
ELSEVIER Pattern Recognition Letters 18 (1997) 63-72

Pattern Recognition
Letters

Vectorizations of randomized matching for run-length
coded strings

Kuo-Liang Chung a,,, Wen-Ming Yan b

a Department of Information Management, National Taiwan Institute of Technology, No. 43, Section 4, Keelung Road, Taipei,
Taiwan 10672, ROC

b Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan 10764, ROC

Received 11 April 1996; revised 21 November 1996

Abstract

Matching run-length coded strings (RLCSs) is very important in the field of pattern recognition. This paper considers the
design of vectorized matching algorithms that operate directly on RLCSs. We first modify the algorithm of Karp and Rabin
(1987) to design a linear-time randomized matching algorithm for RLCSs. Following this algorithm, two new and fast
vectorized algorithms are presented. The first one is off-line and the second one is on-line. Some experiments are carded
out on a CRAY X-MP EA/116se vector supercomputer to demonstrate the good performance of our vectorized algorithms.
© 1997 Elsevier Science B.V.

Keywords: Pattern matching; Randomized algorithms; Vectorized algorithms; Run-length coded strings; Error probability; Vector
supercomputer

1. Introduction

Run-length coding is well-known in the field of image processing and pattern recognition (Rosenfeld and Kak,
1982). The basic idea is to replace sequences of repeated symbols with a count of the number and that symbol.
For example, the run-length coded string (RLCS) of the plain 8-connected chain code 4445556677777 is
43536275 = (4, 3) (5, 3) (6, 2) (7, 5) with four entries, where each entry contains one symbol and its repetitions,
and the length is reduced from 13 to 8. It works well when the size of the alphabet set is small and symbols
do not occur independently but are influenced by their predecessors,

Suppose a plain text (pattern) with length t (p) has been compressed into an RLCS with x (y) entries,
y << x. Not only the run-length coding is a good compression method for representing strings, but designing
efficient algorithms for manipulating these RCLSs is also an important research issue. Recently, an O(1)-time
matching algorithm on RLCSs (Chung, 1995) is presented on a reconfigurable mesh with O (x y) processors;
an O(1)-time matching algorithm for strings with variable length don't cares (Chung, 1996) is presented on

* Corresponding author. E-mail: klchung@cs.ntit.edu.tw.

0167-8655/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PH S0167-8655 (96) 00128-6

64 K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

a reconfigurable mesh with O (t p) processors. Some fast edit distance algorithms (Bunke and Csirik, 1993;
1995) have also been developed on RLCSs.

This paper first modifies the algorithm of Karp and Rabin (1987), which is only concerned with plain text
and pattern, to design a linear-time randomized matching algorithm for RLCSs. Following this algorithm, two
new and fast vectorized algorithms are presented. The first one is off-line and the second one is on-line. To the
best of our knowledge, this is the first time such three randomized algorithms for RLCSs are being presented
in the literature. The results of this paper generalize a previous one (Chung and Yan, 1994) which is only
concerned with plain text and pattern. Some experiments are carried out on a CRAY X-MP EA/116se vector
supercomputer to demonstrate the good performance of the vectorized algorithms.

The remainder of this paper is organized as follows. In Section 2, the linear-time randomized matching
algorithm on RLCSs is presented. Section 3 presents two fast vectorized algorithms and illustrates the related
implementations on a CRAY X-MP EA/116se vector supercomputer. Some concluding remarks are addressed
in Section 4.

2. Linear-time randomized matching on RLCSs

Previously, Karp and Rabin (1987) presented a linear-time randomized algorithm for pattern matching which
is only concerned with plain text and pattern. In this section, we modify their algorithm to design a linear-time
randomized matching algorithm on RLCSs.

We start by taking a simple example to explain the three matching conditions on RLCSs. Let the run-length
coded text be

T = (t (I) , n <1)) (t (2), n (2)) (t (3), n (3)) (t (4), n (4)) (t <5), n (5)) (/(6), n(6))

= (a, 3) (c, 2) (d, 4) (b, 3) (a, 7) (b, 3) (a, 6)

and the pattern be

p = (p(l), m(Z)) (p(2), m(2)) (p(3), m(3)) (p(4), m(4)) = (a, 2) (c, 2) (d, 4) (b, 2).

The matched position is in the first entry at position two since it satisfies the three matching conditions:
(1) p(1) = t~l), m(l) ~< n(l),
(2) t (i) = p (i) , n(i) = m(i) for 2 ~< i ~< 3 and
(3) p(4) = t(4), m(4) ~< n(4).

2.1. Fingerprinting funct ions

For one entry within RLCSs, we assume each symbol ranges from 0 to 255 and the repeated number of
the symbol also ranges from 0 to 255 for simplicity. Let the run-length coded text with x entries and pattern
with y entries be T = (t (l) , n (l)) (t (2) , n (2)) . . . (t~X),n ~x)) and P = (p (l) , m (1)) (p (2) , m (2)) . . . (p (Y) , m (Y)) ,

respectively, 0 ~< t ~i) , n (i) , p(J), m (j) <~ 255 for 1 ~< i ~< x and 1 ~< j ~< y. We first transfer each entry (t (i) , n (i))
of T into an unsigned 16-bit integer by computing t (i) = t (i) . 2 5 6 + n ~i), 1 ~< i ~< x, and each entry (p~J), m (j))
of P into an unsigned 16-bit integer by computing p (j) = p~J) * 256 + m (j) for 1 ~ j ~< y.

Let lpatl = p(l) . 256 + m (1), lpat2 = p(l) . 256 + 256, rpatl = p~Y) * 256 + m ~y) and rpat2 = p(Y) * 256 + 256.
According to the above three matching conditions and this new coding scheme, we say that a real match
occurs in the ith entry at position j (= n (i) - m (1) -k- 1) if the following three matching conditions hold: for
l < . i < ~ x - y + l ,

(1) lpatl ~ t (i) < lpat2,
(2) t (i - l + s) = p (s) f o r 2 ~ < s ~ < y - 1 and

K.-L. Chung, W.-M. YanlPattern Recognition Letters 18 (1997) 63-72 65

(3) rpatl ~ t (i + y -- 1) < rpaa.
For example, suppose a (b) is assigned to 1 (2); c (d) is assigned to 3 (4), then following the above same
example, we have the coded values:

t(1) = 2 5 6 + 3 = 2 5 9 , t (2) = 7 7 0 , t(3) =1028, t (4) = 5 1 5 , t(5) =263,

t (6) = 5 1 5 , t (7) = 2 6 2 , p (1) = 2 5 8 , p (2) = 7 7 0 , p (3) = 1 0 2 8 , p (4) = 5 1 4 ,

/patl = 258, rpatl = 512, /pat2 = 514, rpat2 = 768.

It is easy to verify that the three matching conditions hold, i.e.,
(l) lpatl ~ t(1) < /pat2,
(2) t(2) = p (2) , t(3) = p (3) and
(3) rpatl ~< t(4) < rpat2.

Therefore, the pattern P matches the first entry at position two in the text T.
Following the above three matching conditions, we define two related fingerprinting functions to map run-

length coded substrings into integers. Sometimes, some mapped integers are too large. As a result, overflow may
occur (Kincaid and Cheney, 1996). In order to avoid overflow, employing the operations, rood p's, where p is
a selected prime number and is smaller than the maximum value allowable in the machine, in the fingerprinting
function, the mapped value is always smaller than p. For the text T, we define a fingerprinting function:

Cr(1) = (t (2) r y-3 + t (3) r y - 4 + "." + t (y - 1)) modp,

where the practical consideration on the randomly chosen prime p will be discussed later; the value of r is
naturally selected as 65536 since each t (i) occupies 16 bits. For the pattern P, the fingerprinting function is
defined as

Ce = (p (2) r y-3 + p (3) r y-4 + "'" + p (Y - 1)) modp.

We define the operations +p and Xp to be a +p b = (a + b) mod p and a xp b = ab rood p. For simplicity,
suppose the time complexity spent on the operation Xp or +~ is one unit. Using Horner's rule (Aho et al.,
1975) and the modular property, it first takes (4y - 12) time to compute

and

Cp = (. . . ((p (2) xp r +p p (3)) Xp r +p p (4)) . . .)

Cr(1) = (. . . ((t (2) ×p r +p t (3)) Xp r +p t (4)) . . .) .

It then takes (y - 3) time to precompute (r y-2 mod p) which will be used to compute C r (i) from C r (i - 1).
At the ith step, 2 <~ i ~< x - y + 1, we compute

Cr(i) = (t (i + 1)r (y-3) + t (i + 2) r (y-a) + . . . + t (i + y - 2)) m o d p

= C T (i -- 1) ×p r +p t (y + i - 2) - p t (i) ×p (r y-2 mod p) .

It takes four-unit time to compute C r (i) from C r (i - l) .
We say that a possible match occurs at position i when C r (i) = Cp , lpatl ~ t (i) < lpat2 and rpatl

t (i + y - 1) < rpat2. We now propose a delay-rood approach to speed up the computation of C r (i) from
C r (i - 1) without overflow. Looking at the formula

Cr(i - l) r + t (y + i - 2) - t(i) (r y-2 rood p) ,

it is clear that the formula is less than pr and larger than - p r . Accordingly, C r (i) can be obtained by computing

(C r (i - l) r + t (y + i - 2) - t (i) (r y-2 mod p)) mod p,

66 K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

where the prime satisfies pr < MAX; MAX is the maximum integer allowable in the machine and p < MAX/r.
Although it takes five operations to compute Cr(i) from C r (i - 1), some time-saving is still gained when
compared to the previous method described in the last paragraph since, in practice, computing xp or +p is
performing x or + first and mod later.

2.2. The serial algorithm

Following Section 2.1, a high-level pseudo-code of the linear-time, i.e., O(xk), randomized matching algo-
rithm for RLCSs is listed below, where the constant k denotes the number of randomly chosen primes. Here,
for each new chosen prime, a new fingerprinting function is computed.

Pseudo-code for serial algorithm.
randomly select primes Pl , /~ Pk which are in [2, M];
compute Cr (l) for each chosen prime number;
compute Cp for each chosen prime number;
compute Match (1) ;
f o r i : = 2 t o x - y + l do

compute Cr(i) for each chosen prime number;
Match(i) = 1 if it satisfies the three matching conditions for all the chosen primes;
otherwise, Match(i) = 0

end.

Let Cej denote Cp for prime pj and Crj(i) denote Cr(i) for prime pj. Then Match(i) is computed by

Match(i) = (Crj (i) = Cpl) / ~ (CT2(i) = Cp2) A . . . /~ (Crk(i) = Cpk)

A (/patl ~ t (i) < Ipat2) A (rpatl ~ t (i + y -- 1) < rpat2),

where "A" denotes a logical AND operation.
The detailed randomized matching algorithm for RLCSs is shown below.

Algorithm String-Matching.
Input: t(1 : x) , p (l : y): arrays for text and pattern, respectively;
Output: Match(1 : x - y + 1): boolean array;
begin
f o r j : = l t o k d o

pj := randomly chosen prime in [2, M]; /* M is determined in Section 2.3 */
for j := 1 to k do /* k denotes the number of chosen primes */

begin
/* use Horner's rule to compute Crj(1) which denotes Cr(1) for prime pj */
CTj(1) = (t (2) r y-3 + t (3) r y-4 + . . . + t (y -- 1)) mod pj;
/* use Horner's rule to compute Cpj which denotes Ce for prime pj */
Cpj = (p (2) r y -3 + p (3) r y - 4 + . . . + p (y - 4)) mod p j ;

end;
/* check the three matching conditions for pj, 1 <~ j <<. k */
Match(l) := (C r l (I) = Cp1) A (Cr2(1) = Cp2) A . . . A (Crk(1) = Cpk)

A (/patl ~ t(1) </pat2) A (rpatl ~ t (y) < rpat2);
for i : = 2 to x - y + 1 do

begin

K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72 67

f o r j : = l t o k d o
begin/* delay-mod computation */
Crj(i) := (Crj(i - 1)r + t (y + i - 2) - t(i) (r y -2 mod pj)) mod pj;
end;

Match(i) := (Cr l (i) = Cp1) A (Cr2(i) = Ce2) A . . . A (Crk(i) = Cpk)
A (/pat1 ~ t (i) < /pat2) A (rpatl ~< t (i + y -- 1) < rpat2);

end;
end.

2.3. Error probability

According to the pigeonhole principle (Grimaldi, 1994), a false match may occur if, for some i, the algorithm
determines that Cr(i) = Ce but t (i - 1 + s) ~ p (s) for 2 ~< s ~< y - 1. The probability of such an error can
be reduced to a truly negligible level if the algorithm is repeated k times and it always reports that a possible
match has occurred.

Following the similar proving technique in (Karp and Rabin, 1987), the probability that a false match
occurs is ~< (Tr(8 (y - 2) (x - y - 1)) /~-(M)) 2, where k is the number of repetitions for running the proposed
randomized algorithm; y - 2 is the true length of the pattern in the coding scheme; x - y - 1 is the number of
possible matchings; 7r(u) denotes the number of primes ~< u (Rosser and Schoenfeld, 1962). For saving space,
we omit the detailed proof. For each chosen prime, in order to guarantee the error probability being much less
than 1, we select M to be much larger than 8(y - 2) (x - y + 1). The chosen prime p must belong to [2, M],
M is less than MAX/r since we already know that p is less than M A X / r in order to avoid overflow.

3. Vectorizations

In this section, we transform the serial algorithm into a vector one to fit the features (e.g., vector length and
proper memory stride) of vector supercomputers (Hwang and Briggs, 1984). Two fast vectorized matching
algorithms for RLCSs are presented. One is off-line and the other is on-line.

3.1. Off-line vectorized algorithm

In this subsection, we present the off-line vectorized matching algorithm for RLCSs. Recall that there are
x - y + 1 possible matchings to be examined. Our main concept is transforming the one-dimensional operation
space described in Section 2.2 into a two-dimensional one. It brings out the design of vectorized operations.
That is, one vector operation is used to replace one scalar operation described in Section 2.2. In order to design
the vectorized algorithm with vector length v = 64 and vector stride = q, we define two vectors as shown below:

[t(i) C T (i)]

t(q + i) Cr(q + i)
T i = . and C i -~ . .

t((v - 1) q + i) Cr((V - 1) q + i)

It is easy to derive that

Ci = (Ti+l ry-3 -}- Ti+2 ry-4 -I- • • • "q- Ti+y-2) mod p

for 1 ~< i ~< q. After computing all Ci's for 1 ~< i ~< q, we can compute all Cr~i)'s for 1 <~ i <~ vq.

68 K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

Using Horner's rule and the modular property, it first takes (2y - 6) vector operations with vector length v
to compute

Cl = (. . . ((T 2 ×p r-4-p T3) ×p r + p T 4)) . . .) .

Based on the delay-mod approach, it then takes five vector operations with the same vector length to compute
Ci from Ci-1, 2 <~ i <~ q, by calculating

Ci = C i - i r + Ty+i-2 - T i (r y-2 mod p)) rood p.

Let

Match(i)

Match(q + i)
Mi =

Match((v - 1) q + i)

for 1 ~< i ~ x - y + 1. Then the high-level pseudo-code of the off-line vectorized algorithm is listed below.

Pseudo-code for off-line vectorized algorithm.
randomly select primes Pl,P2 Pk which are in [2, M];
compute Cl for each chosen prime number;
compute Cp for each chosen prime number;
compute Ml;
for i :=2 to q do

compute Ci for each chosen prime number;
compute Mi;

end.

Let C~ j)
defined by

denote Cr(i) for prime pj and let the logical operation "op" between a vector and a scalar be

I ll Ix °P l x2 x2 op
op c-- . .

,, x,, op

Then Mi is computed by

n i = (C~ 1) = Cpl) A (Ci (2) = Cp2) A . . . A (C (k) = Cpk) A (/patl ~< Ti < lpat2) A (rpatl ~< Ti+y-I < rpat2).

The detailed off-line vectorized algorithm is shown below.

Algorithm Off-Line.
Input: t(1 : x) , p (l : y) : arrays;
Output: Match(1 : x - y + 1): boolean array;
begin
for j := 1 to k do pj := randomly chosen prime in [2, M];

K.-L. (?hung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

/* assign zeroes to the extra remaining t (i) ' s */
for i : = x + 1 to v x q + y - 1 do t(i) :=0;
f o r j : = l t o k d o

begin
/* use Hornet's rule to compute CI j) which denotes C1 for prime pj */
CI j) := (T2 ry-3 "4- T3 ry-4 + . . . -q- Ty-i) mod pj;
/* use Horner's rule to compute Cpj which denotes Cp for prime pj */
Cpj ~- p(2) r y-3 + p (3) r y-4 + ' " + p(Y -- 1);

end;
/* check the three matching conditions for pj, 1 <~ j <. k */
M1 := (C~ I) = Cel) A (C~ 2) = Cp2) A . . . A (C~ k) = Cpk) A (lpatl ~< T1 </pat2) A (rpatl <~ Ty < rpat2);
for i :=2 to q do

begin
for j := 1

begin
/* C~ j)

C~ j) :=

end;
Mi := (C~ l) = Cm) A (C~ 2) = Cp2) A . . . A (C~ k) = Cpk) A (lpatl ~< Ti </pat2) A (rpm ~< T i + y - I < rpat2);

end;
end.

to k do

denotes Ci for prime pj */
(c~J)l r -4- Ty+i-2 - Ti(r y-2 rood pj)) mod pj;

69

It can be verified that the number of vector operations required in the above vectorized algorithm is O(kx /v) ,
where v is the vector length•

3.2. On-line vectorized algorithm

Modifying the off-line algorithm of Section 3.1, we present the fast on-line vectorized string-matching
algorithm for RLCSs whose input data is read in an on-line manner. The main concept of the on-line vectorized
algorithm is partitioning the two-dimensional operation space, i.e., matrix form, into some disjoint submatrices.
Successively, we process each submatrix in a highly vectorized way.

We define two vectors as shown below:

T~ b) =

t(i + bqv)

t(q + i + bqv)

t((v - 1)q+ i + bqv)

and C~ b) =

Cr(i + bqv)

Cr (q + i + bqv)

Cr((v - 1)q + i + bqv)

We want to compute

C~ b) " ' (b) r Y - 3 - - t - ' r (b) ry -4 T(b) ~ modp = (l i + 1 - - ~ i + 2 " "4- • • • -4- --i+y--2J

for 1 ~< i ~< q and 0 ~< b ~< (d - 1). Using Horner's rule and modular properties, it takes (2y - 6) vector
operations with vector length v to compute

Cl o) = (. . . ((I:(2 b) Xp r 4-p T~ b)) Xp r +p T(4b))) . . .).

70 K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

Using the delay-mod approach, it then takes five vector operations with the same vector length to compute C~ b~
from C~_b~ 2 ~< i ~< q, by calculating C~ b~ = (C~b_~r + T (b~ - T~)r y-2) mod p. Let ' " y+i -2

M~ b) =

I M(i + bqv))

M(q + i + bqv) .

M((v - l) q + i+ bqv)

Then the high-level pseudo-code of the on-line vectorized algorithm is listed below.

Pseudo-code for on-line vectorized algorithm.
randomly select primes Pl ,P2 Pk which are in [2, M];
compute Ce for each chosen prime number;
f o r b : = 0 t o d - 1 do

compute CI b) for each chosen prime number;
compute M I b);
for i := 2 to q do

compute C} b) for each chosen prime number;
compute M} b);

end;
end.

The detailed on-line vectorized algorithm is shown below.

Algorithm On-Line.
Input: t(1 : x), p(1 : y): arrays;
Output: Match(1 : x - y + 1) : boolean array;
begin
for j := 1 to k do pj := randomly chosen prime in [2, M] ;
/* assign zeroes to the extra remaining t(i)'s */
f o r i : = x + l t o v × q × d + y - 1 dot(i) :=0;
for j := 1 to k do /* use Homer's rule */

Cpj = (p (2) r y-3 + p (3) r y-4 + .-- + p(y - 1)) mod pj;
f o r b : = 0 t o d - 1 do

begin
for j:--1 t o k d o

/* use Homer's rule; C~) = CI b) rood pj */
el j) :-~ (T~b)ry-3 + T~b)r y-4 + . . . + T~b_)l)mod pj;
/* check the three matching conditions for pj, 1 <~ j <~ k */

:= (Cl = c , . ,) A (C l = Cp) A . . . A (C l =
A (lpatl ~ TI b) < lpat2) A (rpatl d T(b) < rpat2);

for i := 2 to q do
begin
f o r j : = l t o k d o

begin
/* Cy) = C~ b) mod py */

K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

Table 1
Performance comparison of three algorithms on CRAY X-MP EA/116se supercomputer

x Serial Off-line On-line timel/time2 timel/time3
time~ time2 time3 RI2 R13

time2/time3
R23

71

10000 20.895 4.587 5.580 4.5553 3.7446 0.8220
20000 41.798 8.620 9.737 4.8490 4.2927 0.8853
30000 62.703 13.097 15.312 4.7876 4.0950 0.8553
40000 83.604 16.345 19.472 5.1150 4.2935 0.8394
50000 104.509 21.477 25.043 4.8661 4.1732 0.8576
60000 125.409 25.603 29.207 4.8982 4.2938 0.8766
70000 146.317 30.548 34.778 4.7897 4.2072 0.8784
80000 167.220 34.173 38.935 4.8933 4.2949 0.8777
90000 188.126 38.502 44.509 4.8861 4.2267 0.8650

• T(b) - - T ~ b) (r y -2 mod p j)) mod pj; C~ j) : : (c~J)-lr + -y+i-2
end;

: = 1> A A . . . A

,'p(b) < rpat2) ; A (lpatl ~< T~ b) < lpat2) A (rpatl <~ ~ i+y-1

end;
end;

end.

It can be verified that the number of vector operations required in this algorithm is O(kx /v) .

3.3. Experimentations

In this section, we implement our serial and two vectorized algorithms in CRAY Fortran 77 on the CRAY
X-MP EA/116se supercomputer. The used supercomputer has a register-to-register architecture without cache
memory and has one vector processor which contains eight 64-bit vector registers. That is, the vector length is
64. Memory is divided into 16 banks and each bank contains 1M 64-bit words. Each bank requires 14 cycle
time (one cycle time needs 8.5 nanoseconds) before it is ready for another request.

As to the off-line vectorized algorithm described in Section 3.1, in order to avoid the memory conflict in
CRAY X-MP (Levesque and Williamson, 1989), we set q to be an as small as possible odd number such that
vq >~ x - y + 1. The extra remaining t (j) ' s for x + 1 <~ j <~ v q + y - 1 are set to zero. As to the on-line
vectorized algorithm described in Section 3.2, in order to avoid the memory conflict, we set q to be an odd
number, say q = 4y + 1, where q (v) is the number of columns (rows) in each submatrix. Similarly, the extra
remaining t (j) ' s for x + 1 <~ j <~ vqd + y - 1 are assigned to zeroes, where d = [(x - y + 1)/vq].

The length of the text T is specified to be 10000, 20000, 30000 and 90000, respectively, and for
convenience, the length of the pattern P is specified to be 11. To save space, we omit the detailed source
codes. The operating system used here is UNICOS 6.1.6 and the compiler is called CF77 (Supercomputer
Programming (I) , 1991). Table 1 shows the performance of these three algorithms on CRAY X-MP EA/116se.

In Table 1, the symbol x denotes the length of T; the length of the pattern is y = 11; the symbols timel,
time2 and time3 in terms of milliseconds, represent the time spent in the serial algorithm, the off-line one
and the on-line one, respectively. In the same table, the value of Rij denotes the ratio of time/ over timej for
1 ~< i :~ j ~< 3. The plot of time comparison is shown in Fig. 1.

It is observed from Fig. 1 that both our off-line and on-line vectorized algorithms are about four times faster
than the proposed serial one.

72 K.-L. Chung, W.-M. Yan/Pattern Recognition Letters 18 (1997) 63-72

Fig. 1. The plot

200

180

100

140

120

m

f

• ~ t i ® e l I

100 • ~ time2 I

80 " * ti~e3 !

0
10000 20000 30000 40000 50000 00000 70000 80000 90000

of time comparison of three algorithms on CRAY X-MP EA/116se supercomputer.

4. Conclusions

The significance of matching on RLCSs is its popular use in the fields of information retrieval and pattern
analysis. Our main contribution is to present one serial randomized algorithm and two new and fast vectorized
algorithms for matching on RLCSs. Experiments for our three algorithms have been carried out on a CRAY
X-MP EA/116se supercomputer. Our results can not only be used for the applications of matching multiple
patterns (Fan and Su, 1993) and the calculation of moving sum (Chung and Yan), but also generalize a
previous algorithm (Chung and Yan, 1994) which is only concerned with plain text and pattern.

Acknowledgements

The authors thank the two referees and Prof. E. Backer for their constructive comments and criticism that
improve the presentation and quality of this paper. This research was supported in part by the National Science
Council of R.O.C. under contracts NSC86-2213-E011-010 and NCHC86-08-015. We also thank the Computer
Center of the National Taiwan University and the National Center for High-Performance Computing in Talwan
for their support.

References

Aho, A., J.E. Hopcrofi and J.D. Ullman (1975). The Design and Analysis of Algorithms. Addison-Wesley, Reading, MA, 21,438-439.
Bunke, H. and J. Csirik (1993). An algorithm for matching run-length coded strings. Computing 50, 297-314.
Bunke, H. and J. Csirik (1995). An improved algorithm for computing the edit distance of run-length coded strings. Inform. Process. Lett.

54, 93-96.
Chung, K.L. (1995). Fast string matching algorithms for run-length coded strings. Computing 54 (2), 119-126.
Chung, K.L. (1996). O(1)-time parallel string-matching algorithm with VLDCs. Pattern Recognition Letters 17 (5), 475-479.
Chung, K.L. and W.M. Yan (1994). Vectorized computations for string matchings. Research Report, Department of Information

Management, National Taiwan Inst. of Technology, June 1994.
Chung, K.L. and W.M. Yan (1995). Fast vectorization for Calculating a moving sum. IEEE Trans. Comput. 44 (11), 1335-1337.
Fan, J.J. and K.Y. Su (1993). An efficient algorithm for matching multiple patterns. IEEE Trans. Knowledge and Data Engrg. 5, 339-351.
Grimaldi, R.P. (1994). Discrete and Combinatorial Mathematics: An Applied Introduction, 3rd edition. Addison-Wesley, Reading, MA,

275-278.
Hwang, K. and E Briggs (1984). Computer Architecture and Parallel Processing. McGraw-Hill, New York, Chapter 4.
Karp, R.M. and M.O. Rabin (1987). Efficient randomized pattern-matching algorithms. IBM J. Res. Develop. 31,249-260.
Kincaid, D. and W. Cheney (1996). Numerical Analysis, 2nd edition. Brooks/Cole, New York, 47.
Levesque, J.M. and J.W. Williamson (1989). A Guidebook to Fortran on Supercomputers. Academic Press, New York.
Rosenfeld, A. and A. Kak (1982). Digital Picture Processing. Academic Press, New York.
Rosser, J.B. and J. Schoenfeld (1962). Approximate formulas for some functions of prime numbers. Illinois J. Math. 6, 64-94.
Supercomputer Programming (1): Advanced Fortran: Architecture, Vectorization, and Parallel Computing. Working manual for CRAY

X-MP EA/116se (1991).

