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A Parallel Solver for Circulant Toeplitz Tridiagonal
Systems on Hypercubes
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Solving circulant Toeplitz tridiagonal systems arises in many engineering
applications. This paper presents a fast parallel algorithm for solving this type
of systems. The number of floating-point operations required in our algorithm
is less than the previous parallel algorithm [cf. Kim and Lee (1990)] for solving
the similar system. Specifically, an overlapping technique is proposed to reduce
the communication steps required. In addition, an error analysis is given. The
implementation of our algorithm on the nCUBE2/K with 16 processors has
been carried out. The experimental results show that the speedup is almost
linearly proportional to the number of processors.

KEY WORDS: Diagonally dominant matrices: error analysis; parallel matrix
computations; Toepliu tridiagonal matrices.

1. INTRODUCTION

Throughout this paper, matrices are represented by uppercase letters, vec-
tors by bold lowercase letters, and scalars by lowercase letters. The super-
script T corresponds to the transpose operation. Consider to solve an n x n
circulant near-Toeplitz system
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where

and |x| >\p + y\.
Solving (1.1) arises in many applications [cf. Hockney (1965);

Widlund (1972); Fisher el al. (1974); Smith (1985); Chung and Yan (1994);
Hirsh (1975)]. Previously, [cf. Kim and Lee (1990)] presented an efficient
parallel algorithm for solving (1.1) with a.l = a2 = a, (1 = y, and B1=y2 = 0;
their algorithm needs 14n/p floating-point (FP) operations and O(p) com-
munication steps, where p is the number of processors.

In this paper, we present a fast parallel algorithm to solve (1.1). The
number of FP operations required in our algorithm is about 9n/p; the com-
munication steps required is 0(log p). This result is superior to the parallel
result [cf. Kim and Lee (1990)]. Further, we present a truncated version
of our parallel algorithm, and the number of FP operations is ranged from
5n/p to 9n/p. Specifically, an overlapping technique is proposed to reduce
the communication steps required. An error analysis is also given. Our
parallel algorithm is carried out on the nCUBE 2/E multicomputer with 16
processors. The experimental results show that the speedup is almost
linearly proportional to the number of processors.

The remainder of this paper is organized as follows. Section 2 presents
our parallel algorithm for solving (1.1). Sections presents the truncated
version of our parallel algorithm and the related error analysis. Section 4
gives experimental results of executing our algorithm on the nCUBE 2/E
multicomputer.

2. THE PARALLEL ALGORITHM

We first consider how to solve A'z = b, where
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and

It follows that — ry + a = <x and r = — B /a. Let s — — -y/a, we have
a2 - am + By = 0, B + xr + yr2 = 0, Bs2 + xs + y = 0, Bs + x = a, x + yr = a,
and x — a = ars, which will be used later. These six equalities are verified in
Appendix A. Solving a from a2 — xa + By = 0. It give a - (<x + ^/a2 — 2By)/2.
When x>|B + y|, we select a = (a + y/a2 — 4/By)/2; we select a =
(a —^a2-4By)/2 when a< — |B + y|. It is clear that our selection always
make the matrix L and U to be diagonally dominant.

We solve A'z = b by solving Ly = b first using a forward substitution
procedure and then solving Uz = y using a backward substitution proce-
dure. Suppose we have p processors. The b is partitioned into p parts and

where the length of vector b(l) is ni for 0 < i < p — 1. Then processor / solves
A'n. z(l) = b(l) sequentially using Gaussian elimination method and it takes
about SH, FP operations. Naturally, we partition the system A'z = b into
parts evenly, then each processor takes about 5n/p FP operations for solv-
ing A'n.zli) = b(i). Let

be a perturbed matrix of A, which will be used later too. For convenience,
for any vector x, we denote x to be the first entry of x and x to be the last
entry of x. We then have
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where
verified in Appendix B.

Let

it yields to

and

Since e1, and en are absent in these two equations, A - l e k and A - ' e A + 1 can
be represented in terms of pk and qk. As a result, we can recover the
solution of Ax'= b from (2.2), then recover the solution of Ax = b from
A x' = b. In what follows, we present a parallel algorithm to realize this
approach.

To recover the solution of Ax' = b from (2.2), we first solve

By (2.3) and (2.4), we let

where c , ( i ) and c,(i) are to be determined, since
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for i= 1, 2,...,p— 1, by (2.4), we have

Solving these two equations, it yields to

and

By (2.3), we have

Therefore, it is very natural to let

and

Alter solving (2.5), by (2.2), the solution of Ax = b is recovered from

where £f= 1 wi is the updated term.
For parallelizing the computation of £f=1, wi, let

and

where the nonzero terms in pi, and qi, will be hold by processor i. This
brings out the parallel computation of 2T!f= i w/. Now we want to rewrite
the updated term, £f=i wi as a linear combination of pi, and qi. By the
definition of pk, qk, and mi, we have

and
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Therefore, it is given by

where

with

Processor i is responsible tor computing gi, and hi locally and it takes O ( I )
time; computing c 5 ( i — 1 ) and c6(i + 1) needs global communications and it
takes O ( l o g p ) communication steps on the hypercube network [cf. Ranka
and Sahni (1990)].
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Now we want to recover the solution of Anx = b from Anx' = b. By
A.X.' = b. we have

where

and

We wish to represent x\ and x'n in term of c6(0) and c5(p — 1), respectively.
Bv (2.11W2.14). we have

and

then by (2.15), it yields to

anc

From the definitions of An, p0, and qn, it follows that

and

where

and

By (2.16), we have
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where c1 and c2 satisfy

and

By (2.19), (2.11), and (2.12), we have

where

and

Each processor takes (9(1) time for computing (2.22) and about 4n/p FP
operations for computing (2.21). Our parallel algorithm totally takes about
9n/p FP operations and 0(\ogp) communication steps.

Our detailed parallel algorithm for solving (1.1) is shown later. In the
following parallel algorithm, i = node-id (the address of the processor),
no = n1= ••• =«fc- i = rn/P"l nk = nk + l= ••• =np_i = Ln/p_\, where k = n
mod p.

1. Compute a, r, s, nt, mj, and mj+l

then else

2. Solve A; z(i) = b(i ) /*solve Lni y(i) = b(i) first and then solve
UniZ(i)= y(t)*/

3. Compute gi <- (l/rs - 1) z(i), hi <- sni (r/rs - 1) z(i) - z(i) /*see (2.14)*/

4. Compute c 5 ( i — 1 ) , c 5 ( p — l), c6(i+l), and c6(0) by using prefix
sum and postfix sum algorithms (for the implementation on hypercube, we
recall the function comm which is shown and simulated in Appendix C
/*see (2.15)*/
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5. Calculate

6. Calculate

7. Calculate

8.

3. THE TRUNCATED VERSION OF OUR ALGORITHM

By observing the entries of pj and qy, and recalling that \r\<\ and
\s < 1, due to the fact that \r\k and \sk are infinitesimal when k is
somewhat large, we try to truncate some small enough entries in

where || • || denotes the infinite sup-norm.
Therefore, (2.19) is rewritten by

where k, /^min(«0, n0,..., np_1), then it yields to

To find an upperbound of \\\ — \(k, /)||/||x|| in term of a, ft, y, al5 /?lt y2,
a2, n and p, we need the following lemma:

Lemma 1. Let b<2> be a gxl vector, nij = KjA'q~l6J, i=\,q and
j=\,q, and

and

854/12/4-5
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then

and

where

Proof. See Appendices D and E.

By Lemma 1 and A'n iz( i }=b(i ) we have

and

where

By (2.13)-(2.17), (2.20), and (2.22), we have

where t7 and t8 are referred to Appendix F. By (3.3), the relative error is
given by

and
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If we let

and

then E is an upper bound of ||x — \(k, /)| |/| |x||.
The parallel algorithm derived in this section is similar to the one

listed in Section 2, the only difference is to replace step 8 to step 8' as
shown here

4. EXPERIMANTAL RESULTS

We have implemented this parallel algorithm in Section 3 for solving
( 1 . 1 ) on the nCUBE 2/E multiprocessors [cf. nCUBE2 Processor Manual
(1993); nCUBE2 Programmer's Guide (1993)]. We test our parallel
programs on this machine using 1,2,4,8, and 16 processors, respectively.
To balance the loads of all nodes, we let the data be distributed evenly
among the nodes. Each node whose node-id is less than n mod p processes
[n/p] data, and the other node processes [n/p] data, respectively.

We use four sets of input data to demonstrate the performance of our
algorithm. In Experiment 1, we let x = 3, xI = 7.8, B = 1, y = 1, /? = 0.6, and
y2 = 0.8; bi's are generated randomly by the program. The execution time
( T n ) and speedup ( T l / T n ) are listed in Table I. The sup-norm of the
residual, ||Ax — b||/||b||, is in the order of 10-16. In Experiment 2, we let
a = 2.1, <*! = 7.8, 0=1, }' = !, jffi = 0.6, y2 = 0.8. The experimental data are
listed in Table II. The sup-norm of the residual is also in the order of
10-16. In Experiment 3, we let a = 2.001, a1 = 7.8, /?=!, y=1, /?i = 0.6,
y2 = 0.8. The experimental data are listed in Table III. The sup-norm of
the residual is in the order of 10-13. In Experiment 4, we let a = 2.00001,
OLI = 7.8, /? = 1, }'= 1, /?! =0.6, }'2 = 0.8. The experimental data are listed in
Table IV. The sup-norm of the residual is in the order of 10- 1 1. In
Tables I-IV, each entry has two numbers. The first number shows the

the truncated version of our parallel algorithm for solving ( 1 . 1 ) , it needs
5n + 2k + 2l, 0</c, l^n/p, FP operations; needs \ogp communication
steps. The values of k and / are dependent on a, /?, y, a,, /?,, y2, a2, «,
and /j.
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Table I. Execution Time (Tn, in msec) and
Speedup (Tt/Tn) for r = s- -0.381966.

n

100

200

400

800

1600

3200

6400

12800

p=1

1095
1

1759
1

3076
1

5739
1

10990
1

21517
1

42560
I

84676
1

P = 2

960
1.14

1292
1.36

1955
1.57

3274
1.74

5935
1.85

11214
1.92

21713
1.96

42760
1.98

p = 4

927
1.18

1185
1.48

1516
2.03

2178
2.63

3472
3.17

6155
3.50

11408
3.73

21906
3.87

P = 8

986
1.11

1132
1.55

1377
2.23

1714
3.35

2371
4.64

3689
5.83

6358
6.69

11599
7.30

p=16

1104
0.99

1202
1.46

1320
2.33

1584
3.62

1910
5.75

2599
8.28

3958
10.75

6575
12.88

Table II. Execution Time (Tn, in msec) and
Speedup (T1/Tn) for r = s= -0.7298.

n

100

200

400

800

1600

3200

6400

12800

P=1

1356
1

2174
1

3497
1

6155
1

11400
1

21943
1

42985
1

85089
1

p = 2

991
1.37

1551
1.40

2382
1.47

3706
1.66

6364
1.79

11626
1.89

22146
1.94

43199
1.97

p = 4

930
1.46

1214
1.79

1777
1.97

2618
2.35

3907
2.92

6598
3.33

11827
3.63

22370
3.80

p = 8

981
1.38

1128
1.93

1409
2.48

1968
3.13

2813
4.05

4133
5.31

6795
6.33

12018
7.08

p=16

1102
1.23

1204
1.81

1344
2.60

1610
3.82

2191
5.20

3019
7.27

4358
9.86

7017
12.13



Parallel Solver for Toeplitz Systems 421

Table HI. Execution time (Tn, in msec) and
Speedup (T1/Tn, for r = s = 0.9688.

n

100

200

400

800

1600

3200

6400

12800

P=1

1446
1

2558
1

4780
1

9254
1

17875
1

28394
1

49435
1

91512
1

p = 2

1110
1.30

1637
1.56

2750
1.74

4974
1.86

9446
1.89

18360
1.55

28913
1.71
49949
1.83

p = 4

1026
1.41

1302
1.96

1829
2.61

2967
3.12

5191
3.44

9666
2.94

18552
2.66
29104
3.14

p = 8

1081
1.34

1223
2.09

1493
3.20

2046
4.52

3161
5.65

5410
5.25

9857
5.02
18743
4.88

p = 16

1210
120

1279
2.00

1434
3.22

1715
5.40

2248
7.95

3359
8.45

5598
8.83
10074
9.08

Table IV. Execution Time (Tn, in msecs) and
Speedup(T1/T) for r = s = 0.99684.

n

100

200

400

800

1600

3200

6400

12800

p=1

1446
1

2557
1

4780
1

9254
1

18173
1

36104
1

71663
1

142990
1

P = 2

1082
1.34

1638
1.56

2750
1.74

4971
1.86

9446
1.92

18637
1.94

36207
1.98

71855
1.99

p = 4

1023
1.41

1303
1.96

1857
2.57

2969
3.12

5192
3.50

9663
3.74

18557
3.86

36397
3.93

p = 8

1088
1.33

1218
2.10

1518
3.15

2077
4.46

3165
5.74

5386
6.70

9854
7.27

18756
7.62

p=16

1212
1.19

1289
1.98

1431
3.34

1693
5.47

2241
8.11

3377
10.69

5603
12.79

10107
14.15

854/12/4-6
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longest execution time among all processors. The second number repre-
sents the speedup ratio when compared with the time required when using
one processor. It is observed that the parallel algorithm works well as the
size of data, say q, processed by each node is greater than 50. As q is
increasing, the speedup is almost linear (speedup is proportional to the
number of nodes).

The number of FP operations required in step 8' of this parallel algo-
rithm depends on the absolute values of r and s. In Experiment 1, both r
and s are small (r = s = —0.381966). Both c7 and cs converge to 0 very fast.
The total number of FP operations performed is closed to 5n/p although
n is very small. In Experiment 2, both the absolute values of r and s
(r = s= —0.7289) are closer to 1 than those in Experiment 1. It needs more
than 5n/p arithmetic operations, but needs less than 9n/p operations. In
Experiment 3, both the absolute values of r and s are closer to 1 too
( r = s = 0.9688), thus the final solution converges slower. The total number
FP operations required is closed to 9n/p while n/p is small; it becomes less
than 9n/p as n becomes larger. In Experiment 4, both the absolute values
of r and s are very closed to 1 (r = s= —0.99684) and the total number of
operations required is closed to 9n/p.

5. CONCLUSIONS

We have presented our parallel algorithm for solving circulant tri-
diagonal Toeplitz linear systems. The number of FP operations required in
our algorithm is ranged from Sn/p to 9n/p, which has the same order as
that required in the sequential algorithm [cf. Yan and Chung (1994)]. On
the nCUBE 2/E multicomputer, some experimental results are illustrated to
demonstrate the good performance of our stable parallel solver.

APPENDIX A

A.I. Six Equalities

From — ry + a = a. and r=—p/a, we have (/ty/a) + a = a, i.e.,
a2 — aa + py — 0. From — ry + a — a, we have a + yr = a. Hence we have
a.r + yr2 = ar. From r = —ft/a, it gives /? + <xr + yr2 = 0. From — ry + a = a
and s = — y/a, we have a — a = r — ry = ars. From r = — ft/a, we then have
a. — a = ars— —fis, fis + a. = a, and fis2 + as = as = —y, i.e., fis2 + ots + y = O.
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APPENDIX B

B.I. One Equality

Consider

then it yields to

Equivalently, we have

APPENDIX C

C.I. The Pseudo Code of comm for Hypercube

From
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it follows that

Let

and

two prefix-product forms are obtained as follows:

and

The pseudo code of function "comm" is listed next in order to guarantee
that processor i in the hypercube keeps the value of c5(i— 1), c s ( p — 1 ) ,
c6(i+ 1), and c6(0). Note that in the following psuedo code, an overlapping
technique is employed.

Function comm
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for k :=0 to logp- 1 do
Send X and Y to the node whose node-id is different in bit position k;
Received these values from the sender and save it in X' and Y'
if bit k of node-id is 1 then

else

endif
endfor

Suppose p = 4, we have
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APPENDIX D

D.I. The Proof of Lemma I

Three cases for the vector b are to be considered. Consider the first
case

Let J=(0 I9Xq 0)q x n and it satisfies Jb = b< 2 >. From A;y = b< 2 > and
Anx= b, we have

Since

we have

and
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Consider the second case

Let J = ( I q x q 0)qxn and it satisfies Jb = b<2>. Then it yields to

Therefore, we have

and

Consider the third case

Let J = (0 Iqxq] and it satisfies Jb = b<2>. We than have



428 Wu, Yan, and Chung

Therefore, we have

and

Finally, it yield to |y|/i|x|| <M, and |yj/||x|| <«,, where uq = max(u(]\ uq2

uq(3) and vq = wu(vl», v™, v<?>).

APPENDIX E

E.l. The evaluation of ef^;-^, ef/^-^i, ef/^-'e,, and ej^-'e,

To evaluate ef^"^ and SgA'1~l6l, we first solve ^4'9p = eL. That is,
it wants to solve the recurrence relation: ftpi-i+«.pj + ypi+l=0 for
2 <;' =S q — 1 with the boundary conditions:

and

From /? + ar + yr2 = 0 and /fc2 + as + y = 0, r and 1/5 are the zeros of
characteristic polynomial of this recurrence relation. Subsequently, we
obtain pk = c l r k - l + c 2 s q - k . Putting it into boundary conditions, we have

and
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that is,

and

We then have

and

Consequently, it follows that

To evaluate ef/4^ 'e?ande^^ 'e?, we first solve ^^p = e?. Similarly, let
pk = c l r k - l + c 2 s 9 - k < we have

and

After some similar algebraic computations, it yields to

and

Consequently, it follows that

APPENDIX F

F.I. A Upper Bound for the Relative Error

By (2.14) and (3.4), we have

and
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and

By (2.15), it follows that

and

By (2.13), it yields to

By (2.17)

and

By (2.16), we have

and

where

and

By (2.20), it follows that

and

where



Parallel Solver for Toeplitz Systems 431

where

and

By (2.22), it yields to

and

where

and
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