is the upper  bound  of  the  relative residual. I f  max(t1 (~), t2(¢)) > n / p  

or max(t3(¢) ,  t4(¢)) > n, then  our first vectorized a lgor i thm will break down when the  required 

relative tolerance is sufficiently small a n d / o r  the diagonal, dominance ratio is sufficiently close 

to  2. 
However, for some cases, our first vectorized algori thm works well. For example,  for conven- 

t ional  B-spline curve fitting [14,15], the corresponding system is of (1) with /31 -- 5, /32 = 1, 

/3 = 4, /33 = 0, a = 1, ~ = 1, /3~ = 5, /~ = 1, and/3~ -- 0. We have tl(~) = 11, t2(~) = 12, 

t3(~) = 13, and t4(~) = 13 for ~ = 10-6; we have tl(~) = 13, t2(~) = 14, t3(~) -- 15, and t4(~) = 15 
for ~ = 10 -7. For closed B-spline curve fitting [14], the corresponding system is of  (1) with/31 = 4, 

~2 = 1 ,  3 : 4 ,  J~3 = 1, a = 1, ~ ---- 1,/3~ = 4,/3~ = 1, and ~3~ = 1. We have tl(~) = 11, t2(~) --- 12, 
t3(~) = 14, and t4(~) = 14 for ~ = 10-6; we have tl(~) = 13, t2(¢) = 14, t3(~) = 15, and t4(~) = 15 

for ¢ -- 10 -7.  Fur thermore,  let us examine the  other  two cases. If  the sys tem is of  (1) with/31 = 3, 

/32 = 1,/3 = 3,/33 = 1, c~ = 1, 7 -- 1,/3~ -- 3,/3~ = 1, and/3~ = 1, we have tl(~) = 16, t2(~) --- 17, 
t3(~) = 19, and t4(~) = 19 for ¢ = 10 -6, If  the system with small diagonal dominance  rat io is 

of (1) with/31 -- 2.1, /32 = 1, /3 = 2.1, /33 = 1, a = 1, 7 -- 1,/3~ = 2.1, /3~ = 1, and/3~ = 1, we 
have tl(~) = 52, t2(~) = 60, t3(~) = 68, and t4(¢) = 68 for ~ = 10 -6. 

2.4.2.  For t h e  s e c o n d  m e t h o d  

In wha t  follows, we will discuss the error analysis of  our second vectorized a lgor i thm for solv- 

ing (1). 
By  L e m m a  2 and (11), we have 

Iw~l _~ ~llbll and Iw,~l ~ c£11bll, (19) 

where c~ -- 1 4- (I/311 4- 1/321 + 1/331)c£ and ~5 = 1 4- (I/3~1 + I/3&l + I/3&1)4, By (18) and (19), we have 

Isl ~c~llbll and Is' I < c~llbll, (20) 

where c~ : (c~lv'l + c £ 1 u ' l ) / ( l u v '  - v u ' l )  and c~ = (c£lul + c ' 4 1 v l ) / ( l u v '  - v u ' l ) .  By the variat ion 
of (ga) and (20), we have the following result. 

THEOREM 5. 

ilbl I + c;  Id'[ 2k2+1 + csldl ts + c 9 Id'[ t4 , 

w h e r e  c's = c'6[a[ and  4 = c~[71. 

For simplicity, by (20) we define the following notat ions:  Q(¢) --- min{t  E N : [d[ 2¢+1 < ¢/4};  

t2(~) = min{t  E N :  c~ld'l 2¢÷1 < ¢ /4) ;  t3(0 = min{t  E N :  c's[d] ¢ < ¢/4};  t4(¢) -- min{t  E N :  
c'gld'l ¢ < ¢/4}, where ¢ is the  upper  bound  of  the relative residual. 

I f  max(Q(~) , t2(~))  > n or max(t3(~), t4(~))  > n, then our second veetorized a lgor i thm will 

break down when the  required relative tolerance is sufficiently small a n d / o r  the diagonal domi- 

nance rat io is sufficiently close to  2. 
However, for some cases, our  second vectorized algori thm works well. For the conventional  

B-spline curve fitting, we have t l ( ~ )  = 3,  t 2 ( ~ )  ---- 3, t3(~) ----- 13, and $4(~) -- 13 for ~ ---- 10-6; we 
have tl(~) = 3, t2(¢) = 3, t3(~) = 15, and t4(~) = 15 for ~ = 10 -7. For closed B-spline curve 
fitting, we have tl(~) = 3, t2(~) = 3, t3(¢) = 13, and t4(~) = 13 for ¢ = 10-6; we have t1(¢) -- 3, 
t2(¢) = 3, t3(¢) = 15, and t4(~) = 15 for f = 10 -7. Furthermore,  let us examine the  previous 
two cases wi th  diagonal  dominance ratios 3 /2  and 2.1/2, respectively. For the first case, we have 
tl(~) = 3, t2(~) = 4, t3(~) = 19, and t4(¢) = 19 for ~ = 10 -6  . For the second case, we have 

tl(~) -- 5, t2(~) -- 5, t3(~) -- 65, and t4(¢) = 65 for ~ = 10 -6. 
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3. E X P E R I M E N T A L  R E S U L T S  

The machine used in the numerical experiments is the CRAY X-MP EA/116se. The machine 
has a register-register architecture without the cache memory and has one vector processor which 
contains eight 64-bit vector registers of length 64. Memory is divided into 16 banks and each bank 
contains 1 M 64-bit words. Each bank requires 14 cycle time (one cycle time needs 8.5 nanosec- 
onds) before it is ready for another request. The peak performance is 235 MFLOPS (millions of 
floating-point operations per second). In order to avoid memory conflicts for some m, the value 
of m (> 512) can be selected as 64(2z + 1), where z is the smallest positive integer such that  it 
satisfies that  64(2z + 1) _> n. Here m = 64(2[n/128] + 1). 

All of our testing data, b 's  are generated by a random number generator, a function call 
r a n f 0 ,  and each entry of b is ranged from 0 to 1. Our two vectorized algorithms are coded by 
CRAY Fortran 77 language. The operating system used here is UNICOS 6.1.6 and the compiler 
is called CF77. 

Let A i l =  Ai(2.5), Ai2 = A{(2.7), and Ai3 = Ai(3) for i = 1, 2, where 

A1(/3) = I 1 1 ~ 1 

and 

In addition, we let 

and 

A2(/3) = 

1 

A 1 4  - -  

4 1 

1 4 
1 

5 1  :/ 
1 4 1 

A 2 4  --- 

1 4 
1 1 

which are derived from the conventional B-spline curve fitting problem and have been discussed 
in Section 2.4. When running our two algorithms on CRAY X-MP EA/ l l6se ,  the performance 
is illustrated in Table 1 and Table 2, respectively• 

T a b l e  1. F i r s t  a l g o r i t h m ' s  p e r f o r m a n c e  on  C R A Y  X - M P  E A / l l 6 s e .  

n p q t i m e  ?'11 7"12 7"13 r14 7'21 ?'22 r23 /'24 

2048 64 33 0.18 10 - 8  10 - 1 °  10 -1 1  10 -11  10 - s  10 - 1 0  10 -11  10 -11  

4096 64 65 0.27 10 - s  10 - l °  10 -11  10 -11  10 - s  10 - 1 °  10 -11  10 -11  

8192 64 129 0.45 10 - 8  10 - l °  10 -11  10 -11  10 - s  10 - 1 °  10 -11  10 -11  

16384 64 257 0.81 i 0  - s  10 - 1 °  i 0  - I I  10 -1 1  10 - 8  10 - 1 °  10 -1 1  10 -11  
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Table 2. Second algorithm's performance on CRAY X-MP EA/ll6se. 

n time 

128 0.043 
256 0.066 
512 0.11 

1024 0.20 

r l l  

10-1o 

10-10 
10-1o 
10-1o 

7'12 r13 r14 r21 r22 r23 r24 

10-12 10-14 10-14 10-10 10-12 10-14 10-14 

10-12 10-14 10-14 10-10 10-12 10-14 10-14 
10-12 10-14 10-14 10-10 10-12 10-14 10-14 

10 -12 10-14 10-14 10-10 10-12 10-14 10-14 

In Tables 1 and 2, the symbols n, p, and q x q denote the size of b, the number of the blocks, 
the size of one block. The symbol ' t ime '  in terms of millisecond, represents the t ime spent in 

the first vectorized algorithm. The symbol rij  for 1 < i < 2 and 1 < j < 4 represents the 
sup-norm of the relative residual corresponding to Aij. In Table 1, by Theorem 4, we select 

t l  -- t2 -- t3 = t4 = 30; in Table 2, by Theorem 5, we select kl = k2 -- 5 and t 3 = t4 -- 30. 

4. C O N C L U S I O N S  

This paper  has presented two fast vectorized algorithms for solving special tridiagonal systems 
and has analyzed the error analyses. Due to our matr ix  per turbat ion technique, all the vector 
operat ions involved in the two algorithms are scaled by a constant, which is very important  for 
the efficient implementat ion on the CRAY X-MP. Some experimental  results demonstra te  the 
performance of our two vectorized algorithms. Our results can be applied to solve the quadratic 
B-spline curve fitting problem [16,17], the parabolic PDE [4] problem, and so on, since these 
problems belong to the type of special tridiagonal Toeplitz systems. 

Using the same matr ix  per turbat ion method proposed in this paper,  the parallel algorithms 
for solving (1) on hypercubes [18] and the B-spline surface fitting [19], respectively, have been 
developed. In addition, the results of this paper  can also be applied to solve the diagonally 
dominant  block tridiagonal system to achieve bet ter  performance. I t  is interesting to employ the 

other parallel tridiagonal solvers [20,21]. 

A P P E N D I X  1 

SUBROUTINE VLOWI(r, s) 
real r, s 

C*****the entry array y represents vector y 
C*****the exit array y represents vector x' 

do 5 i=0, p-i 
y (i*q+l) = (i/r) *y (i*q+l) 

5 continue 
do l0 j = 2 , q  

do 20 i = 0 , p - i  
y ( i * q + j )  = ( i / r ) *  ( y ( i * q + j ) - s * y ( i * q + j - 1 ) )  

20 c o n t i n u e  
10 c o n t i n u e  

A P P E N D I X  2 

SUBROUTINE UPDATELOWI(r,s,t) 
real r,s 
integer t 

C******the entry array y represents vector x' 
C******the exit array y represents vector x 

temp=l 
do 30 j=0,t-I 

temp=temp*(-s/r) 
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40 
30 

do 40 i=l,p-I 
y (i*q+j+l) =y(i*q+j+l) +y(iq) *temp 

c ont inue 
continue 

A P P E N D I X  3 

Let L - l y  = x, then L x  = y,  i.e., 

r x l  = y l ,  ( 3 a )  

SXi -1  ~- TXi : Yi, i > 1. (3b) 

I f  ]]Xli = [Xl[, then  by (3a), we have [lY[[ -> [Y,I = I rx l ]  = [r[ [[xl[. If [Ix[I --- Ixil for some i > 1, 
then by (3b) and the tr iangular  inequality, we have 

IlYll -> lYil k I r x i l -  18Xi-ll 
> I"1 I lx l l -  Isl Ilxll 
= ( I r l -  Isl)llxll. 

We complete the proof and have Ilxll _< (1/(Ir  I - Isl))llyll. 

A P P E N D I X  4 

Taking the t r iangular  inequality on both sides of (6), since I s / r l  < 1, it yields 

Ilxll_< ( 1 +  s ) l l x ,  ll. 

Applying L e m m a  1 to (3), we have IIx'(*)l I ~ 1/(I t  I -Isl)lLy(*)ll, Thus,  we obtain 

Ilx'l] = max x '(i) 
l_<~<p 

1 y(O 
< max - 
- l_<~<_plrl isl 

1 
< - - I l y l l .  
- M -  Isl 

Furthermore,  by (7) we have 

(4a) 

by (4a), we have 
1 + Is/rl 

Hxll-< T ~ - - ~  IlyH- (4c) 

By (4b), (4c), and their variations, the bound of the sup-norm of the residual vector Amx~ t _ b ~ 
is derived by 

HXmX' - b'll _< I lL" (U'~x' - Y')ll ÷ l I L l Y  ' - b'll 

<_ (1 + I d l ) H U t m x  ' - Y'II + l ILlY ' - b'll 

<_ (1 + Idl)17 [ 2 t2 1 1 
a lal - I"/---'~l [lY']I + Idl t ' + l  1 - [d--~l 

<__ ( ( 1 +  Idl)171 2 t2 1 1 + Id I 
a lal -1"71 1 - I d l  + l d l t l + l  

IIb'll 

1) 
1 - I d l  Ilbl[" 

s t  1 
IILm x - Yll < Isl Irl - Isl IlYlI; (4b) 
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Let  c1 ~--- 1 / ( 1  - -  Idl) and c2 -- (1 + Idl)]vl(1/(Jal- hi ) ) ( (1  + Idl)/(1 - I d l ) ) ,  the  above bound  is 
simplified by 

[ , A ' x ' - b ' [ , <  (cl ldl  t1+1 + c 2  a 7-t2) ]]b]l. (4d) 

T h e  t e r m  cl[dl t~+l will be  less t han  ~, if ~;1 is grea ter  t han  (log~ - l o g c l ) / l o g  [d[ - 1; the  t e r m  
c217/a[ t2+1 will be less t han  ~, if t2 is grea ter  t h a n  (log~ - logc2) / ( log  Iv/a[)  - 1. 

By  (4c) and its var ia t ion,  we have 

Ilx'll < 1 + b/al - T~[ -~ -  ~ [ly'll 

< 1 + l'7/a[ 1 + Id[ ]lb, ll " 

Let c3 = ((1 + b/al)/(lal- I~J))((1 + Idl)/(1 - ]d [ ) ) ,  then it yields 

IIx'll _<  31FblI. 

A P P E N D I X  5 

SUBROUTINE VLOW2 (r, s, k) 

integer k 

real r,s 

p=l 

temp=-s/r 

C*****Vector operation 

x [1 :n] = ( 1 / r ) * x  [1 :n] 
do I0 i=0,k 

C*****Compute (15) in a vectorized way 

x [l+p : n] =x [l+p : n] +t emp*x [I : n-p] 

temp=temp*temp 

p=p*2 

10 c ont inue 

10 

A P P E N D I X  6 

SUBROUTINE VUPPER2 (r, s, k) 

integer k 

real r, s 

p=l 

temp=-s/r 

x [i :n] =(I/r)*x [i :n] 

do i0 i=0,k 

x [ 1 :n-p] =x [ I :n-p] +t emp*x [ l+p: n] 

t emp=t emp * t emp 

p=p*2 

c ont inue 

A P P E N D I X  7 

B y  (8), (10), and their  var iat ions,  the  bound  of the  sup -no rm of the  residual vec tor  Amxl , _ b t 
isderived by 
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J l A ' ~ x '  - b'll _< 

<_ 

<_ 

<_ 

J]L~m (U'mx' - Y')]I + IIL~my ' - b'lJ 
(1 + [dl)IIU'~x' - Y'II + l I L l y '  - b'll 

( I  + Idl)Id'l 2~+'  IIY'IJ + JdJ 2~2+~ llb'll 

(1 + Idl)Id'J 2~+1 ~ Ilb'll + Idl 2~+~ IIb'll 
1 - I d l  

( 1 ) IIb]l. (1 + Idl)Id'l 2~1+1 1 -Id----~ + Id12~+l 

Let c~ = I and c~ = (1 + Idl)/(1 -IdJ), then the bound is simplified by 

J l A ' x ' -  b'll <_ (cildl2~'+' + c~ Id'l 2~+') ilbll. (7a) 

The  te rm c~JdJ 2~1+1 will be less than  4, if kl is greater  than  log(logS/logJdl) - 1; the te rm 

c'2]d'] 2~2+~ will be less t han  4, if k2 is greater than  log((log ~ - l ogc~) / log  ]d]) - 1. 
From (10) and its variation,  we have 

1 
Jlx'JJ < JaJ- i"/~---~ jjy'jj 

1 1 
< - -  - - i l b i l .  
- l a J -  l'yl 1 -Idl 

Let c~ = (1/(lal - J ' y l ) ) (1 / (1  - I d l ) ) ,  then the simplified bound  is given by 

IIx'll ~ 411bll. (Tb) 

A P P E N D I X  8 

SUBROUTINE F I N A L ( t 3 , t 4 )  
i n t e g e r  t 3 , t 4  
temp=d 
do 10 i = l , t 3  

x [i] =X [i] - t  emp*s 
temp=temp*d 

i0 continue 
C*****dp represents d' in the context 

temp=dp 
do 20 i=n,n+l-t4 

C*****sp represents s' in the context 

x [i] =X [i] -temp*sp 
temp=temp*dp 

20 continue 

A P P E N D I X  9 

By x -- ~ - p,  (16), (17), and (18), we have 

A n x -  b -- A n ~ -  b -  Amp 

= Anx - b - Wlel - When 
sc~dtS(_d_~ets+ets+l)_S,,Td,t, ( ,c~ en-t4) 

- - d  - -en_t3+ 1 + -y 

Immediately,  it yields 

1oL 
N A n x - b N  < , , z ' H +  sadtZ(-d~ets+ets+l)+S"ydn4(-d~en-t4+l+en-t4) 

(9a) 
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By (11) and L e m m a  2, we have 

IWll ~ c411bll and Iwnl ~ callbll, (9b) 

where c4 = 1 + (1~1[ + 1~2[ + 1~31)c3 and c5 = 1 + (IBi] + IZ~I + I~hl)c3. 
By  (18) and (gb), we have 

[sl ~< c6llbll and Is'l - cTIFbll, (9c) 

where c6 = (e41v'l + cslu'l)l(luv' - vu ' l )  and c7 = (cslul + c41vl)l(luv' - vu ' l ) .  By (ga) and (9c), 
it follows tha t  

I IAnx - bll < / [Clldl t1+1 + c2 Id'l t2 + cs[dl t3 + c9 Id'lt'), ~ (9d) 
Ilbll 

where cs = c61~1 and c9 = c71~1. 
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