
Information Processing Letters 79 (2001) 1–5

An efficient algorithm for the Fourier transform on a compressed
image in restricted quadtree and shading format

Kuo-Liang Chunga,∗, Wen-Ming Yanb,1

a Department of Information Management, Institute of Computer Science and Information Engineering, National Taiwan University of
Science and Technology, No. 43, Section 4, Keelung Road, Taipei, Taiwan 10672

b Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei,
Taiwan 106

Received 9 October 2000; received in revised form 23 October 2000
Communicated by L. Boasson

Abstract

Given a compressed image in restricted quadtree and shading format, this paper presents an efficient algorithm for the Fourier
transform on the compressed image directly. The proposed algorithm takes O(K2 logK + N2) time, where the decompressed
grey image is of sizeN × N andK denotes the number of nodes in the restricted quadtree. The proposed algorithm is more
general than the previous results of Anguh [IEEE Trans. Signal Processing 45 (1997) 2896] and Philips [IEEE Trans. Signal
Processing 47 (1999) 2059] since in their restricted quadtree format, each quadrant is of constant grey value. 2001 Elsevier
Science B.V. All rights reserved.

Keywords: Algorithms; Fourier transform; Gouraud shading; Quadtree; Compressed image

1. Introduction

Suppose we have one grey image with size 2n × 2n

(= N × N ). In [2,6], the Fourier transform on the
image can be performed in O(N2 logN) time. In [1,
5], theN × N image is first partitioned into 2s × 2s

(= S × S) squares,s � n, where each square is of size
2n−s × 2n−s and each pixel within the square has the
same grey level. Using the subsampling technique, the
subsampled image with size 2s ×2s is called the image
in the restricted quadtree format [1,5]. Although both
authors present two different algorithms for Fourier

* Corresponding author, supported by NSC89-2213-E011-062.
E-mail addresses: klchung@cs.ntust.edu.tw (K.-L. Chung),

ganboon@csie.ntu.edu.tw (W.-M. Yan).
1 Supported by NSC87-2119-M002-006.

transform, their efficient algorithms have the same
time complexity, say O(S2 logS + N2). In their com-
pressed image domain, the constructed quadtree is re-
stricted and is a complete quadtree. The experimental
results [3] reveal that combining the quadtree struc-
ture and Gouraud shading technique [4] has a better
compression effect. That is, given the same grey image
of sizeN × N , we haveK � S when comparing the
compressed image with sizeK × K in the restricted
quadtree and shading format and the compressed im-
age with sizeS × S in the restricted quadtree format.
The motivation of this research is to design an efficient
algorithm for performing the Fourier transform on the
compressed image in the restricted quadtree and shad-
ing format. Since the compressed domain considered
in this research is different from that in the previous

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(00)00168-X



2 K.-L. Chung, W.-M. Yan / Information Processing Letters 79 (2001) 1–5

algorithms [1,5], our proposed algorithm is different
from the previous algorithms.

Under the compressed image in restricted quadtree
and shading format, this paper presents an efficient
algorithm for the Fourier transform and the proposed
algorithm takes O(K2 logK +N2) time. The proposed
algorithm has the same time complexity as that in
the previous algorithms [1,5], but the compressed
image domain is more general than in the previous
algorithms. However, the compressed image in the
restricted quadtree and shading format considered in
this paper is a special case of the one in quadtree and
shading format [3]. In [3], the constructed quadtree
may be incomplete and it is still an open problem to
design an efficient algorithm for Fourier transform on
such a compressed image.

2. The compressed image in restricted quadtree
and shading format

Following the shading concept used in [3], the given
image is first augmented by duplicating the original
last column and the original last row to become of
size (N + 1) × (N + 1). Then the augmented image
is partitioned into 2k × 2k = K × K overlapping ho-
mogeneous squares, i.e. subimages, as few as possible,
where each square is of size(2n−k +1)× (2n−k +1) =
(M + 1) × (M + 1). Here,N = K × M. For each
square, we only save the grey levels of its four cor-
ners. Each corner’s grey level of one square is shared
by the neighboring three corners in the neighboring
squares. Thus, any homogeneous square shares its top
edge with the northern homogeneous square’s bottom
edge, and so on. The formal definition of a homoge-
neous square [3] will be given in next paragraph. Us-
ing Gouraud shading method [4], the grey levels of
the pixels within one square can be interpolated using
the the four corners’ grey levels of that square. When
compared to the compressed image in quadtree for-
mat [1,5], the purpose of making the blocks overlap
can alleviate the blockiness effect [3] when employ-
ing the shading technique and leads to better image
quality. Throughout this paper, the subsampled image
in the restricted quadtree and shading format is called
the subsampled image without confusion.

In one subimage, we know that there are four
corners, namely, the left-bottom corner, the right-

bottom corner, the left-upper corner, and the right-
upper corner. The grey levels of the pixels within one
square can be interpolated using the the four corners’
grey values at positions(x1, y1), (x2, y1), (x1, y2),
and (x2, y2) associated with four grey levels areg1,
g2, g3, andg4, respectively. Here,x2 = x1 + M and
y2 = y1 + M. The estimated grey level of the pixel at
(x, y) within the subimage is calculated as

f (x, y) = g5 + g6 − g5

y2 − y1
(y − y1), (1)

where

g5 = g1 + g2 − g1

x2 − x1
(x − x1) and

g6 = g3 + g4 − g3

x2 − x1
(x − x1).

Given a specified error toleranceε, if the image quality
condition∣∣g(x, y) − f (x, y)

∣∣� ε

holds for all the estimated pixels at position(x, y) in
the subimage,x1 � x < x2 andy1 � y < y2, then the
subimage, i.e., square, is homogeneous. Here,g(x, y)

denotes the real grey level of the pixel at position
(x, y). The resulting subsampled image consists of all
these homogeneous squares. From Eq. (1), we have

f (x, y) = c0 + c1(x − x1) + c2(y − y1)

+ c3(x − x1)(y − y1), (2)

where

c0 = g1,

c1 = g2 − g1

x2 − x1
,

c2 = g3 − g1

y2 − y1
, and

c3 = g4 − g3 − g2 + g1

(x2 − x1)(y2 − y1)
.

Using the above restricted quadtree and shading
approach to compress the given image with sizeN ×
N , we obtain the compressed subsampled image with
sizeK × K. Among theseK × K squares, for each
square, only four corners’ grey values are required
to be stored. Totally there are 4K2 grey values to
be stored and these 4K2 grey values will be used as
the input of our proposed algorithm for the Fourier



K.-L. Chung, W.-M. Yan / Information Processing Letters 79 (2001) 1–5 3

transform. Following the same assumption in [1,5],
we omit the preprocessing time for preparing the
subsampled image.

3. The proposed algorithm

For convenience, we let 0� kx, ky < 2k, x1 = kxM,
x2 = kxM + M, y1 = kyM, and y2 = kyM + M.
According to the Gouraud shading method mentioned
in Eq. (1), the grey levelf (x1 + lx, y1 + ly), 0 �
lx , ly < M, at position(x1 + lx, y1 + ly) is interpolated
using the four corners’ grey levels,g1 = g(x1, y1),
g2 = g(x2, y1), g3 = g(x1, y2), and g4 = g(x2, y2).
Sincex2 − x1 = y2 − y1 = M, by (2) if we let

c0(kx, ky) = g1 = g(x1, y1),

c1(kx, ky) = g2 − g1

x2 − x1
= g(x2, y1) − g(x1, y1)

M
,

(3)
c2(kx, ky) = g3 − g1

y2 − y1
= g(x1, y2) − g(x1, y1)

M
,

c3(kx, ky) = g4 − g3 − g2 + g1

(y2 − y1)(x2 − x1)

= g4 − g3 − g2 + g1

M2
,

then we have

f (kxM + lx , kyM + ly)

= f (x1 + lx, y1 + ly)

= c0(kx, ky) + c1(kx, ky)lx

+ c2(kx, ky)ly + c3(kx, ky)lx ly

for 0 � lx , ly < M. Instead of using the original
given image with grey levelsg(x, y), the approximate
image with grey levelsf (x, y) is used to help the
computation of theN × N 2D Fourier transform and
we have

F(u, v) =
N−1∑
x=0

N−1∑
y=0

f (x, y)exp

(−2π j(ux + vy)

N

)
.

Associated with the resulting subsampled image, we
have

F(u,v) =
K−1∑
kx=0

M−1∑
lx=0

K−1∑
ky=0

M−1∑
ly=0

f (kxM + lx, kyM + ly)

× exp

(
−2π j[u(kxM + lx) + v(kyM + ly)]

N

)

=
K−1∑
kx=0

K−1∑
ky=0

M−1∑
lx=0

M−1∑
ly=0

f (kxM + lx, kyM + ly)

× exp

(
−2π j[u(kxM + lx ) + v(kyM + ly )]

N

)
.

Let

h(kx, ky) =
M−1∑
lx=0

M−1∑
ly=0

f (kxM + lx , kyM + ly)

× exp

(−2π j[ulx + vly ]
N

)
,

then we have

F(u, v) =
K−1∑
kx=0

K−1∑
ky=0

h(kx, ky)

× exp

(−2π j[ukxM + vkyM]
N

)

=
K−1∑
kx=0

K−1∑
ky=0

h(kx, ky)

× exp

(−2π j[ukx + vky ]
K

)
. (4)

Previously, we know that

f (kxM + lx , kyM + ly)

= c0(kx, ky) + c1(kx, ky)lx

+ c2(kx, ky)ly + c3(kx, ky)lxly .

We thus have

h(kx, ky) =
M−1∑
lx=0

M−1∑
ly=0

[
c0(kx, ky) + c1(kx, ky)lx

+ c2(kx, ky)ly + c3(kx , ky)lx ly

]

× exp

(
−2π j[ulx + vly]

N

)

= c0(kx, ky)S0(u, v) + c1(kx, ky)S1(u, v)

+ c2(kx, ky)S2(u, v) + c3(kx, ky)S3(u, v),

(5)

where

S0(u, v) =
M−1∑
lx=0

M−1∑
ly=0

exp

(
−2π j[ulx + vly ]

N

)

=
M−1∑
lx=0

exp

(
−2π julx

N

)
M−1∑
ly=0

exp

(
−2π jvly

N

)
,



4 K.-L. Chung, W.-M. Yan / Information Processing Letters 79 (2001) 1–5

S1(u, v) =
M−1∑
lx=0

M−1∑
ly=0

lx exp

(
−2π j[ulx + vly ]

N

)

=
M−1∑
lx=0

lx exp

(
−2π julx

N

)
M−1∑
ly=0

exp

(
−2π jvly

N

)
,

S2(u, v) =
M−1∑
lx=0

M−1∑
ly=0

ly exp

(
−2π j[ulx + vly ]

N

)

=
M−1∑
lx=0

exp(
−2π julx

N
)

M−1∑
ly=0

ly exp

(
−2π jvly

N

)
,

S3(u, v) =
M−1∑
lx=0

M−1∑
ly=0

lx ly exp

(
−2π j[ulx + vly]

N

)

=
M−1∑
lx=0

lx exp

(
−2π julx

N

)

×
M−1∑
ly=0

ly exp

(
−2π jvly

N

)
.

Further, let

A(t) =
M−1∑
x=0

exp

(−2π jtx

N

)
and

B(t) =
M−1∑
x=0

x exp

(−2π jtx

N

)
,

then we have

S0(u, v) = A(u)A(v),

S1(u, v) = B(u)A(v),
(6)

S2(u, v) = A(u)B(v),

S3(u, v) = B(u)B(v).

We now need the following two straightforward
and well-known identities to derive the proposed
algorithm.

Lemma 1.

S(r) =
M−1∑
x=0

rx =



1−rM

1−r
when r �= 1;

M when r = 1.

Lemma 2.

T (r) =
M−1∑
x=0

xrx =




r(1−rM)

(1−r)2 − MrM

1−r
when r �= 1;

M(M−1)
2 when r = 1.

From Lemmas 1 and 2, letr = exp(−2π jt
N

), then we
have

A(t) = S(r) = S

(
exp

(−2π jt

N

))
and

B(t) = T (r) = T

(
exp

(−2π jt

N

))
.

From Eqs. (5) and (6), we have

h(kx, ky) = c0(kx, ky)S0(u, v) + c1(kx, ky)S1(u, v)

+ c2(kx, ky)S2(u, v) + c3(kx, ky)S3(u, v)

= c0(kx, ky)A(u)A(v) + c1(kx, ky)B(u)A(v)

+ c2(kx, ky)A(u)B(v) + c3(kx, ky)B(u)B(v).

From Eq. (4), it yields to

F(u,v)

=
K−1∑
kx=0

K−1∑
ky=0

h(kx, ky)exp

(
−2π j[ukx + vky ]

K

)

= A(u)A(v)

K−1∑
kx=0

K−1∑
ky=0

c0(kx, ky)exp

(
−2π j[ukx + vky ]

K

)

+B(u)A(v)

K−1∑
kx=0

K−1∑
ky=0

c1(kx , ky)exp

(
−2π j[ukx + vky ]

K

)

+A(u)B(v)

K−1∑
kx=0

K−1∑
ky=0

c2(kx , ky)exp

(
−2π j[ukx + vky ]

K

)

+B(u)B(v)

K−1∑
kx=0

K−1∑
ky=0

c3(kx, ky)exp

(
−2π j[ukx + vky ]

K

)
.

(7)

Let

C0(u, v)

=
K−1∑
kx=0

K−1∑
ky=0

c0(kx, ky)exp

(−2π j[ukx + vky]
K

)
,

C1(u, v)

=
K−1∑
kx=0

K−1∑
ky=0

c1(kx, ky)exp

(−2π j[ukx + vky]
K

)
,



K.-L. Chung, W.-M. Yan / Information Processing Letters 79 (2001) 1–5 5

C2(u, v)

=
K−1∑
kx=0

K−1∑
ky=0

c2(kx, ky)exp

(−2π j[ukx + vky ]
K

)
,

C3(u, v)

=
K−1∑
kx=0

K−1∑
ky=0

c3(kx, ky)exp

(−2π j[ukx + vky ]
K

)
,

then from (7), it yields to

F(u, v) = A(v)
[
A(u)C0(u, v) + B(u)C1(u, v)

]
+ B(v)

[
A(u)C2(u, v) + B(u)C3(u, v)

]
.

(8)

Our proposed algorithm for the Fourier transform as-
sociated with the compressed image consists of the
following four steps:

Step 1. By Eq. (3), we computec1(kx, ky), c2(kx, ky),
c3(kx, ky), andc4(kx, ky) for 0 � kx, ky < K, this
step takes O(K2) time.

Step 2. We compute the fourK × K FFTs, namely,
C0(u, v), C1(u, v), C2(u, v), andC3(u, v) for 0 �
u,v < K. Applying the conventionalK × K FFT
algorithm [2,6] four times, this step takes
O(K2 logK) time.

Step 3. ComputeA(u) and B(u) for 0 � u,v < N .
From Lemmas 1 and 2, this step takes O(N) time.
In fact,A(v) (B(v)) can be obtained from the value
of A(u) (B(u)) directly.

Step 4. From Eq. (8), the Fourier transform

F(u, v) = A(v)
[
A(u)C0(u, v) + B(u)C1(u, v)

]
+ B(v)

[
A(u)C2(u, v) + B(u)C3(u, v)

]
for 0 � u,v < N can be obtained in O(N2) time.

From Step 1 to Step 4, the total time complexity
required in the proposed algorithm is O(K2 logK +
N2) (= O(K2 + K2 logK + N + N2)). We thus have
the main result.

Theorem 1. On the compressed image in the re-
stricted quadtree and shading format, the proposed al-

gorithm can perform the Fourier transform in
O(K2 logK +N2) time, where the decompressed grey
image is of size N × N and K denotes the number of
nodes in the restricted quadtree.

The proposed algorithm is more general than the
previous results [1,5] since in their restricted quadtree
format with sizeS × S, each quadrant is of constant
grey value. The experimental results in [3] reveal
K � S. This better compression effect implies that the
proposed algorithm may have a computation-saving
effect. However, in [3], the constructed quadtree may
be incomplete, so it is still an open problem to design
an efficient algorithm for the Fourier transform on
such a compressed image.

Acknowledgement

We appreciate the referees and the Editor Professor
Luc Boasson for their valuable comments that lead to
the improved representation of the paper.

References

[1] M. Anguh, Quadtree and symmetry in FFT computation of
digital images, IEEE Trans. Signal Processing 45 (12) (1997)
2896–2899.

[2] E.O. Brigham, The Fast Fourier Transform, Prentice-Hall,
Englewood Cliffs, NJ, 1974.

[3] K.L. Chung, J.G. Wu, Improved image compression using S-
tree and shading approach, IEEE Trans. Commun. 48 (5) (2000)
748–751.

[4] J.D. Foley, A.V. Dam, S.K. Feiner, J.F. Hughes, Computer
Graphics, Principle, and Practice, 2nd edn., Addison-Wesley,
Reading, MA, 1990.

[5] W. Philips, On computing the FFT of digital images in quadtree
format, IEEE Trans. Signal Processing 47 (7) (1999) 2059–
2060.

[6] C. van Loan, Computational Frameworks for the Fast Fourier
Transform, SIAM Press, Philadelphia, PA, 1992.


