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Abstract—=Solving special tridiagonal systems often arise in the fields of engineering and sci-
ence. This special tridiagonal system is diagonally dominant and circulant near-Toeplitz. This paper
presents two fast vectorized algorithms for solving special tridiagonal systems. Both algorithms
employ the matrix perturbation technique and have many computational advantages on vector su-
percomputer. The related error analysis are also given. Some experimental results are illustrated on
vector uniprocessor of the CRAY X-MP EA/116se.
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1. INTRODUCTION

In this paper, we are interested in the solution of the special tridiagonal system

A,x=b (1)
of order n on vector uniprocessor, where
B B2 B3
a B v
A =
a B8 v
B3 Gy B

and |B| > |o+ y|. Solving (1) arises in many computational problems [1-7], in which it is
one of the most time-consuming elements. The availability of vector supercomputers has had a
significant impact on scientific computations [8-10]. The motivation of this research is to design
efficient vectorized algorithms for solving (1).
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In this paper, two fast vectorized algorithms for solving (1) are presented. Both new algorithms
consist of three phases and only differ in the second phase. The first phase is a Toeplitz factor-
ization of a slightly perturbed matrix of A,. The second phase is to solve the perturbed problem
in a highly vectorized way, but only scale x vector operations are involved, hence, it leads to a
great deal of computational saving. In the third phase, the solution to the original problem is
recovered from the solution to the perturbed problem; this is called the update procedure. Some
error analyses are also given. In addition, some experimental results are illustrated on CRAY
X-MP EA/116se.

Section 2 presents our vectorized algorithms for solving (1) and the related error analyses. The
implementations on the CRAY X-MP EA/116se are illustrated in Section 3. Section 4 gives the
conclusions.

2. VECTORIZATIONS

2.1. Toeplitz Factorization

Throughout the remainder of this paper, matrices are represented by uppercase letters, vectors
by bold lowercase letters, and scalars by plain lowercase letters. The superscript ' corresponds
to the transpose operation; || e || denotes the sup-norm of one vector.

In order to avoid memory conflict in CRAY X-MP EA/116se [11], we enlarge (1), then perturb
it to A, x" = b’, where m = pq (p denotes the length of one register file in the vector computer,
i.e., the vector length), b’ = (b, ba, .. .+bp,0,...,0)7, and

N et Nt e

a ’Y n—m
a [ v
A = N =L'U, (2)
a B «
a f
1 a 7
—d 1 a
L = . and U = - ,
-d 1 a
—-d 1 a

which implies that a — yd = 3 and —ad = a. This in turn implies that d = —(a/a) and a =
(B++/3? — 4va)/2. Since we wish the matrices L’ and U’ to be diagonally dominant, we will select
the sign so that the absolute value of a is greater than max(|c/, |y|). That is, when 8 > |a + 7|,
we choose a = (8+ /82 — 4ya)/2; when 8 < —|a+7|, we choose a = (8—+/3? — 4ya)/2. Since
one of our choices always makes |a| > max(|a|,|7|), hence, the bidiagonal Toeplitz matrices L’
and U’ are diagonally dominant. The computation of a and d provides the Toeplitz factorization
of the matrix A’, which can be done in O(1) time.

2.2. Solving the Perturbed System

2.2.1. The first method

In this section, our first vectorized method for solving A],x’ = b’ in a highly vectorized way
consists of two parts:

(1) vectorization of a lower bidiagonal Toeplitz system, L]y’ = b/,
(2) vectorization of an upper bidiagonal Toeplitz system, U/ x' = y’.

We would especially point out that due to our matrix perturbation technique, all the vector oper-
ations involved are scaled by a constant, which is very important for the efficient implementation
on the vector computer.
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For convenience, we first describe the vectorized method for solving the general lower bidiagonal
Toeplitz system (LBTS), L,,x =y, where

L,= - , for |r| > |s]
s 7

s r mXm

and ¥y = (y1,%2,----Ym) " - In Section 2.1, we know that m = pq. Therefore, we partition the
above LBTS into p LBTS’s. Each LBTS can be written as

qul(i) :y(i)’ fori=0,17---vp—1’ (3)

where x'V = (x§q+1,x;q+2,...,z;q+q)T and YO = (Yigi1,Yigr2r- - - Yigrq) - Our vectorized
subroutine for solving these p smaller LBTS’s is shown in Appendix 1, where Loop-5 and Loop-20
can be vectorized with vector length p. Specifically, only scalar x vector operations are involved
in this subroutine.

After solving x’ in a vectorized way, we have

p—1
Lpx' =y+s Z Ti€igt1s 4)

i=1

where ex = (0,...,0,1,0,...,0)7 for 1 <k < m. Since
N et Nt e’

k m—k
L,.er =reg + seky1, 1<k<m,
we have
=1 s\ J =1 =1 g
L, Z— (“) €k+; =Z (—‘) €k+j — (“) Ck4j+1
T . T ;
=0 j=0 3=0 (5)
syt
oo (-2) e
T
Let
sp-—l t—1 s\J
/ ' o
X=X - ;Zﬂ?iqz (—;) igts+1 (6)
i=1  j=0

where ¢t denotes the length of the update vector which will be discussed in Section 2.3, the solution
vector x of (6) can be computed by using the vectorized subroutine as shown in Appendix 2,
where Loop-40 can be vectorized with vector length p — 1. Only scalar x vector operations are
involved in this subroutine.

By (5) and (6), we have

p—1

p—1 ¢
L _ ’ ' S
mX=Y+8) Ti€gr1—5) Til|e€gp1— ~x €ttt
i=1

i=1
p-1 syt
!
=y+s E T (—;) €ig+t+1s
i=1

hence,
st
|Zmx =yl < sl |2] %] (7)

To estimate ||x’||, we need the following lemma.
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LEMMA 1. If

L= oo s Irl> s,

then ||[L='y|| < 1/(Ir| — IsDllyll-
PrOOF. See Appendix 3.

Using the above similar partition approach, it is easy to design our two vectorized subroutines,
VUPPERI1(r,s) (vs. VLOW1(r,s)) and UPDATEUPPERI(r,s,t) (vs. UPDATELOW1(r,s,t)), for
solving the general upper bidiagonal Toeplitz system (UBTS), Up,x =y, where

Un = - , for |r| > |s|.

For saving space, we omit the pseudo codes for these two subroutines.
Return to solve A/, x’ = b’. Since A}, = L], U}, we first solve L]y’ = b’, where b’ =
(bl,bg,...,bn,O,...,O)T, then solve U/, x’ = y’. Using our previous vectorized methods for
N —

m-—n
solving general lower and upper bidiagonal systems, the following algorithm is used to solve

Al x =D,

C#+**xxxthe entry array y represents vector b’
Cx*xxxxthe exit array represents vector x’
CALL VLOW1(1,-d)
CALL UPDATELOW(1,-d,t1)
CALL VUPPER1(a,gamma)
CALL UPDATEUPPER(a,gamma,t2)

Lonavia 2. Let ey = 1/(1 — [d]) and ez = (1+ dDll(1/(lal ~ [YD)((1 + |d)/(L ~Id]), then
4 =01 < (cldr* +ea |2 gL

The term c;|d|"*+! will be less than €, if t; is greater than (log& — logc;)/log |d| — 1; the term
caolv/alt?tt will be less than €, if to is greater than ((log& — logea)/(log|v/al)) — 1. Let c3 =
(1 +1v/al)/(lal = [v))((1 +|d])/(1 = |dl)), then it yields

%[l < eslib]|-

PRrROOF. See Appendix 4.

Lemma 2 will be used in the analysis of the update phase in Section 2.3.

In the following section, based on the product expansion method [12,13], we present the second
vectorized method for solving Al x’ = b’, where m = n, since we do not need the partition
approach as described in Section 2.2.1.
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2.2.2. The second method

Now we describe our second vectorized method for solving L,,x = y. All the vector operations
involved are scaled only by a constant.
Since L, = r(I — E) with

the system L,,x =y is equal to (I — E)x = (1/r)y. x can be obtained by computing x =
(I + E?").-- (I + E®)(I + E){(1/r)y) because

Lnx=r(I—-E)x
=r(I = B)I+B) (I +E?)-- (1 + E*) (%y)

= (I — EzkH) y.

Since

2k+1

we then have
‘2k+1

A U (8)

The relative residual (||Ly,x—y||)/lly|| will be less than &, if & is greater than log(log £/(log |s/r|))
—1. Therefore, the computation of x (= x(**1)) can be accomplished by the following iterative
formula:

x(+D) = (I + Ez‘) x® = x® 4 E¥x® 0<i<k, 9)
with the initial assignment x© = (1/r)y.
From (8), we have ||xC+V]| < (1 + [s/7Z)|x?]. Thus,
k k—1
(k+1) = It
ol < (1 27) (14 (e 217
el Iyl (10)
1—|s/r] |r
1

< — .
S |s|IIyH

The formal vectorized subroutine for computing x**1) is shown in Appendix 5, where mainly
scalar x vector operations are involved in this subroutine.

Similarly, it is easy to design our vectorized subroutine for solving the general UBTS system,
Unpx = y. The corresponding vectorized subroutine is shown in Appendix 6, where mainly
scalar x vector operations are involved in this subroutine.
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Using our previous two vectorized subroutines shown in Appendices 5 and 6 for solving gen-
eral lower and upper bidiagonal systems, respectively, the following procedure is used to solve
Al x' =D

CALL VLOW2(1,-d,k1)
CALL VUPPER2(a,gamma,k2)

LEMMA 3. Let ¢} =1 and ¢4 = (1+1d|)/(1 — |d|), then we have
A = b)) < (cd®™ + 51177 bl

Izk1+1

The term cy|d will be less than &, if ki is greater than log(log&/log|d|) — 1; the term
c’2|d’|2‘c2+1 will be less than &, if ky is greater than log((log& — logch)/logld|) — 1. Let ¢ =
(1/(la) — |vD(1/(1 = |d])), then it follows that

%'l < eslb]|.

PROOF. See Appendix 7.

Lemma 3 will be used in the following section.

2.3. Update

After solving the perturbed system A/ x’' = b’ approximately, the approximate solution of x
will be recovered from the perturbed system in this section.

Letz' = Al x' — b/, 2= (2},2},...,2)7, x = (z},7},...,2/)T, and w = A, % — b. Since
w; = ar;_y + Bx; + vz, — b = 7, for 1 <i<n,
wy = Pz + Baxy + Pz, — by, (11)

! 7 14 /
Wn = P32y + /622:71,—1 + ﬂlxn - b’n7

we have ||w — wie1 — wpeqn| < ||Z|] £ ||2’||. By Lemma 2, it follows that
z ’ t1+1 Y|t
|4n% ~ b — wies — wneall < Izl < (etld]™* + o | [ ) bl (12)

The value of ||Z’|| will be very small when t; and ¢, are large enough. Therefore, the approximate
solution of x to be determined equals X — p, where

Ap = wie; + wpen. (13)

To solve p, we try to ignore the first and last equalities of the system Ap = wie; + wpe,,
then we must solve the recurrence relation: ap;_; + 8p; + ¥p;41 = 0 for 2 < i < n — 1. From
a—~vd = B. —ad = a, it follows that o+ 8d +vd? = 0 and v+ Bd’ + ad? = 0, where d' = —v/a.
Naturally, if we try p; = (d,d?,...,d",0,... ,0)7, then

N e e

ta n—ts T

Anpr = | frd + Bod?, ad + Bd® +7d?, ..., ad™ " + Bd", ad®,0,...,0, B3d

i3 n—tz
T

(14)
= | frd + 62d,0,...,0,ad™ ! + Bd™, ad™,0, ..., 0, Bid

T — v

ts n—ts

= ue; + ve, + ad®® (—dg—eta + et3+1) ,
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where u = (81d + B2d?) and v = B4d. Similarly, if we try p2 = (0,...,0,d"™,...,d? d')7, then
N S

n—t4 ta
o
Anp2 = v'e; +v'e, +vd'* (_d,;en—tﬁ-l + en—t4> ,

where v/ = (B{d’ + (}d?) and v/ = B3d'.
Let
P = sp1 + s'pa,

then by (14) and (15), we have
Anp=(su+s'u)e +(sv+sv)e, +r,

where r = sad®(—d(y/a)et, + €t,41) + 'vd*(—d' (a/Y)en—t,+1 + €n—t,)-
Comparing with (13), we let su + s'v’ = w; and sv + s'v' = w,, and it follows that

wv — wau

wv' —vu'
, UW, —vwWy
5= I ;

uv’ —vu

A,p =we; + wpe, +r.

(15)

(16)

(17)

(18)

After determining p, the subroutine for computing x (= X — p) is shown in Appendix 8, where

the above concerning operations are the well-known prefix-product operations.

Furthermore, combining the vectorized subroutines described in Section 2.2.1, and the above
subroutine shown in Appendix 8, our first vectorized algorithm for solving (1) is constituted by

the following five subroutines.

CALL VLOW1(1,-d)

CALL UPDATELOW(1,-d,t1)
CALL VUPPER1(a,gamma)

CALL UPDATEUPPER(a,gamma,t2)
CALL FINAL(t3,t4)

Similarly, combining the vectorized subroutines described in Section 2.2.2, and the subroutine

FINAL(ts,t4), our second vectorized algorithm for solving (1) is shown below.

CALL VLOW2(1,-4,k1)
CALL VUPPER2(a,gamma,k2)
CALL FINAL(t3,t4)

2.4. Error Analyses

2.4.1. For the first method

The following theorem gives the error analysis of our first vectorized algorithm for solving (1).

THEOREM 4. Let ca = 1+ (|B1] + |82 + |B3l)es, e5 = 1+ (|81 + 165] + |B5])es, es = (cqlv'| +

cs|u'l}/(luv” —vu'|), and ey = (cs|u| + ca|v]) /(Juv’ — vo/|), we have

| Anx — bl|

< t1+1 r1t2 ts 7ita
B S (caldl ¥ eald1 + eldl® + cold")

where cg = cg|a| and ¢cg = c7|v].
PROOF. See Appendix 9.
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For simplicity, by Theorem 4 we define the following notations: ¢1(£) = min{t € N : ¢;|d|**! <
€/4}; t2(€) = min{t € N : c|d’|* < £/4}; t3(€) = min{t € N : cg|d|* < £/4}; t4(€) = min{t €
N :cold'|t < £/4}, where € is the upper bound of the relative residual. If max(t;(£),t2(€)) > n/p
or max(t3(€),t4(€)) > n, then our first vectorized algorithm will break down when the required
relative tolerance is sufficiently small and/or the diagonal dominance ratio is sufficiently close
to 2.

However, for some cases, our first vectorized algorithm works well. For example, for conven-
tional B-spline curve fitting [14,15], the corresponding system is of (1) with 8, = 5, B2 = 1,
B=4,063=0,a=1,v=1, 6 =5, 05 =1, and B85 = 0. We have t;(£) = 11, t2(¢) = 12,
t3(€) = 13, and t4(€) = 13 for £ = 10~%; we have t1(€) = 13, t2(§) = 14, t3(¢) = 15, and t4(¢) = 15
for € = 10~7. For closed B-spline curve fitting [14], the corresponding system is of (1) with 8; = 4,
Bo=1,8=4,03=1,a=1,~v=1,08] =4, 5, =1, and §5 = 1. We have t,(§) = 11, t2(§) = 12,
t3(€) = 14, and t4(€) = 14 for £ = 107%; we have ¢1(£) = 13, t2(§) = 14, t3(£) = 15, and t4(€) = 15
for £ = 10~7. Furthermore, let us examine the other two cases. If the system is of (1) with §; = 3,
B2=1,8=3,B=1a=1v=1,08 =3, 8,=1, and f5 =1, we have t1(£) = 16, t2(€) = 17,
t3(€) = 19, and t4(€) = 19 for £ = 1078, If the system with small diagonal dominance ratio is
of (1) with 1 =21, 6=1,=21,0=1a=1,v=1,6=21,08;,=1,and 85 =1, we
have t1(€) = 52, t2(€) = 60, ta(¢) = 68, and t4(£) = 68 for £ = 107°.

2.4.2. For the second method

In what follows, we will discuss the error analysis of our second vectorized algorithm for solv-

ing (1).
By Lemma 2 and (11), we have

[wil < cyllb]l and  |ws| < c5lib], (19)
where ¢} = 1+ (|81] + |B2| + |B3])c3 and c5 = 1+ (|81] + 85| + |B3])c5. By (18) and (19), we have
|s|] < cglibll and [s'| < czlibl, (20)

where cg = (cj|v'| + cglu'|)/(Juv’ — vu'|) and ¢ = (c5|u| + c4lv])/(Juv’ — vu'[). By the variation
of (9a) and (20), we have the following result.

THEOREM 5.
”Anx - b“

i< (d

where c¢§ = cgla| and ¢ = c4]7|.

ko +1
P T gl 4 1),

For simplicity, by (20) we define the following notations: t;(§) = min{t € N : 142" < ¢/4);

ta(€) = min{t € N : &|d'|?™" < €/4}; t3(€) = min{t € N : ¢j|d|* < £/4}; ta(€) = min{t € N :
cyld’'|t < €/4}, where £ is the upper bound of the relative residual.

If max(¢1(£),£2(£)) > n or max(t3(€),t4(€)) > n, then our second vectorized algorithm will
break down when the required relative tolerance is sufficiently small and/or the diagonal domi-
nance ratio is sufficiently close to 2.

However, for some cases, our second vectorized algorithm works well. For the conventional
B-spline curve fitting, we have t1(£) = 3, t2(€) = 3, t3(€¢) = 13, and #4(£) = 13 for ¢ = 1075; we
have t,(€) = 3, t2(€) = 3, t3(£) = 15, and t4(¢) = 15 for £ = 10~7. For closed B-spline curve
fitting, we have t1(€) = 3, t2(€) = 3, t3(£) = 13, and t4(£) = 13 for £ = 1075; we have t,(£) = 3,
ta(€) = 3, t3(€) = 15, and t4(€) = 15 for £ = 10~7. Furthermore, let us examine the previous
two cases with diagonal dominance ratios 3/2 and 2.1/2, respectively. For the first case, we have
t1(€) = 3, ta2(€) = 4, t3(€) = 19, and t4(€) = 19 for £ = 107°. For the second case, we have
t1(€) = 5, t2(€) = 5, t3(€) = 65, and t4(£) = 65 for £ = 1078,
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3. EXPERIMENTAL RESULTS

The machine used in the numerical experiments is the CRAY X-MP EA/116se. The machine
has a register-register architecture without the cache memory and has one vector processor which
contains eight 64-bit vector registers of length 64. Memory is divided into 16 banks and each bank
contains 1 M 64-bit words. Each bank requires 14 cycle time (one cycle time needs 8.5 nanosec-
onds) before it is ready for another request. The peak performance is 235 MFLOPS (millions of
floating-point operations per second). In order to avoid memory conflicts for some m, the value
of m (> 512) can be selected as 64(2z + 1), where z is the smallest positive integer such that it
satisfies that 64(2z + 1) > n. Here m = 64(2{n/128] + 1).

All of our testing data, b's are generated by a random number generator, a function call
ranf(), and each entry of b is ranged from 0 to 1. Our two vectorized algorithms are coded by
CRAY Fortran 77 language. The operating system used here is UNICOS 6.1.6 and the compiler
is called CF77.

Let A;; = Ai(2.5), Ap = Ai(2.7), and A;3 = Ai(3) for ¢ = 1,2, where

g 1
1 g1
Al(ﬁ) =

and

In addition, we let

—
1o
[y

A14 =

and

—
'S8
—

A24 = ’ ‘ . )

1 1 5

which are derived from the conventional B-spline curve fitting problem and have been discussed
in Section 2.4. When running our two algorithms on CRAY X-MP EA/116se, the performance
is illustrated in Table 1 and Table 2, respectively.

Table 1. First algorithm’s performance on CRAY X-MP EA/116se.

n P q time T11 T12 T13 T14 721 722 723 724

2048 | 64 33 ] 018 | 1078 | 10710 | 10-11 | 1071t 10-8 | 10-10 | 10~ 10-11
4096 | 64 65 | 027 | 1078 | 10710 | 10-11 10-11 10-% | 10-10 | 10U 10—
8192 | 64 | 129 | 045 108 10710 | 10711 10-11 10-% 10-10 10~11 10—11
16384 | 64 | 257 | 0.81 10-8 | 10710 | j0-U 01! 10-8 | 10-10 | 1o~ 1011
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Table 2. Second algorithm’s performance on CRAY X-MP EA/116se.

n time r11 712 T13 T14 T21 722 23 T24

128 | 0.043 | 10710 | 10-12 | 1014 | 10-14 | 10°10 | 10-12 | 10714 | 10-M4
256 | 0066 | 10-1° | 10~12 | 10-14 | 10-14 | 10-10 | 10-12 | 10~ [ 10~
512 | 0.11 10710 [ 30-12 | 10714 | 10~ | 10-10 | 10-12 | 10~ | 10-M4
1024 | 0.20 10-10 | 10-12 | 1071 | 1074 | 10710 | 10712 | 10714 | 1014

In Tables 1 and 2, the symbols n, p, and ¢ X g denote the size of b, the number of the blocks,
the size of one block. The symbol ‘time’ in terms of millisecond, represents the time spent in
the first vectorized algorithm. The symbol r;; for 1 <4 < 2 and 1 < j < 4 represents the
sup-norm of the relative residual corresponding to A;;. In Table 1, by Theorem 4, we select
t; = to = t3 = t4 = 30; in Table 2, by Theorem 5, we select k;y = k3 = 5 and t3 = ¢4 = 30.

4. CONCLUSIONS

This paper has presented two fast vectorized algorithms for solving special tridiagonal systems
and has analyzed the error analyses. Due to our matrix perturbation technique, all the vector
operations involved in the two algorithms are scaled by a constant, which is very important for
the efficient implementation on the CRAY X-MP. Some experimental results demonstrate the
performance of our two vectorized algorithms. Our results can be applied to solve the quadratic
B-spline curve fitting problem [16,17], the parabolic PDE [4] problem, and so on, since these
problems belong to the type of special tridiagonal Toeplitz systems.

Using the same matrix perturbation method proposed in this paper, the parallel algorithms
for solving (1) on hypercubes [18] and the B-spline surface fitting [19], respectively, have been
developed. In addition, the results of this paper can also be applied to solve the diagonally
dominant block tridiagonal system to achieve better performance. It is interesting to employ the
other parallel tridiagonal solvers [20,21].

APPENDIX 1

SUBROUTINE VLOW1(r,s)

real r,s
Cxxx**xthe entry array y represents vector y
Cx*x*x*x*the exit array y represents vector x’

do 5 i=0, p-1

y(ixq+1)=(1/r) *y(i*xq+1)

5 continue

do 10 j=2,q

do 20 i=0,p-1
y(ixq+j)=(1/r) *(y(i*q+j) -s*y(i*q+j-1))

20 continue
10 continue
APPENDIX 2
SUBROUTINE UPDATELOWi(r,s,t)
real r,s
integer t

C*xxxxxxthe entry array y represents vector x’
Cxxx***the exit array y represents vector x
temp=1
do 30 j=0,t-1
temp=temp*(-s/r)
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do 40 i=1,p-1
y(i*q+j+1)=y(i*q+j+1)+y(iq) *temp

40 continue
30 continue
APPENDIX 3
Let L™y = x, then Lx =y, i.e.,
TT1 = Yi, (3a)
STi_1 + 7T =y, i>1. (3b)
If ||x|| = |z1|, then by (3a), we have ||yl > |n1} = |rz1| = |r| |x||. If [|x]| = |z;] for some i > 1,

then by (3b) and the triangular inequality, we have

hyll > |yl > |res| — [szi-1|
> |r| %]l = Is| 1]l

= (Ir] = lsDlix|l-

We complete the proof and have ||x|| < (1/(|7| — [sI)lly]l-

APPENDIX 4
Taking the triangular inequality on both sides of (6), since |s/r| < 1, it yields

Il < (14 |2]) 10 (42)

Applying Lemma 1 to (3), we have ||x’(i)|| < 1/(Ir] = |s)]ly®||. Thus, we obtain

Il = max [lx|
1<:i<p
(1)
= 121?3)(;) Ir| — sl Hy
1
< vl
Ir| = ls
Furthermore, by (7) we have
2=l < Is | 3] =l (4b)
by (4a), we have
1+1s/r|

]} < = |s] —— o vl (4c)

By (4b), (4c), and their variations, the bound of the sup-norm of the residual vector A x’ —b’
is derived by

[ A7x" = B[l < || Loy (Upx' = ¥)| + | L7y" = bl
<A+ 1d) U, - Y’II + Ly — b

<+l 2] ———l Iyl + e ——

bl
— v

Y 1+ |d| t1+1
< (@i 2] ot T + e ) 1o
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Let c1 = 1/(1 — |d]) and ¢z = (1 + |d])}7[(1/(lal = [¥))((1 + |d])/(1 — |d])), the above bound is
simplified by

i
=1 < (cld+ 4 ca[2] ) o (4d)

The term c¢;|d|**+1 will be less than &, if ¢; is greater than (log& — loge;)/log |d| — 1; the term
coly/al***! will be less than &, if to is greater than (log& — logc,)/(log [y/al) — 1.
By (4c) and its variation, we have

1+ |y/al

7 < /

Il < T2 Il
< L+1v/a] 1+ d]

~ el =yl 1-1d|

&)l

Let c3 = ((1 + [v/al)/(lal — WD)((1 +1d])/(1 — |d])), then it yields

| < calfbl.
APPENDIX 5
SUBROUTINE VLOW2(r,s,k)
integer k
real r,s
p=1
temp=-s/T

Cxx*x**Vector operation
x[1:n]=(1/r)*x[1:n]
do 10 i=0,k
Crx*xx*¥Compute (15) in a vectorized way
x[1+p:n]l=x[1+p:n]l+temp*x [1:n-p]
temp=temp*temp
P=p*2
10 continue

APPENDIX 6

SUBROUTINE VUPPER2(r,s,k)

integer k

real r,s

p=1

temp=-s/r

x[1:n)=(1/r)*x[1:n]

do 10 i=0,k
x{1:n-p]=x[1:n-pl+temp*x[1+p:n]
temp=temp*temp
p=p*2

10 continue

APPENDIX 7

By (8), (10), and their variations, the bound of the sup-norm of the residual vector A/, x’ — b’
isderived by
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|Amx' = || < || Ly, (Upx —y)ll + |L,y" = b/l
<A+ ) IUX =y | + 1L,y -
kq+1
<+l Y0+ a2
s 2k1+1 1 ko 41
< (1 +d])|d] =14 Il + 1d|*™

|2k1+1 1

< (@™ 2

Let ¢; =1 and ¢, = (1 +|d|)/(1 — |d}), then the bound is simplified by

I2k2+1

1Bl

kg+1
1d? ) Il

+1

k141 , k
A =) < (il ™ + a7 ) bl (7a)

The term c'1|d|2k1+1 will be less than &, if k; is greater than log(log&/log|d|) — 1; the term

ch,|d’|2'c2+1 will be less than &, if k2 is greater than log((log& — logch)/ log |d]) — 1.
From (10) and its variation, we have

1
%] < == 1Yl
la| — 1]
1 1
< /= 7 lIbll
la| —|v| 1 —|d|
Let ¢ = (1/(la| — |7v))(1/(1 — |d|)}, then the simplified bound is given by
x|l < b (7b)
APPENDIX 8
SUBROUTINE FINAL(t3,t4)
integer t3,t4
temp=d
do 10 i=1,t3
x[1]=x[i] -temp*s
temp=temp*d
10 continue
Cxxx**xdp represents d’ in the context
temp=dp

do 20 i=n,n+1-t4
Cxx*x*xsp represents s’ in the context
x[il=x[i] -temp*sp
temp=temp*dp
20 continue

APPENDIX 9
By x = X — p, (16), (17), and (18), we have
Ax—-b=A4A,Xx—-b—-A,p

= A, Xx—b—-we —wye,
@
- sad"® (_dg'eta + et3+1) — s'yd'™ (_d’;en—ts+1 + en—t4> :
Immediately, it yields

l4nx — bl < |l2'|| +

87
sad' ("'d%ets + eta+1) + SI'Ydltd (_d/fy'en-—t4+1 + en—t4>

(9a)

t2
< (c1|d|‘1+1 + e || ) Ib]| + |sad®| + |s'vd"™|.
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By (11) and Lemma 2, we have
lwil < callbfl and  |wa| < cs(lbl, (9b)

where ¢4 = 1+ (|61] + |B2] + [B3|)cs and 5 = 1+ (|81] + |83] + |B3])ca.
By (18) and (9b), we have

|s| < collbl]l and || < crlibf), (9)

where cg = (ca|v| + c5|v/])/(Juv’ — vu']) and ¢7 = (cs|u| + ca|v])/(|uv’ — vu']). By (9a) and (9c),
it follows that

< (c11d|t1+1 + oo |d'|" + csld|t* + co |d'|‘*) , (9d)

where cg = cglar| and ¢cg = ¢7|7).
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