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Abstract

This paper presents two matrix factorizations for recursive pruned discrete cosine transforms. Both factorizations have
lower computational complexity when compared to the method of El-Sharkawy and Eshmawy (1995). ( 1998 Elsevier
Science B.V. All rights reserved.

Zusammenfassung

Dieser Artikel behandelt zwei Methoden zur Matrizenfaktorisierung für rekursive reduzierte diskrete Cosinustransfor-
mationen. Beide Methoden haben einen geringeren Rechenaufwand als die Methode von El-Sharkawy und Eshmawy
(1995). ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

Cet article présente deux méthodes de factorisation de matrices pour les transformations discrètes en cosinus élaguées
récursives. Ces méthodes présentent toutes deux une complexité de calcul inférieure à celle de la méthode de El-Sharkawy
et Eshmawy (1995). ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The recursive discrete cosine transforms (DCTs) [1,5] have many important applications in the area
of image processing, communication, and digital signal processing. These applications include image
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compression, filtering, feature extraction, teleconferencing, video phones, progressive image transmission,
and so on. Due to the energy-packing capabilities, it approaches the statistically optimum Karhunen—Loeve
transform for first-order Markov stationary random data [2]. In some applications, e.g. image compression,
only the low-frequency DCT components should be kept, thus we only utilize a subset of input points or
a subset of output points in order to decrease the computational complexity. This method is referred to as
pruning [6,3].

Recently, El-Sharkawy and Eshmawy [3] presented an efficient matrix factorization for one-dimensional
(1-D) recursive pruned DCT (RPDCT) which improves the result of Wang [6] significantly. Later, they [4]
extended the proposed method from the 1-D domain to the 2-D domain successfully. Based on the result of
[3], the motivation of this research is to present new matrix factorizations for RPDCT in order to gain some
computational advantages.

Employing row operations and some addition rules for cosine functions, this paper presents two matrix
factorizations for RPDCT. The proposed two factorizations are quite competitive with the result [3], but
eliminate all the shift operations in one factorization and all but one in the other factorization.

The remainder of this paper is organized as follows. Section 2 introduces the work of El-Sharkawy and
Eshmawy [3]. The proposed two matrix factorizations for RPDCT are presented in Section 3. Some
concluding remarks are addressed in Section 4.

2. The work of El-Sharkawy and Eshmawy

For describing the proposed two matrix factorizations more clearly, in this section, the work of El-Sharkawy
and Eshmawy [3] is reviewed in detail.
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then the following two steps can be used to compute CII
n
x:

Step 1. Compute y"¹(n)x.

Step 2. Compute diag[J1/n, J2/n, J2/n,2, kJ2/n] y.
The above two steps need O(n2) multiplications and additions since they mainly concern a matrix—vector

multiplication.
In [3], El-Sharkawy and Eshmawy presented a faster method to reduce the above time bound to O(n log n)

multiplications and additions.
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Let P(n) be an n]n permutation matrix formed by reordering the rows of the identity matrix so that the
following equality holds: P(n)(0,1,2,2, n!2,n!1)5"(0,2,2,n!2,1,3,2,n!1)5. The previous matrix
¹(n) is reordered by exchanging rows and columns of the matrix, then the resultant matrix is decomposed
into four quadrants [3] as shown below:
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From the definitions of t
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and the Hadamard recurrence, we have
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For analyzing the computational complexity, let m"n/2. We then have
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and
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Equivalently, the procedure [3] consisting of the following six steps for computing y"¹(2m)x is shown
below:
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In the next section, two new matrix factorizations for ¹
oe

(m)"A(m)¹
ee

(m)B(m) are presented. For the first
proposed factorization, the computational complexity required in Step 5 of the above procedure can be
reduced from ((m!1) shift operations and (m!1) subtractions) to (one shift and (m!1) subtractions), while
preserving the same bound in the remaining steps. For the second proposed factorization, the computational
complexity required in Step 5 in the above procedure can be reduced to (m!1) additions, while still
preserving the same bound in the remaining steps.

3. Two new matrix factorizations
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In summary, we have the following two important equations:
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As a result, two new factorizations for ¹
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(m) are derived as shown below:
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From Eq. (4), computing Step 5 is equal to solving the bidiagonal linear system ¸(m)z
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one shift operation and m!1 subtractions. From Eq. (5), it takes m!1 additions to compute Step 5.
Recall that the computational complexity required in Step 5 of the above procedure mentioned in

Section 2 is (m!1) shift operations and (m!1) subtractions. The computational complexity required in
Step 5 of any one of the proposed two methods is lower than the that of in the above procedure, while
preserving the same bound in remaining steps. Table 1 illustrates the computational complexity required in
Step 5 among the three methods.

In Table 1, if we assume that the computational load of one subtraction is equal to that of one addition, the
second method is the fastest among the three methods.

Table 1
Computational complexity comparison for Step 5

Shift
operations

Subtrac-
tions

Additions

[3] m!1 m!1 0
First method 1 m!1 0
Second method 0 0 m!1
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4. Concluding remarks

We have presented two matrix factorizations to improve some steps in the procedure of El-Sharkawy and
Eshmawy [3] for recursive pruned discrete cosine transforms. How to design efficient matrix factorizations to
handle the case nO2k is our future research topic. Instead of using trigonometric identities to derive the
proposed matrix factorizations, how to just change some multiplicators to derive the same results is another
interesting research issue.
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