Journal of Scientific Computing, Vol. 12, No. 4, 1997

A Parallel Solver for Circulant Toeplitz Tridiagonal
Systems on Hypercubes

Jung-Gen Wu,! Wen-Ming Yan,” and Kuo-Liang Chung®

Received December 7, 1995

Solving circulant Toeplitz tridiagonal systems arises in many engineering
applications. This paper presents a fast parallel algorithm for solving this type
of systems. The number of floating-point operations required in our algorithm
is less than the previous parallel algorithm (¢f. Kim and Lee (1990)] tor solving
the similar system. Specifically, an overlapping technique is proposed to reduce
the communication steps required. In addition, an error analysis is given. The
implementation of our algorithm on the nCUBE2/E with 16 processors has
been carried out. The experimental results show that the speedup is almost
linearly proportional to the number of processors.

KEY WORDS: Diagonally dominant matrices: error analysis; parallel matrix
computations; Toeplitz tridiagonal matrices.

1. INTRODUCTION

Throughout this paper, matrices are represented by uppercase letters, vec-
tors by bold lowercase letters, and scalars by lowercase letters. The super-
script 7T corresponds to the transpose operation. Consider to solve an nx n
circulant near-Toeplitz system

Ax =b, (1.1)

! Department of Information and Computer Education, National Taiwan Normal University,
Taipei, Taiwan 10610, R. O. C. E-mail: jgwu ice.ntnu.edu.tw. This research was supported
in part by the National Science Council of R. O. C. under contract NSC85-2213-E003-001.

2 Department of Computer Science and Information Engineering, National Taiwan Univer-
sity, Taipei, Taiwan 10764, R. O. C. E-mail: ganboon(a csie.ntu.edu.tw.

3 To whom correspondence should be addressed at Department of Information Management,
National Taiwan University of Science and Technology, No. 43, Section 4, Keclung Road.
Taipei, Taiwan 10672, R. O. C. E-mail: klchung(a cs.ntustedu.tw. This research was sup-
ported in part by the National Science Council of R. O. C. under contracts NSC85-2121-
MO11-002 and NSC85-2213-E011-009.

409

0885-7474/97/1200-0409812.50/0 © 1997 Plenum Publishing Corporation

410 Wu, Yan, and Chung

where
ap Y B
poo oy
A=)
p ooy
V2 B
and |ot| > | B+ y].

Solving (1.1) arises in many applications [cf. Hockney (1965);
Widlund (1972); Fisher et al. (1974); Smith {1985); Chung and Yan (1994);
Hirsh (1975)]. Previously, [cf. Kim and Lee (1990)] presented an efficient
parallel algorithm for solving (1.1) with a; =0, =a, f=y, and f, =9, =0;
their algorithm needs 14n/p floating-point (FP) operations and O(p) com-
munication steps, where p is the number of processors.

In this paper, we present a fast parallel algorithm to solve (1.1). The
number of FP operations required in our algorithm is about 9n/p; the com-
munication steps required is O(log p). This result is superior to the parallel
result [cf. Kim and Lee (1990)]. Further, we present a truncated version
of our parallel algorithm, and the number of FP operations is ranged from
5n/p to 9n/p. Specifically, an overlapping technique is proposed to reduce
the communication steps required. An error analysis is also given. Our
parallel algorithm is carried out on the nCUBE 2/E multicomputer with 16
processors. The experimental results show that the speedup is almost
linearly proportional to the number of processors.

The remainder of this paper is organized as follows. Section 2 presents
our parallel algorithm for solving (1.1). Section 3 presents the truncated
version of our parallel algorithm and the related error analysis. Section 4
gives experimental results of executing our algorithm on the nCUBE 2/E
multicomputer.

2. THE PARALLEL ALGORITHM

We first consider how to solve 4’z =h, where

Parallel Solver for Toeplitz Systems 411

and

a y
a vy

it follows that —ry+a=a and r=—pf/a. Let s=—y/a, we have
@ —oa+fy=0, B+our+y?=0, Bs®+as+y=0, Bs+a=a, a+yr=a,
and « — a = ars, which will be used later. These six equalities are verified in
Appendix A. Solving a from a® —aa + By =0. It give a = (e + /2> —2f7)/2.
When o> |f+7y, we select a=(a+./a>—48y)/2; we select a=
(e —/a* —4py)/2 when a < —|f +y|. It is clear that our selection always
make the matrix L and U to be diagonally dominant.

We solve A’z=Db by solving Ly =b first using a forward substitution
procedure and then solving Uz =y using a backward substitution proce-
dure. Suppose we have p processors. The b is partitioned into p parts and

b(O)
bV

b(p~l)

where the length of vector b? is », for 0 <i< p — 1. Then processor i solves
A, 29 = b sequentially using Gaussian elimination method and it takes
about 5n; FP operations. Naturally, we partition the system A4'z=D)b into
parts evenly, then each processor takes about 5#/p FP operations for solv-
ing 4, 29 =b". Let

A)

Il
= K
Q ~

B ooy
B) nxn

be a perturbed matrix of 4, which will be used later too. For convenience,
for any vector x, we denote X to be the first entry of x and x to be the last
entry of x. We then have

412 Wu, Yan, and Chung

2@ b(®
1) b
z
— og(P—1)
" : = : —arsz?~ e,
2P— B 1
p—1

— Y [aszVe,, +(arz'~Y —arsz)e,] (22)

i=1

where m; =ny+n;+ -+ +n;_,, mg=0, and e;=(0,.., 0, 1,0,.., 0); (2.2) is
verified in Appendix B. y >

n—i

Let p,=1(0.,..,0, 1, .. prk=2 pn—k—1)T and qk=(Sk—'l,Sk_2,,,,, s, 1,
e N v
0,..., 0)7, it yields to
e —
n—k
A,q,=(fs+a)e,=a(l —rs)e,
. ! ' (2.3)
A.pe=yer+(a+yr)e = —ase tae,,,
and
A qe=(fs+a)e,+fe,, =ae,—are,,, for l<k<n (24)

Since e, and e, are absent in these two equations, 4 ~'e, and 4 ~'e,, , can
be represented in terms of p, and q,. As a result, we can recover the
solution of Ax’ =b from (2.2), then recover the solution of Ax=b from
Ax'=b. In what follows, we present a parallel algorithm to realize this
approach.

To recover the solution of Ax' =b from (2.2), we first solve

A,w,= —aszVe,, —(arzV~V —arsie,, .., i=1,2,.,p—1
) ' o (2.5)
A,w,= —arsz? Ve,
By (2.3) and (2.4), we let
W, =y (1) Py, + €2(1) 4, (2.6)

for i=1, 2,..., p, where ¢,(i) and c¢,(i) are to be determined. Since

A=A, (e} P, + €201) 4,

= —asi%,, —(arz"~ Y —arsz¥)e,, ., (2.7)

Parallel Solver for Toeplitz Systems 413
fori=1,2,..,p—1, by (24), we have
—sei(i)+ey(iy=—s2¥ and cy(i)—rey(i) = —rz¥ D + sz

Solving these two equations, it yields to

eli)= r 20-D and eli) = s 20-D _ 530 (2.8)
rs—1 rs—1
fori=1,2,.,p—1. By (2.3), we have
7 S -1 = — pegp—1)
Therefore, it is very natural to let
a(p)=0 and cyp)=- 2”7V (2.10)

After solving (2.5), by (2.2), the solution of 4x’ =b is recovered from

72
ZD »
X' = . -3 W (2.11)
. i=1
Z(p—1)

where > 7_, w, is the updated term.
For parallelizing the computation of >2_, w,, let

$,=(0,.,0,1,r,.., 10,07
=~

m;

and

4,=(0,..,0, 5% s 1,0,.,0)7
[——

my

where the nonzero terms in p; and §, will be hold by processor i. This
brings out the parallel computation of >°7_, w,. Now we want to rewrite
the updated term, }.7_, w,, as a linear combination of p, and §,. By the
definition of pg, q, and m;, we have

p—1 i—1

_ m;— n; A — m.—m; (A
P X and = Y S

j=i j=

414 Wu, Yan, and Chung

Therefore, it is given by

J2 p—1 ?]
Z Wi: Z Cl(i) pmi+ Z Cz(l) qmi
i=1 i=1 i=1
r—1 r—1 14 i—1
- Z (i) Z rmjﬂm,i‘)j_{_ z o) Z Sm,*mjﬂ(’ij
i=1 j=i i=1 j=0
p—1 p—1
=3 () i+ Y cali) i
j=1 j=0
where
L S e T e
es(j)= Y, ¥ e (iy=) 1" iy

1 i=1
—1 =t

=, T O =r Y "meg = res(j— 1)
= i=0

i—o rs—1
P
el)=), ST Timey(i)
i=jl
» rs . r—1 .
—_ Z sm,—m/-+1 Z(1-—1)_ Z Sm,-fmjﬂsi(t)
i=j+1 rs—1 i=j+1
rp—1 rs p—1
= Sml'+l—'mj+l Z(i)_ Z Smi_mj+]si(i)
i=j rs—1 i=j+1
p—1
= rs z 4+ Z s | gh rs z) _ g7
rs—1 i=re1 rs —
-1
s . ? rs ; .
= 1 D +s Y sl = I 9 +scq(j+ 1)
rs — = 1 rs —
with
1 } r))
—_) — oM (1) __ 79
;= z h,=s" 7'~z
E= T ! rs—17

J p—1
es(f) = Z P T g and celj) = Z ™",
i=0 i

(2.12)

(2.13)

(2.14)

(2.15)

Processor i is responsible for computing g, and 4, locally and it takes O(1)
time; computing ¢s(i — 1) and c4(i + 1) needs global communications and it
takes O(log p) communication steps on the hypercube network [cf. Ranka

and Sahni (1990)].

Parallel Solver for Toeplitz Systems 415

Now we want to recover the solution of 4,x=b from A,x' =b. By
A,x' =b, we have

AX =A4,X +(4,-4,)X' =b+ fie,+ fre,
where
fisl—a)xi+fix, and fi=pxitm-a)x, (216)

We wish to represent x] and x,, in term of ¢4(0) and c5(p — 1), respectively.
By (2.11)-(2.14), we have

rs Ll
— 70 —1_5(0) -1 © -
x) =2 — ¢,(0) s™ " =70 — 5 [rs— [z s > s™iT

i=1
r—1
= —[ho+s”° Y s’”"""lh,.]
i=1
and

Xy =27V —cy(p—1)r " —cy(p—1)

-2 rs

p
=Z(p'_l) — -1 igo rmpAl_mngi_rs* I Z(P—l)
p—2
i=0
then by (2.15), it yields to
xi= —cg0) and x,=—cs{p—1) (2.17)

From the definitions of 4,, pe, and q,,, it follows that
A po=g1e1+ g2¢, and A,q,=hye, + hae,
where

gi=0;+yr+pr"h ga=Y2+Pr" 2 tayrl (2.18)
hy=0ys" Y +ys" 72+ B,, and hy=y,5" "'+ Ps+a,

By (2.16), we have

X=X'—¢;Po— 24, (2.19)

416 Wu, Yan, and Chung

where ¢; and ¢, satisfy
18+ h =1 and c182+Ch =/, (2.20)
By (2.19), (2.11), and (2.12), we have

p—1 rp—1
X=X —cPo—C2q,=X —¢; Z Py — ¢y Z sy,
j=0 j=0
r—1 r—1
=2— Y (/) B;—)) (2.21)
j=0 j=0
where
e y=cs(N+ermi=res(j—1)+ ¢ r™
and
N ; ne—m 1S (9] i n—my,
es(J)=cal)) + a8 = B seg(f+ 1) s (2.22)

Each processor takes O(1) time for computing (2.22) and about 4n/p FP
operations for computing (2.21). Our parallel algorithm totally takes about
9n/p FP operations and O(log p) communication steps.

Our detailed parallel algorithm for solving (1.1} is shown later. In the
following parallel algorithm, i=node-id (the address of the processor),
no=ny= - =m_y=[npT|, ne=m = =n,_=_n/p], where k=n
mod p.

1. Compute a, r, 5, n;, m;, and m;

2_ _ 2__
RV ke At Vit 1

o> |+ then a« > 7

2. Solve A,z¥=bY /*solve L,y?=b"? first and then solve
U,z = y*/ ! !

3. Compute g, < (1/rs =1}z, h, 5™ (rfrs — 1) 2D — 2V [*see (2.14)*/

4. Compute cs(i—1), cs{p—1), csli+ 1), and c¢(0) by using prefix
sum and postfix sum algorithms (for the implementation on hypercube, we

recall the function comm which is shown and simulated in Appendix C
[¥see {2.15)%/

Parallel Solver for Toeplitz Systems 417

5. Calculate x| « —cg(0), x;, < —cs(p—1) /*see (2.17)*/

6. Calculate g, <o, +yr+ 8"~ gy, + " "2+ a,r" ™Y, h, «
o " st 24 By hy = oS T 4 Bs oy, o < (fihy— fah) (81 hy — g2hy),
¢ (&1/2— 82/ 1)/(81ha — 8211) [*see (2.18) and (2.20)*/

7. Calculate ¢,(i) < res(i— 1) + ¢, r™, cqli) « (rsfrs — 1)zt +
sceli+ 1)+ cys™™Miv1 [*see (2.22)*/

8. X z—c i), 2, I — (i)™, 5% s,)T [Rsee (2.21)%/

3. THE TRUNCATED VERSION OF OUR ALGORITHM

By observing the entries of p, and §;, and recalling that |r| <1 and
|s| <1, due to the fact that |r|* and |s|* are infinitesimal when k is
somewhat large, we try to truncate some small enough entries in p,
and §;,. Let p,(k)=(0,...0,1,r, /2., r¥=10,.0,0,..,0)7 and q,(k)=

——— vy
_—

m;

]

(0,..,0,0,.,0, 571 . s% s 1,0,.,0)7), we have
e — 7
5y

o
ny
I, —p I <|rl* and 1§;—q; (k) <]sl*, (3.1)

where || || denotes the infinite sup-norm.
Therefore, (2.19) is rewritten by

p—1 p—1
x(k,l)=2~ Z c5(J) P; (k) — Z cs(J) 4;(1) (3.2)
j=0 Jj=0
where k, / <min(ng, ng,..., n,_1), then it yields to

HX—X(k, Z)“<< max |c7(.})|>|rk[+< max ICS(‘}N)‘S,l (33)
0gjsp—1 O<j<p—1

Il Il Il

To find an upperbound of ||x — x(k, H)||/IIx|| in term of &, B, y, &, f1, V2,
ay, 1 and p, we need the following lemma:

Lemma 1. Let b<*> be a gx1 vector, ny,=el A4, 'e;, i=1,¢ and
j=1,4, and

p<t>

A,x=b=| b<® and A,y=b<?,
<3

854/12/4-5

418 Wu, Yan, and Chung

then

B a Y
x| = x| =

where
u, = max(ull, u®,)
v, =max(v", v{?, v{?)
UM =y |+ |1+ (a—a) myy | + |
uP =1+ (;—a) my |+ [ymygl + |1y
D = [pariag |+l + 1+ (@ =a) my | + l0a —a) 2|
0§ =1 Bgr] + 1+ (o= a)] + 117
V@ =1+ (o — @) 1| + 17 gq] + | B17g1
0513)= P27 gql + | Brgr] + 11+ (e —) mog| + [(x — a) 7y, |
Proof. See Appendices D and E.

By Lemma 1 and 4, 2” =b", we have

|2(i)|
W<uni< 1] and

29

Lv, €V (3.4)
Ix| =

where

u=max(u, ,u Uy,

ngs Uypperss) = MAX (U, Uy,)

! (3.5)
v =max(v,, Upyseees Un,,,.) = max(v,,, Un,,,.)

By (2.13)-(2.17), (2.20), and (2.22), we have

|c7(j)| |Cs(j)|
< q Lol
xS TR

where ¢, and ¢, are referred to Appendix F. By (3.3), the relative error is
given by

B (g (A0 (e 50
x| o<j<p—1 |X| o<i<p—t [Ix|

<17 |r¥ + 15 |57)

Parallel Solver for Toeplitz Systems 419

If we let

¢ 4
k=|log,, 3~ log,, 17] and {logm 7 log g 15 (3.6)

then ¢ is an upper bound of ||x — x(k, D)|I/|x].

The parallel algorithm derived in this section is similar to the one
listed in Section 2, the only difference is to replace step 8 to step 8’ as
shown here

8'. Compute u=max(u,, u,,p‘l), v=max(v,, v,,pil) /¥*see (3.5)*/
Compute t,, tg /*see Appendix F*/ Compute k,/ /*see (3.6) x <z — ¢,(i)
(L,r, 7% 15710, 0)T — cg(i)(0,..., 0, s' 7., 8% s, DT /*see (3.2)*/ From
- _ - _

~
n n

the truncated version of our parallel alg(;rithm for solving (1.1), it needs
Sn+2k+2l, 0<k, I<n/p, FP operations; needs logp communication
steps. The values of k and / are dependent on a, £, 7, o), f1. V2. %y, A,
and p.

4. EXPERIMANTAL RESULTS

We have implemented this parallel algorithm in Section 3 for solving
{1.1) on the nCUBE 2/E multiprocessors [cf. nCUBE 2 Processor Manual
{1993); nCUBE 2 Programmer’s Guide (1993)]. We test our parallel
programs on this machine using 1, 2, 4, 8, and 16 processors, respectively.
To balance the loads of all nodes, we let the data be distributed evenly
among the nodes. Each node whose node-id is less than » mod p processes
[n/p7 data, and the other node processes | #/p_| data, respectively.

We use four sets of input data to demonstrate the performance of our
algorithm. In Experiment 1, we let a =3, «, =78, f=1, y=1, #, =0.6, and
v, =0.8; bs are generated randomly by the program. The execution time
(T,) and speedup (7,/T,) are listed in Tablel. The sup-norm of the
residual, ||Ax —b}|/||b], is in the order of 107'% In Experiment 2, we let
a=21,a,=78, f=1, y=1, ,=0.6, y,=0.8. The experimental data are
listed in Table II. The sup-norm of the residual is also in the order of
107'%, In Experiment 3, we let «=2.001, «;, =78, =1, y=1, f,=0.6,
v, =0.8. The experimental data are listed in Table III. The sup-norm of
the residual is in the order of 1073, In Experiment 4, we let a = 2.00001,
a0, =78, f=1,y=1, f, =06, y,=0.8. The experimental data are listed in
Table IV. The sup-norm of the residual is in the order of 107!, In
Tables I-IV, each entry has two numbers. The first number shows the

420

Wu, Yan, and Chung

Table I. Execution Time (7, in msec) and
Speedup (T,/T,) for r=5= —0.381966.

n p=1 p=2 p=4 p=8 p=16

100 1095 960 927 986 1104
1 1.14 1.18 1.11 0.99

200 1759 1292 1185 1132 1202
1 1.36 1.48 1.55 1.46
400 3076 1955 1516 1377 1320
1 1.57 2.03 2.23 233

800 5739 3274 2178 1714 1584
i 1.74 2.63 335 3.62

1600 10990 5935 3472 2371 1910
1 1.85 3.17 4.64 5.75

3200 21517 11214 6155 3689 2599
1 1.92 3.50 5.83 8.28
6400 42560 21713 11408 6358 3958
1 1.96 373 6.69 10.75

12800 84676 42760 21906 11599 6575
1 1.98 3.87 730 12.88

Table II. Execution Time (7,, in msec) and
Speedup (T,/T,) for r=5= —0.7298.

n p=1 p=2 p=4 p=8 p=16

100 1356 991 930 981 1102
I 1.37 1.46 .38 1.23

200 2174 1551 1214 1128 1204
1 1.40 1.79 1.93 1.81
400 3497 2382 1777 1409 1344
1 147 1.97 248 2.60
800 6155 3706 2618 1968 1610
l 1.66 235 3.13 3.82
1600 11400 6364 3907 2813 2191
1 1.79 292 4.05 5.20

3200 21943 11626 6598 4133 3019
1 1.89 333 5.31 727

6400 42985 22146 11827 6795 4358
1 1.94 3.63 6.33 9.86

12800 85089 43199 22370 12018 7017
1 1.97 3.80 708 1213

Parallel Solver for Toeplitz Systems

854/12/4-6

Table HI. Execution time (7,, in msec) and
Speedup (T,/T, for r=5=0.9688.

n p=t p=2 p=4 p=8 p=16

100 1446 1110 1026 1081 1210
| 1.30 1.41 1.34 120

200 2558 1637 1302 1223 1279
1 1.56 1.96 209 2.00
400 4780 2750 1829 1493 1434
1 1.74 2.61 3.20 322
800 9254 4974 2967 2046 1715
I 1.86 3.12 4.52 5.40
1600 17875 9446 5191 3161 2248
1 1.89 344 5.65 7.95
3200 28394 18360 9666 S410 3359
1 1.55 294 5.25 8.45
6400 49435 28913 18552 9857 5598
1 171 2.66 5.02 8.83

12800 91512 49949 29104 18743 10074
1 1.83 3.14 4.88 9.08

Table IV. Execution Time (7, in msecs) and
Speedup (7,/T) for r=5=0.99684.

n p=1 p=2 p=4 p=8 p=16

100 1446 1082 1023 1088 [212
I 1.34 1.41 133 1.19

200 2557 1638 1303 1218 1289

1 1.56 1.96 2.10 1.98
400 4780 2750 1857 1518 1431
1 1.74 257 3.5 334

800 9254 4971 2969 2077 1693
1 1.86 312 446 5.47

1600 18173 9446 5192 3165 2241
1 1.92 3.50 5.74 8.11

3200 36104 18637 9663 5386 3377
! 1.94 3.74 6.70 10.69

6400 71663 36207 18557 9854 5603
| 1.98 3.86 727 1279

12800 142990 71855 36397 18756 10107
1 1.99 3.93 7.62 14.15

421

422 Wu, Yan, and Chung

longest execution time among all processors. The second number repre-
sents the speedup ratio when compared with the time required when using
one processor. It is observed that the parallel algorithm works well as the
size of data, say g, processed by each node is greater than 50. As ¢ is
increasing, the speedup is almost linear (speedup is proportional to the
number of nodes).

The number of FP operations required in step 8’ of this parallel algo-
rithm depends on the absolute values of r and s. In Experiment 1, both r
and s are small (r =s5s= —0.381966). Both ¢, and ¢4 converge to 0 very fast.
The total number of FP operations performed is closed to 5#/p although
n is very small. In Experiment 2, both the absolute values of r and s
(r=s5= —0.7289} are closer to 1 than those in Experiment 1. It needs more
than 5x/p arithmetic operations, but needs less than 9n/p operations. In
Experiment 3, both the absolute values of r and s are closer to | too
(r=25=0.9688), thus the final solution converges slower. The total number
FP operations required is closed to 9n/p while n/p is small; it becomes less
than 9n/p as n becomes larger. In Experiment 4, both the absolute values
of r and s are very closed to 1 (r =s5s= —0.99684) and the total number of
operations required is closed to 9u/p.

5. CONCLUSIONS

We have presented our parallel algorithm for solving circulant tri-
diagenal Toeplitz linear systems. The number of FP operations required in
our algorithm is ranged from Su/p to 9n/p, which has the same order as
that required in the sequential algorithm [cf. Yan and Chung (1994)]. On
the nCUBE 2/E multicomputer, some experimental results are illustrated to
demonstrate the good performance of our stable parallel solver.

APPENDIX A

A.l. Six Equalities

From —ry+a=a and r=—f/a, we have (fy/a)+a=a, Iie,
a*—aa+ fy=0. From —ry+a=o, we have o+ yr=a. Hence we have
ar+yr? =ar. From r= —f/a, it gives f+ar+ypr*=0, From —ry+a=«
and s= —v/a, we have a —a=r—ry=ars. From r= —f/a, we then have
a—a=ars=—fs, fs+a=a, and fs®+as=as= —y, ie., fs*+as+y=0.

Parallel Solver for Toeplitz Systems 423

APPENDIX B

B.1. One Equality

Consider
2 b© 7 A, 2®
N B B L B B B
z{p.—l) b(p‘—l) z(p‘——l) A, _li(p_l)

[4

then it yields to

Wm,-: (ﬂzmi—l +azm,-+ yzm,-+1) - (ﬁzm,-—l + (XZm‘_)
=yzm,-+l
= —asz"¥

Wm,-+1 =ﬁzm,+azmi+l + yzm,-+2 - (azm,-+l + yzm,«+2)

=ﬁzmi+(a—a) Zm,-+1

= —arz" "V +arsi® for 1<ig<p—1
w,=(pz,_+az,)—(Bz,_, +az,)

=(a—a)z,

= —arszg?— Y

w;=0 otherwise

Equivalently, we have

p—1
w=—arsz? Ve, —) [asz¥e, +(arzC~ " —arsi¥)e,, .]
i=1

APPENDIX C

C.1. The Pseudo Code of comm for Hypercube

From
j -
es(j)= Y rmm T Ming =rlic(j—1) +g;
i=0

p—1
cs(j)=). s™T"h=s"c(j+ 1)+ hy,

i=j

424 Wu, Yan, and Chung

it follows that

<Cs(j)> _ <rn,- gj)("s(j— l))
1 /) \0 1 1
“7)-(5 $)0)
1 /) \0 o/\1
<Cs(j)>_<3"j h; (Cs(/'+1)>
1/ \0 1 1
(7
1 Lo 1 1

Let

two prefix-product forms are obtained as follows:

) 0
<05(1] >=Xj)(j-l"'X0<1>

and

j 0
<C6(1J)>:)]ij-é—l'“ Yp—l <l>

The pseudo code of function “comm” is listed next in order to guarantee
that processor i in the hypercube keeps the value of c5(i—1), cs(p—1),
ce(i+ 1), and ¢4(0). Note that in the following psuedo code, an overlapping
technique is employed.

Function comm

r% o g, s"hy 1 0 . 1 0
X (o 1>’ Y <0 1>’ x (o 1>’ Y"<01

Parallel Solver for Toeplitz Systems 425

for k=0 tologp—1do
Send X and Y to the node whose node-id is different in bit position k;
Received these values from the sender and save it in X’ and Y’
if bit £ of node-id is 1 then

XXX, XeXX YY'VY
else
VY«7YY, XXX, Y YY

endif

endfor
/**

X=XP_IXP_2"'X0, Y= YOYl.”Yp—l’

X,=X1—1"'X1Xo’ Y= Yi+lYi+2"'Yp——l
e L Ty
es{i—1) « £y, cs(p—1) & xy, celi+ 1)« Pya, ce(0) < 1>

Suppose p =4, we have

node-id 00 01 10 11
initial X=X, X=1 X=Xx,,%=1 X=X, X=1I X=X, X=1
state Y=Y, P=1I Y=Y, V=1 Y=Y, ¥=1 Y=Y, P=1I

k=0 X=X Xo,X=1 X=X\X0, X=X, X=X,X;,X=1 X=X:X,,X%=X,
Y=Yo¥,P=Y, Y=Y,Y,P=] Y=V,7,,9=Y, ¥Y=Y,Y,, ?=/
k=1 X=XXX\X, X=X;X,X|X, X=X;XoX(X, X=X;X,X/X,
X=1 X=X, X=XxX, X=X,X, X,
Y=Y, V,1,¥; Y=Y, VY, Y=Y, Y Y, Y=Y,Y,Y,Y;

P=YY,Y; P=Y,7, f=v; P=1

426 Wu, Yan, and Chung

APPENDIX D

D.1. The Proof of Lemma 1

Three cases for the vector b are to be considered. Consider the first
case

p<>
b= b<®
p<3>
Let J=(0 1,., 0),., and it satisfies Jb=b<*>. From A,y=b‘*’ and
A,x=Dhb, we have
o T g4t —11<2> T 41—1 T 41—1
I_yl= lelAq—xb | _ |e1Aq_1 Jb <max |e1A€] Ju
x| 4, bl 14,7bl "o A
TAr-lJA
=max|—e1——q———lv—|= lel 4, ' JA,l o
v#0 lv]i

Since
A A, =470 1, 0) 4,
=4, %0 fe, Ay,+(ax—a)eel ye, 0)
=(0 pA; ‘e, I+{a—a)A, 'eel y4;7'e, 0)

we have

9l r

——< |lef 4,7 Al &

g S e e Al
=10 peai e (I+a—aeld; e el yeld, e, Ol
<1137'511|+|1-+-(ot—a)7z“|_|—|y71;1q|=u£11)

and

B jeray=ya,).,

] e

=(0 pefd, 'e; el+(x—a)eld,'ee] yeld; ‘e, 0)|,

<IBrgul + L+ o —a) myy | + [y gl = 0D

Parallel Solver for Toeplitz Systems 427

Consider the second case

<>
b= (i)

Let J=(/ 0),x» and it satisfies Jb=b<?>. Then it yields to

axq

A A, =AM

axq

0) 4,
=A;_1(A'q+(°‘1 —a)eel ve, 0 fie)
=(I+(x;—a) A, ere] yA;7'e, 0 B4, e))

Therefore, we have
ly! T
< eFA4.~1JA
”xu “el q n”oo
= (1 + (o, _a)elTAt,]_lel)elT }’elTAf;—leq 0 ﬁlelTA(’]_lel)”oo
S+ (o —a) | + ymyg) + 1By =u

and

R leg Ay~ VA,

Il

T — T T — T -
=||(e;‘+(al_a)qu’q lelel yqu; le O ﬂlqut’] lel)”oo

q

<14+ {(o “d)nql‘ + bmqq‘ + ‘ﬂlnql‘ =v$12)

by
=(p)

) and it satisfies Jb=hb<?>, We than have

Consider the third case

Let J=(0 I

axq
A;_IJA,,=A;_1(0]qxq)A,,
=A,"Ny,e, 0 Bey Ap+(a—a)ee] +(x,—a)ese]

=(y, A, ‘e, 0 pA,"'e,

2

I+(a—a) A, el +(a,—a) A, e e]

428 Wu, Yan, and Chung

Therefore, we have

¥ _
I S e

A7 T Al

=l(r2e74;""e, O feld;'e,
(1+(ax—a)eld, " e) el +(a—a) el 4, e el

<b’2751ql‘Hﬁ”nl‘*‘“+(0“‘Q)7fn;+,(0‘2_0‘)”14':9’;3)

and

lyl
=< efa! A, »
x| Ieg 44 “

= (727457 e, O Befd; e
(x—a)el 4, ejel + (1 +(a,—a) e A, e) eD)]l,
< ly2nqq| + |ﬂnqll + Il + (“2"““) nqq| + |(oc—a) nqll =U£13)

Finally, it yield to (y|/Iix]| <u, and [yl/lx{ <u,, where u, =max(u", 4,
u) and v, =max(v{", 0P, v$V).

APPENDIX E

: T 4r—1 T 411 T qr—1 T qr—1
E.1. The evaluation of e; 4,7 "¢;, e, 4.7 ey, e{d; " "e,, and eJA4; e,

To evaluate e] 4; ‘e, and e] 4, 'e,, we first solve A;p=e,. That is,
it wants to solve the recurrence relation: fp,_, +op;+yp;. =0 for
2<i<g—1 with the boundary conditions:

api+yp2=1 and fp, ,+ap,=0
From f+ar+yr*=0 and fs®+as+y=0, r and l/s are the zeros of
characteristic polynomial of this recurrence relation. Subsequently, we
obtain p, = c,r* 7' + ¢,577%, Putting it into boundary conditions, we have
acy+cas?) (e reystT) =1

and

Bleri™ 24 cos) + ol ri™ 4 c,) =0

Parallel Solver for Toeplitz Systems

that is,
(a+yrye;=1 and 7Y P4 ar)c,+(a+fs)c,=0
We then have

_ eg—2
__1 and oym o tar)
a+yr (a+yr)(o+ fs)

8]

Consequently, it follows that

1 rt =29~ Y B 4 ar)
Tg' —la =p = g—1_ —
e P T e+ pd)

rl (B tar)
a+yr (a+yria+ Ps)

efd; e, =p,=c,r"" '+, =

[

To evaluate e7A4' ~te, and e7 4! ~'e,, we first solve A
1 q q q q q q

pr=0cr* 1+ 0,577, we have
{a+yr)e;=0 and (B +oarye,+(a+ Bs)c,=1
After some similar algebraic computations, it yields to

1

=0 and ¢y

=a+ﬂs
Consequently, it follows that
T 1 s
e1A:1— eq=P1=01+C2Sq_ :tx+/3s
eqTA;_leq:qucqu_l+C2=a+ﬂs
APPENDIX F
F.1. A Upper Bound for the Relative Error
By (2.14) and (3.4), we have
;) . @ |zW
O S L 7 SO N L N I
Il 11 —rs| lx| Il (L —rs| fxl x|

429

p=e,. Similarly, let

Wu, Yan, and Chung

430
where
t = v nd __rl
TR 25 2]
y (2.15), it follows that
les(i) & lgit< {es(N P2t k|
= T d T =
CIRENTTA il S 2 I
By (2.13), it yields to
'Q(j)l_lrcs(j—l)l
T R
lea Dl Irsl [29] [seq(j+1)|
il ST W T e Sl el
By (2.17)
x4 _ [esl0)] x,] _les(p—1)|
T = d X T T =
IS xp SP A R ST R SPY
By (2.16), we have
A EANNEAD
I St el g AR <
and
|f2|]xll _ |x’n|
TR
where
ty=loy —al pta+ |8, pty and ta=\y,| pta+|ay—al pt,
By (2.20), it follows that
[e1] Ifth fzhll | | |glf2 ngII
——< < d P X
X STeha—gohd 112 * X STarh—gah 6] S8

Parallel Solver for Toeplitz Systems 431

where
h tyh
5:]f3 o + 124l and 6=‘g114l+|82’3|
|81y — g2h, | lg1hy — 820
By (2.22), it yields to
el Jest el g e e el
I b4} (b4 x|

where

ty=|prty| +15 and tg=|rsty| + |spt,] + 14
REFERENCES

Hockney, R. W. (1965). A fast direct solution of Poisson’s equation using Fourier analysis.
J. ACM 12, 95-113,

Widlund, O. B. (1972). On the use of fast methods for separable finite difference equations for
the solution of general elliptic problems, in Sparse Matrices and Their Applications, Rose.
D. J, and Willoughby, R. A. (eds.), Plenum Press, New York, pp. 121-131.

Fisher, D, Golub, G., Hald, O., Levia, C., and Winlund, O. (1974). On Fourier-Toeplitz
methods for separable elliptic problems. Mathematics of Computation 28, 349-368.

Smith, G. D. (1985). Numerical Solution of Partial Differential Equations. Finite Difference
Methods, Third Edition, Oxford University Press.

Chung, K. L., and Yan, W. M. (1994). A fast algorithm for cubic B-spline curve fitting
Comput. Graphics 18 (3), 327-334.

Hirsh, R. (1975). Higher order accurate difference solutions of fluid mechanics problems by
a compact differencing technique. J. Comput. Phy. 19, 90-109.

Yan, W. M., and Chung, K. L. (1994). A fast algorithm for solving special tridiagonal systems,
Computing 52, 203-211.

Ranka, S., and Sahni, S. (1990). Hupercube Algorithms with Applications to Image Processing
and Pattern Recognition, Springer-Verlag, Chap. 2, pp. 29-30.

nCUBE Company, (1993). nCUBE 2 Processor Manual, Foster City, California.

nCUBE Company, (1993). nCUBE 2 Programmer’s Guide, Foster City, California.

Kim, H. J, and Lee, J. G. (1990). A parallel algorithm solving a tridiagonal Toeplitz linear
system, Parallel Computing 13, 289-294.

