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Abstract

Given a compressed image in restricted quadtree and shading format, this paper presents an efficient algorithm for the Fouriel
transform on the compressed image directly. The proposed algorithm takedl@ K + N2) time, where the decompressed
grey image is of siz&v x N and K denotes the number of nodes in the restricted quadtree. The proposed algorithm is more
general than the previous results of Anguh [IEEE Trans. Signal Processing 45 (1997) 2896] and Philips [IEEE Trans. Signal
Processing 47 (1999) 2059] since in their restricted quadtree format, each quadrant is of constant grey2@flliElsevier
Science B.V. All rights reserved.
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1. Introduction transform, their efficient algorithms have the same
time complexity, say @2logs + N?). In their com-
Suppose we have one grey image with sizex2" pressed image domain, the constructed quadtree is re-
(= N x N). In [2,6], the Fourier transform on the  stricted and is a complete quadtree. The experimental
image can be performed in(@2logN) time. In [1, results [3] reveal that combining the quadtree struc-

5], the N x N image is first partitioned into*2< 2°  tyre and Gouraud shading technique [4] has a better
(=S x S) squaress < n, where each square is of size  compression effect. Thatis, given the same grey image
275 x 2"7% and each pixel within the square has the ¢ size N x N. we havek < S when comparing the
same grey level. Using the subsampling technique, the compressed image with siZé x K in the restricted

;ubsamplepl image with sizé 2 2° is called the image guadtree and shading format and the compressed im-

in the resricted quadtr_ee format [1’5]' Although bf?th age with sizeS x S in the restricted quadtree format.

authors present two different algorithms for Fourier The motivation of this research is to design an efficient

—_ i algorithm for performing the Fourier transform on the
s g ee s s () compressed image in heresiricted quadiree and shag-

ganboon@csie.ntu.edu.tw (W.-M. Yan). ing format. Since the compressed domain considered
1 Supported by NSC87-2119-M002-006. in this research is different from that in the previous
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algorithms [1,5], our proposed algorithm is different
from the previous algorithms.

Under the compressed image in restricted quadtree
and shading format, this paper presents an efficient
algorithm for the Fourier transform and the proposed
algorithm takes ©K 2log K 4 N'?) time. The proposed
algorithm has the same time complexity as that in
the previous algorithms [1,5], but the compressed
image domain is more general than in the previous
algorithms. However, the compressed image in the
restricted quadtree and shading format considered in
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bottom corner, the left-upper corner, and the right-
upper corner. The grey levels of the pixels within one
square can be interpolated using the the four corners’
grey values at positiongx1, y1), (x2,y1), (x1,y2),

and (x2, y2) associated with four grey levels age,

g2, g3, and gy, respectively. Herex = x1 + M and

y2 = y1 + M. The estimated grey level of the pixel at
(x, y) within the subimage is calculated as

this paper is a special case of the one in quadtree andwhere

shading format [3]. In [3], the constructed quadtree

may be incomplete and it is still an open problem to 85

design an efficient algorithm for Fourier transform on
such a compressed image.

2. The compressed imagein restricted quadtree
and shading format

Following the shading concept used in [3], the given
image is first augmented by duplicating the original
last column and the original last row to become of
size (N + 1) x (N + 1). Then the augmented image
is partitioned into 2 x 2 = K x K overlapping ho-

6— &5
fx, y)—g5+ -y, 1)
y2—y1
—g+ 3278 _xp) and
X2 — X1
84— 83
g6 =g3+ (x —x1).
X2 —

Given a specified error toleranegf the image quality
condition

g0, ) — ey <e

holds for all the estimated pixels at positiar, y) in

the subimagey; < x < x2 andy1 < y < yz, then the
subimage, i.e., square, is homogeneous. Hgre,y)
denotes the real grey level of the pixel at position
(x, y). The resulting subsampled image consists of all

mogeneous squares, i.e. subimages, as few as possiblghese homogeneous squares. From Eq. (1), we have

where each square is of sig@ % +1) x (2" %k +1) =
M+ 1) x(M+1). Here, N = K x M. For each
square, we only save the grey levels of its four cor-
ners. Each corner’s grey level of one square is shared
by the neighboring three corners in the neighboring

squares. Thus, any homogeneous square shares its top,

edge with the northern homogeneous square’s bottom
edge, and so on. The formal definition of a homoge-
neous square [3] will be given in next paragraph. Us-
ing Gouraud shading method [4], the grey levels of
the pixels within one square can be interpolated using
the the four corners’ grey levels of that square. When
compared to the compressed image in quadtree for-
mat [1,5], the purpose of making the blocks overlap
can alleviate the blockiness effect [3] when employ-
ing the shading technique and leads to better image
quality. Throughout this paper, the subsampled image
in the restricted quadtree and shading format is called
the subsampled image without confusion.

In one subimage, we know that there are four
corners, namely, the left-bottom corner, the right-

fx,y) = co+cilx —x1) +ca(y — y1)

+c3(x —x1)(y — y1), 2

where
= 81,

22—

Cl = 9
X2 — X1

2 = u7 and
y2—xy1
84—83—82+481

c3 =

(x2 —x1)(y2—y1)

Using the above restricted quadtree and shading
approach to compress the given image with gize
N, we obtain the compressed subsampled image with
size K x K. Among theseK x K squares, for each
square, only four corners’ grey values are required
to be stored. Totally there arekZ grey values to
be stored and thesekZ grey values will be used as
the input of our proposed algorithm for the Fourier
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transform. Following the same assumption in [1,5],
we omit the preprocessing time for preparing the
subsampled image.

3. The proposed algorithm

For convenience, we letQ k,, ky, < 2k x1=k.M,
x2=kiM + M, y1 = kyM, and y, = kyM + M.

According to the Gouraud shading method mentioned

in Eqg. (1), the grey levelf (x1 + Iy, y1 + 1), 0<
Iy, ly < M, atposition(x1 + Iy, y1 +1,) is interpolated
using the four corners’ grey levelg; = g(x1, y1),

g2 = g(x2,y1), g3 = g(x1, y2), and g4 = g(x2, y2).
Sincexp — x1=y2 — y1 = M, by (2) if we let

colky, ky) = g1=g(x1, y1),
2—81 (x2, y1) — g(x1, y1)
Cl(kx’ky):g g1 _ 8(x2,y1) — g1, y1)
X2 — X1 M 3)
_83—81  glx1, y2) — g(x1, y1)
ca(ky, ky) = = ,
»-n M
4—83—82+481
calky, ky) = S2— 838 8278

(y2 — y1)(x2 — x1)
84—83—82+81
M? ’

then we have
fxM + 1, kyM +1y)
= flxa+1,y1+1y)
= co(ky, ky) + c1(ky, ky)lx
+calky, ky)ly + c3(ky, ky)lly

for 0 < Iy,ly < M. Instead of using the original
given image with grey levelg(x, y), the approximate
image with grey levelsf(x, y) is used to help the
computation of theV x N 2D Fourier transform and
we have

N—-1N-1 .
Fun=3%" f(x,y)exp(W).
x=0 y=0

Associated with the resulting subsampled image, we
have
K—1M-1K-1M-1

XY Z F ke M + Ly, kyM +1y)

ky=01,=0ky=01,=

(—th[u(kxM + 1) + vlky M + zy)])
x exp

F(u,v) =

N

K-1K-1M-1M-1

= Z Z Z Z FlxM + 1, kyM +1y)

=0k,=01,=01,=0
<—2n][u(kxM + 1) + vlkyM + zy)])
x exp .

N
M-1M-1
ke ky) = Y 3" flaeM + Lo kyM +1y)
1,=0 ,=0
<—2nj[ulx + vly]>
x exp| ——— ),

N
then we have
K-1K-1

Z > hlke, ky)

=0k, =0

X exp(

K-1K-1

Z Z hky, ky)

=0ky=

p( 2rjluky + vk,]
xXexpl ————
K

Previously, we know that

Let

F(u,v)

27 jluky M + vkyM]>
N

>. (4)
fexM + 1, kyM +1y)
= co(kx, ky) + ca(ky, ky)lx
+calky, ky)ly + calky, ky)lly.
We thus have

M-1M-1
>3 [cothky) + crthe, kyl

1,=0 ,=0
(—Zﬂj[ulx + uzy])
x exp| ———
N
colke. ky) So(ie, v) + c1(ky. ky)S1t, v)
+ colky, ky)So(u, v) + c3(ky, ky)S3(u, v),
(5)

h(kx, ky)

+ calky. ky)ly + c3(ke, ky)zxzy]

where

M-1M-1

Z 3 exp( an[ulx+vl ])

=01,=0
-1 .
21 july —2mjvly
Z exp( ) > exp(T ,
[,=0

So(u, v)
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M—-1M—-1
2mj[ul Ly
Sl(M,U) = Z Z lxexp<M)
=01,=0
orjuly \ M= —2njui
= Z Iy exp( x) > EXD(T))’
1,=0
M—-1M—-1
2mjul [
So(u,v) = Z Z IV exp(M)
1,=01,=0
M-1 M-1
—2mjul —2mjvl
- Zep( )Y dyex < ) y),
1,=0
M—-1M—-1
27 j[ul [
S3(u,v) = Z Z lxly exp(M)
1,=01,=0
— leexp( znjulx)
x Z Iy exp| ( hJUlV).
Further, let

M-1
A(t) = Z exp<
B(t) = er p<

then we have

— i
njtx) and
N

2njtx>

So(u,v) = A(u)A(v),
S1(u,v) = Bu)A(v),
S2(u,v) = A(u)B(v),
S3(u,v) = B(u)B(v).

(6)

We now need the following two straightforward

and well-known identities to derive the proposed

algorithm.
Lemma 1.
M-1 r whenr # 1;
S(r)= Z r* 1=r 7L
x=0 M VVhen r=1

Lemma 2.
_ A=rMy MM )
M-1 . ﬁ—lg when r # 1;
T(r)= Z xrt =
=0 LGB whenr = 1.
From Lemmas 1 and 2, let= exp( _ff,”"), then we

have

A = 5oy = 8 exp =21
t)=S(r) = (e p(T))
Bt)y=T(r)= T(exp(

From Egs. (5) and (6), we have

and

)

h(ky, ky) = co(kx, ky)SO(Ma v) + c1(ky, ky)Sl(u, v)
+ co(ky . ky)S2(u, v) + c3(kx, ky)S3(u, v)
= colkx, ky) A)A(v) + c1(kx, ky) B(u)A(v)
+ cp(kx, ky)A(u) B(v) + c3(kx, ky) B(u) B(v).

From Eg. (4), it yields to

F(u,v)
K-1K-1
S Y bk )eXp<M>
ky=0ky=0
K-1K-1 _
=Awam Y Y co(kx,mexp(w>
ky=0ky=0
K-1K-1 )
+BwA®) Y Y q(kx,ky)exp(w
kx=0ky=0
K-1K-1 _
—27jluk. ky
+AWBE) Y Y cz(kx,ky)exp(w>
ky=0ky=0
K-1K-1 .
—2rjluky + vk
+BWwBW) Y. Y cg(kx,k),)exp(w)'
kX:Oky:O
(7)
Let
Co(u, v)
K-1K-1 .
—2mj[uky + vky]
= Z Z Co(kx,ky)exp<+ ’
kx=0ky=0
C1(u, v)
K-1K-1

— Z Z Cl(k)c’ ky) exp<w>’

fex =0 ky =
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Co(u, v)
b —2rjluky + vky]
= Z Z cz(kx,ky)exp<%>v
ke =0k, =0
C3a(u,v)
K-1K-1 _
=0 Y cath by enpf ),
kszky:O

then from (7), it yields to
F(u,v) = A)[Au)Co(u,v) + B(u)C1(u, v)]
+ B()[A(u)C2(u, v) + B(u)Ca(u, v)].
8
Our proposed algorithm for the Fourier transform as-

sociated with the compressed image consists of the
following four steps:

Step 1. By Eq. (3), we computey (ky, ky), ca(ky, ky),
ca(ky, ky), andca(ky, ky) for 0 < &y, ky, < K, this
step takes QK?) time.

Step 2. We compute the fouK x K FFTs, namely,
Co(u,v), C1(u,v), C2(u,v), andCz(u, v) for 0 <
u,v < K. Applying the conventionak x K FFT
algorithm [2,6] four times, this step takes
O(K?logK) time.

Step 3. ComputeA(u) and B(u) for 0 < u,v < N.
From Lemmas 1 and 2, this step take&\Q time.
In fact, A(v) (B(v)) can be obtained from the value
of A(u) (B(u)) directly.

Step 4. From Eq. (8), the Fourier transform
F(u,v) = AW)[A@w)Cou,v) + B(u)C1(u, v)]
+ B(v)[A(u)Cz(u, v) + B(u)C3z(u, v)]
for 0<u, v < N can be obtained in V) time.

From Step 1 to Step 4, the total time complexity
required in the proposed algorithm i K?logK +
N?) (= O(K?+ K?logK + N + N?)). We thus have
the main result.

Theorem 1. On the compressed image in the re-
stricted quadtree and shading format, the proposed al-

gorithm can perform the Fourier transform in
O(K?log K 4+ N?) time, where the decompressed grey
imageisof size N x N and K denotes the number of
nodesin the restricted quadtree.

The proposed algorithm is more general than the
previous results [1,5] since in their restricted quadtree
format with sizeS x S, each quadrant is of constant
grey value. The experimental results in [3] reveal
K < §. This better compression effect implies that the
proposed algorithm may have a computation-saving
effect. However, in [3], the constructed quadtree may
be incomplete, so it is still an open problem to design
an efficient algorithm for the Fourier transform on
such a compressed image.
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