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Abstract

A complete mapping of an algebraic structure (G;+) is a bijection f(x) of G over G such that
f(x)=x+h(x) for some bijection h(x). A question often raised is, given an algebraic structure G,
how many complete mappings of G there are. In this paper we investigate a somewhat di7erent
problem. That is, how di9cult it is to count the number of complete mappings of G. We show
that for a closed structure, the counting problem is #P-complete. For a closed structure with a
left-identity and left-cancellation law, the counting problem is also #P-complete. For an abelian
group, on the other hand, the counting problem is beyond the #P-class. Furthermore, the famous
counting problems of n-queen and toroidal n-queen problems are both beyond the #P-class.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: #P-completeness; Counting problem; Complete mapping; n-Queen problem

1. Overview

A complete mapping of an algebraic structure (G;+) is a bijection f(x) of G over
G such that f(x) = x + h(x) for some bijection h(x). For example, (1; 2; 4)(3; 6; 5) is
a complete mapping of (Z7;+).
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x 0 1 2 3 4 5 6 Cycle structure

f(x) = x + h(x) 0 2 4 6 1 3 5 (1,2,4)(3,6,5)

h(x) 0 1 2 3 4 5 6

This concept for groups was Jrst introduced by Mann [10], who used it to
construct orthogonal Latin squares. We note that the mapping f(x) so deJned here
was called orthomorphism by Johnson et al. [9] in 1961 and the mapping h(x) was
deJned as complete mapping by Paige [11] in 1952. While other terminologies have
been used, the most common alternative for complete mapping has been orthogo-
nal mapping, a term Jrst used by Bose et al. [3] in 1960. We also note that in
this context, complete mapping and orthomorphism are sort of dual to each other.
If f(x) is an orthomorphism of a group G, then h(x) = −x + f(x) is a complete
mapping (in the sense of Paige). Conversely, if f(x) is a complete mapping, then
g(x) = x + f(x) is an orthomorphism. Because of this tight relationship, the stud-
ies of complete mappings or orthomorphisms bear strong similarities and the
choice to pick complete mapping or orthomorphism depends heavily on its
applications.
Due to the importance of a complete mapping of a group (G;+) in constructing

algebraic structures, such as left neoJelds, and combinatorial and experimental conJg-
urations, such as Mendelsohn designs, the enumeration problems have been studied.
Johnson et al. [9] in 1961 studied orthomorphisms and their relations to the construc-
tions of mutually orthogonal Latin squares and Jnite projection planes. They obtained
criteria using orthomorphisms that enable them to say whether a given set of mutu-
ally orthogonal Latin squares may be extended. They also derived properties that make
computation faster. They have successfully obtained a new set of 5 mutually orthogonal
Latin squares of order 12.
In 1980, Hsu [5] studied cyclic neoJelds (an algebraic structure (N;+; ∗) so that

(N;+) is a quasigroup and (N \{0}; ∗) is a cyclic group) and used complete mappings
of a group G (|G|= n) to construct cyclic neoJelds N of order n+ 1. By identifying
each cyclic neoJeld as the exponents of its presentation function, Hsu [5] successfully
enumerated all cyclic neoJelds of orders v6 10 (hence all complete mappings of a
cyclic group G of odd order |G|= n6 9): In 1991, Hsu [6] used a group of operators
(from the set of complete mappings to itself) to classify the set of complete mappings
on a cyclic group Zn. In particular, the list of all complete mappings was exhibited for
the cyclic group of order 6 9.
For a group (G;+), if f(x) is a complete mapping then for all c∈G, c+f(x) is also

a complete mapping. Therefore without loss of generality, we may assume f(0) = 0
(where 0 is the identity of G) and call f a standard complete mapping. Thus, the
number of complete mappings of a group G is a multiple of |G|. In 2000, Hsiang et
al. [16] presented #(CM(G)) (the number of standard complete mappings in a group
G) for all group G with |G|6 19. Recently, Shieh [15] computed #(CM(G)) for all
group G with |G|6 23 and obtained #(CM(Z23))=19; 686; 730; 313; 955. The following
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is a list of all known non-zero #(CM(Zn)):

n 1 3 5 7

#(CM (Zn)) 1 1 3 19

n 9 11 13 15

#(CM (Zn)) 225 3,441 79,259 2,424,195

n 17 19 21 23

#(CM (Zn)) 94,417,089 4,613,520,889 275,148,653,115 19,686,730,313,955

A strong complete mapping is a complete mapping f(x) such that x+f(x) is also
a permutation. This term was Jrst used by Hsu and Keedwell [7], in which they gave
a construction for strong complete mappings of odd order elementary abelian groups.
Anderson [2] called them strong orthomorphisms and used them in the construction of
strong partial starters, and Horton [4] called these strong permutations and used them
in the construction of strong starters. A strong complete mapping can be seen as a
solution to the modulo n-queen problem which is also called toroidal n-queen problem
by Rivin et al. [14].
In this paper, we focus on the counting problems of complete mappings of various

closed structures. Instead of Jnding the actual numbers of complete mappings, we focus
on the hardness of the counting problems in terms of complexity classes, in particular
the #P-classes, and present some of our Jndings here.

(1) The counting problem of complete mappings of a closed structure is #P-complete.
(2) The counting problem of complete mappings of a closed structure with an identity

is also #P-complete.
(3) The counting problem of complete mappings of a closed structure with a left-

identity and left-cancellation law is still #P-complete.
(4) The counting problem of complete mappings of a cyclic group is beyond the

#P-class.
(5) The counting problem of complete mappings of an abelian group is also beyond

the #P-class.
(6) The counting problems of the n-queen problems and the toroidal n-queen problems

are both beyond the #P-class.

2. Variants of complete mappings

De�nition 1. Let G be a Jnite set and + be a function from G × G to G.

(1) Then (G;+) is called a closed structure.
(2) If for any x; y∈G, there exist unique z and w such that z + x = x + w = y, then

(G;+) is called a quasigroup.
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(3) If (G;+) is a quasigroup and there exists an e∈G such that ∀x∈G; e+x=x+e=x,
then (G;+) is called a loop.

(4) If (G;+) is a loop and ∀x; y; z ∈G, we have (x+y)+ z= x+(y+ z), then (G;+)
is called a group.

De�nition 2. Let (G;+) be a closed structure. A permutation f(x) of G is a complete
mapping if there exists a permutation h(x) of G such that f(x) = x + h(x). We also
call h(x) a transversal of G. A complete mapping (and a transversal) of a quasigroup,
loop, or group can be deJned similarly.

De�nition 3. Let (G;+) be a closed structure. A permutation f(x) of G is a strong
complete mapping if f(x) is both a complete mapping and a transversal of G.

De�nition 4. For a loop or a group (G;+), a complete mapping f(x) is called standard
if f maps the identity 0 of G to 0. We use #(CM(G)) to denote the number of
standard complete mappings and #(SCM(G)) the number of standard strong complete
mappings.

3. Hardness of the counting problems of complete mappings

Let M = {1; 2; 3; : : : ; n} and Perm(M) = {�|� is a permutation of M}. Given an
n × n matrix A, the permanent of A is deJned as

∑
�∈Perm(M)

∏n
i=1 Ai;�(i). In 1979,

Valiant [17] proved that the evaluation of the permanent of an n× n matrix of 0’s and
1’s is #P-complete. We will use this fact to prove our results.

De�nition 5. Let Q be a binary relation.

• Q is polynomially balanced if there exists a polynomial p(x) such that for any
(x; y)∈Q, we have |x|6p(|y|) and |y|6p(|x|).

• Q is polynomial-time decidable if given x,y, we can decide whether (x; y)∈Q in
polynomial time.

De�nition 6.

• #P-class
Let Q be a polynomially balanced, polynomial-time decidable binary relation.
The counting problem associated with Q, denoted by CQ, is the following: Given
x, how many y’s are there such that (x; y)∈Q? (The output is assumed to be
an integer in binary). We denote by #P the class of all counting problems
associated with polynomially balanced polynomial-time decidable binary
relations.

• Z-reduction
Let CP and CQ be two problems in the #P-class. A Z-reduction from CP to CQ

is a pair of polynomial time computable functions (R; S) such that R maps an
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instance x of CP to an instance R(x) of CQ, and S maps CQ(R(x)) back to
CP(x).

• #P-completeness
A counting problem CQ is #P-complete if CQ is in the #P-class and every #P problem
CP can be reduced to CQ.

Valiant deJned #P-completeness using Turing reductions [17]. The deJnition we
adopted here (Z-reduction) was given by ZankSo [18], who used it to prove that
(0,1)-permanent is #P-complete.

Lemma 1. The counting problems of transversals and complete mappings of a closed
structure (G;+) are both in the #P-class.

Proof. (1) Let Q={((G;+); h(x))|(G;+) is a closed structure and h(x) is a transversal
of (G;+)}. It is easy to check that Q is polynomially balanced. Given a permutation
h(x) of G. It can also be checked in polynomial time whether {x + h(x)|x∈G} = G:
Thus Q is polynomial time decidable, and the counting problem of transversals is in
the #P-class.
(2) Let Q = {((G;+); f(x))|(G;+) is a closed structure and f(x) is a complete

mapping of (G;+)}. It is easy to check that Q is polynomially balanced. Given a
permutation f(x) of G, let A = {ai; j} be an n × n matrix such that ai; j = 1 if and
only if i+ j=f(i). Then a transversal h(x) that makes f(x) a complete mapping is a
permutation such that ai;h(i) = 1 for all i. We construct a bipartite graph B= (U; V; E)
where U = {u1; : : : un} and V = {v1; : : : vn} are two sets of nodes, and E ⊂ U × V is a
set of edges deJned as (ui; vj)∈E if ai; j = 1. A perfect matching in a bipartite graph
is a set M ⊂ E of n edges, such that for any two edges (u; v); (u′; v′)∈M , u �= u′

and v �= v′. Thus, the existence problem for a transversal h(x) that makes f(x) a
complete mapping is the same as the existence problem of a perfect matching. Since
it is well-known that the existence of a perfect matching can be decided in O(n3)
[12], the existence problem for h can also be checked in polynomial time. Thus Q is
polynomial time decidable, and the counting problem for complete mappings is in the
#P-class.

Theorem 2. The counting problems for transversals and complete mappings of a
closed structure with identity are both #P-complete.

Proof. For convenience, we deJne CP; CT, and CC.

(1) Let CP be the evaluation problem of the permanent of an n× n matrix of 0’s and
1’s.

(2) Let CT be the counting problem of transversals of a closed structure with
identity.

(3) Let CC be the counting problem of complete mappings of a closed structure with
identity.
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We will Jrst reduce CP to CT by a Z-reduction (R; S). Then with the same (R; S), we
reduce CP to CC.
Given an n × n matrix Ai;j of 0’s and 1’s, we construct R(A) = (G;+) as

follows. Let M = {1; 2; 3; : : : ; n} and G = {0; 1; 2; 3; : : : ; n;
}. For all a; b∈M , we
deJne

(1) a+ b= b if Aa;b = 1,
(2) a+ b=
 if Aa;b = 0,
(3) a+
=
+ a=
,
(4) 
+
=
,
(5) 0 + 0 = 0,
(6) 0 + a= a+ 0 = a,
(7) 0 +
=
+ 0 =
.

By the above deJnition, 0 is the identity of (G;+). By the deJnition of the
permanent (permanent(A) =

∑
�

∏n
i=1 Ai;�(i)), we have that the permanent of A is the

number of all permutations � of M such that Ai;�(i) = 1 for all i∈M . For any per-
mutation � of M , we deJne h� as a transversal of G by h�(0) = 0, h�(
) = 
 and
h�(x) = �(x) for x �= 0;
. For example, given

A=




1 1 0 0

0 1 0 1

1 0 1 1

0 1 0 0




;

we construct G = {0; 1; 2; 3; 4;
} and

(G;+) =

+ 0 1 2 3 4 


0 0 1 2 3 4 


1 1 1 2 
 
 

2 2 
 2 
 4 

3 3 1 
 3 4 

4 4 
 2 
 
 


 
 
 
 
 
 


:
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Take �= (2; 4) (in cycle structure) for example. We construct h� and f�

+ 0 1 2 3 4 


0 1 2 3 4 


1 1 2 
 
 

2 2 
 2 
 

3 3 1 
 4 

4 4 
 
 
 


 
 
 
 
 


;

x �(x) x + h�(x) = f�(x)

0 0 + 0 = 0

1 1 1 + 1 = 1
2 4 2 + 4 = 4
3 3 3 + 3 = 3
4 2 4 + 2 = 2


 
+
=


:

Given a transversal h(x) of R(A) = (G;+), it is easy to check that h(0) = 0 and
h(
) =
. If � is a permutation of M such that Ai;�(i) = 1 (∀i∈M) then there exists
a unique transversal h of G such that h = h�. Conversely, if h(x) is a transversal of
G, then there exists a unique permutation � of M with Ai;�(i) = 1 (∀i∈M) such that
h = h�. Thus the permanent of A equals the number of transversals of (G;+). Let S
simply be the identity function. It is easy to verify that both R and S are polynomial
time computable. We thus complete the Z-reduction (R; S) from CP to CT.
Furthermore, given a matrix A and R(A) = (G;+), we have the following

properties:

(1) For any complete mapping f of R(A)= (G;+), we have f(0)=0 and f(
)=
.
(2) Every complete mapping f(x) of R(A) = (G;+) is also its own transversal. That

is, f(x) = x + f(x). The same is true with transversals.

Therefore the number of transversals of (G;+) is the same as the number of complete
mappings of (G;+). Using the same Z-reduction (R; S), we can also reduce CP to
CC.

Corollary 2.1. The counting problems of transversals and complete mappings of a
closed structure are both #P-complete.

Theorem 3. The counting problems of transversals and complete mappings of a closed
structure with a left-identity and the left-cancellation law are both #P-complete.

Proof. For convenience, we deJne CP, CT, CT1, CC, and CC1.

(1) Let CP be the problem evaluating the permanent of an n × n matrix of 0’s and
1’s.

(2) Let CT be the counting problem of transversals of a closed structure with left-
cancellation law.
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(3) Let CT1 be the counting problem of transversals of a closed structure with left-
cancellation law and a left-identity.

(4) Let CC be the counting problem of complete mappings of a closed structure with
left-cancellation law.

(5) Let CC1 be the counting problem of complete mappings of a closed structure with
left-cancellation law and a left-identity.

We will Jrst construct a Z-reduction (R; S) and use it to both reduce CP to CT and
from CP to CC. We will then construct a (R′; S ′) to reduce CP to both CT1 and CC1.
Let Ai;j be an n × n matrix of 0’s and 1’s. We assume that the number of 1’s in

each row or column of A is not n. (Otherwise, we can construct an (n+ 1)× (n+ 1)
matrix Bi;j where Bi;j=Ai;j, Bi;n+1 =Bn+1; j=0; and Bn+1; n+1 =1 for 16 i; j6 n. Since
the permanent of B equals the permanent of A, B will satisfy our assumption.) We
take G = {1; 2; 3; : : : ; 2n}, and construct R(A) = (G;⊕) deJned below. Let a; b∈M =
{1; 2; 3; : : : ; n} and + be the addition of natural number. We deJne

(1) a⊕ b= b; a⊕ (n+ b) = (n+ b) if Aa;b = 1,
(2) a⊕ b= (n+ b); a⊕ (n+ b) = b if Aa;b = 0,
(3) (n+ a)⊕ b= (a+ 1)(mod n) (here we take nmod n to be n), and
(4) (n+ a)⊕ (n+ b) = (n+ b) for a; b∈{1; 2; 3; : : : ; n}:

For example, given

A=




1 1 0 0

0 1 0 1

1 0 1 1

0 1 0 0




;

we construct G = {1; 2; 3; 4; 5; 6; 7; 8}, and

(G;⊕) =

⊕ 1 2 3 4 5 6 7 8

1 1 2 7 8 5 6 3 4
2 5 2 7 4 1 6 3 8
3 1 6 3 4 5 2 7 8
4 5 2 7 8 1 6 3 4

5 2 3 4 1 5 6 7 8
6 2 3 4 1 5 6 7 8
7 2 3 4 1 5 6 7 8
8 2 3 4 1 5 6 7 8

:
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Then (G;⊕) satisJes the left-cancellation law. For convenience, we split the additive
table into four parts UL;UR;DL;DR, where

UL=M ×M;

UR=M × (n+M);

DL= (n+M)×M and

DR= (n+M)× (n+M):

Let L= UL ∪ DL; R= UR ∪ DR; U = UL ∪ UR and D = DL ∪ DR.

⊕ M n+M

M UL UR

n+M DL DR

⊕ M
∣∣∣∣ n+M

M U

n+M D

⊕ M n+M

M L R

n+M

Because (G;⊕) has left-cancellation law and x⊕h(x)=f(x), the number of transversals
is the same as the number of complete mappings. Considering a complete mapping f(x)
such that x⊕h(x)=f(x), we deJne place(f(x))=(x; h(x)). Finding a complete mapping
f(x) is Jnding the values of place(1); place(2); place(3); : : : ; place(2n) such that the
function h(x) (deJned as h(x) = y if place(z) = (x; y) for some z) is a well-deJned
permutation. For example,

⊕ 1 2 3 4 5 6 7 8 x ⊕ h(x) = f(x) place(f(x)) = (x; h(x))

1 2 7 8 5 6 3 4 1⊕ 1 = 1 place(1) = (1; 1)
2 5 2 7 1 6 3 8 2⊕ 4 = 4 place(4) = (2; 4)
3 1 6 4 5 2 7 8 3⊕ 3 = 3 place(3) = (3; 3)
4 5 7 8 1 6 3 4 4⊕ 2 = 2 place(2) = (4; 2)

5 2 3 4 1 6 7 8 5⊕ 5 = 5 place(5) = (5; 5)
6 2 3 4 1 5 7 8 6⊕ 6 = 6 place(6) = (6; 6)
7 2 3 4 1 5 6 8 7⊕ 7 = 7 place(7) = (7; 7)
8 2 3 4 1 5 6 7 8⊕ 8 = 8 place(8) = (8; 8)

:

We claim that

∀m∈M place(m)∈L and

∀m∈M place(n+ m)∈R:
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The reason is as follows. Let m∈M .

(1) place(m)∈R ⇒ place(m)∈UR.
(2) place(n+ m)∈L ⇒ place(n+ m)∈UL.
(3) place(m)∈UL ⇒ place((m+ 1)mod n)∈U .
(4) place(m)∈UR ⇒ place(n+ m)∈UL ⇒ place((m+ 1)mod n)∈U .
(5) place(m)∈U ⇒ place((m+ 1)mod n)∈U (By 3 and 4.)

place(m)∈R

⇒1 place(m)∈UR

⇒2 place(m+ n)∈UL

⇒3 place((m+ 1)mod n)∈U

⇒4 place((m+ 2)mod n)∈U

⇒5 place((m+ 3)mod n)∈U

⇒5 : : :

⇒5 place((m+ n)mod n)

=place(m)∈U

place(m+ n)∈L

⇒2 place(m+ n)∈UL

⇒4 place((m+ 1)mod n)∈U

⇒5 place((m+ 2)mod n)∈U

⇒5 place((m+ 3)mod n)∈U

⇒5 : : :

⇒5 place((m+ n)mod n)

=place(m)∈U

Now if place(m)∈R for some m, then by the above arguments, all the n+1 elements
in the set {place(m); place((m+1)mod n); : : : ; place((m+n−1)mod n); place(m+n)}
will be in U . Since h is a permutation, |h(M)|=n and there should be only n elements
x∈G such that place(x)∈U . Thus place(m) cannot be in R. By the same reasoning,
place(m+ n) is not in L. Therefore place(m)∈L and place(m+ n)∈R.
As a consequence, we have the following results:

(1) place(m)∈UL ⇒ place((m+ 1)mod n)∈UL.
(2) place(m)∈DL ⇒ place((m+ 1)mod n)∈DL.

This implies that either place(m)∈UL for all m∈M or place(m)∈DL for all m∈M .
The number of transversals of G is, therefore, permanent(A)×n!+n!×permanent(A)=
2 × n! × permanent(A). Let S(y) = y=(2 × n!). It is easy to verify that both R and S
are polynomial time computable. We complete the Z-reduction (R; S) from CP to CT.
Since the number of transversals of G is the same as the number of complete mappings
of complete mappings of G, (R; S) is also a Z-reduction from CP to CC.
We now construct R′(A)= (G′;⊗) as follows. Let G′ = {0}∪G; m∈M , and a∈G.

DeJne

(1) a⊗ m= a⊕ ((m− 1)mod n).
(2) a⊗ (n+ m) = a⊕ (n+ m).
(3) 0⊗ x = x and x ⊗ 0 = 0 for all x∈G′.
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For example, let

(G′;⊗) =

⊗ 2 3 4 1 0 5 6 7 8

1 1 2 7 8 0 5 6 3 4
2 5 2 7 4 0 1 6 3 8
3 1 6 3 4 0 5 2 7 8
4 5 2 7 8 0 1 6 3 4

0 2 3 4 1 0 5 6 7 8

5 2 3 4 1 0 5 6 7 8
6 2 3 4 1 0 5 6 7 8
7 2 3 4 1 0 5 6 7 8
8 2 3 4 1 0 5 6 7 8

:

Then (G′;⊗) is a closed structure with left-identity and left-cancellation law. By a
deduction similar to the previous case, we can show that the number of transversals of
G′ is 2× (n+1)!×permanent(A). Let S ′(y)=y=(2× (n+1)!). It is easy to verify that
both R′ and S ′ are polynomial time computable. Therefore (R′; S ′) is a Z-reduction
from CP to CT1. Note that (R′; S ′) is also a Z-reduction from CP to CC1, we thus
complete the proof.

We now turn our attention to some problems that are beyond the #P class. We Jrst
present a lemma that establishes a relationship (an upper-bound) between the number
of solutions for a counting problem and the size of the input.

Lemma 4. Let Q be a p(|x|)-polynomially balanced, polynomial-time decidable binary
relation. Given x, the number CQ(x) of y′s such that (x; y)∈Q is less than or equals
to 2p(|x|). Furthermore, the length of CQ(x) is O(p(|x|)).

Proof. We assume that x, y, and the number CQ(x) are represented as integers in
binary. Since Q is p(|x|)-polynomially balanced, for any y, (x; y)∈Q we have |y|6
p(|x|). Therefore CQ(x) is less then or equals to 2p(|x|), and the output length of
CQ(x) is O(p(|x|)).

Theorem 5. The counting problem of (strong) complete mappings for cyclic groups
Zn is beyond the #P-class.

Proof. Recall that in DeJnition 4, we let #(CM(G)) denote the number of standard
complete mappings of a group G, and #(SCM(G)) denote the number of standard strong
complete mappings of a group G. Let p be a prime, and n be pm for some nature
number m. Hsiang et al. [16] showed that #(CM(Zn))¿ #(SCM(Zn))¿pn=p=n. If we
take n as the input (with length t=log (n)), then the output length is V(2t log (p)=p−t).
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By Lemma 4, the counting problems of (strong) complete mappings for cyclic groups
Zn are not #P problems.

We should remark that at the Jrst glance Theorem 5 seems to contradict Theorem 3.
This is not the case because in Theorem 3 the entire structure needs to be considered
as the input (which may be of size n2) while in Theorem 5, the input size is only
log(n) (the number of bits needed to encode n). Theorem 5 gives rise to another set
of results concerning the n-queen problems.

De�nition 7 (n-queen problem). Let Zn = 0; 1; 2; : : : ; n − 1. A solution of the n-queen
problem is a permutation f(x) from Zn to Zn such that ∀i �=j∈Zn i+f(i) �= j+f(j) and
∀i �=j∈Zn − i + f(i) �= −j + f(j) under the natural number addition. We use Q(n) to
denote the number of solutions of the n-queen problem.

Considering a modular chessboard, i.e. chessboards where the diagonals continue
on the other side, there is another variant of the n-queen problem called the modular
n-queen problem. The concept of modular chessboards were introduced by PSolya [13].
There are di7erent names for the modular n-queen problem such as the toroidal n-queen
problem [14], which we adopt here, or the n-super-queen problem [8].

De�nition 8 (toroidal n-queen problem). A solution of the toroidal n-queen problem is
a permutation f(x) from Zn to Zn such that (under the cyclic group (Zn;+)), x+f(x)
and −x+f(x) are both permutations. We use TQ(n) to denote the number of solutions
of the toroidal n-queen problem.

Lemma 6. Given a cyclic group Zn,

(1) a solution f(x) to the toroidal n-queen problem is a standard strong complete
mapping if and only if f(0) = 0,

(2) TQ(n) = n× #(SCM(Zn)),
(3) #(SCM(Zn))6TQ(n)6Q(n).

By the Theorem 5 and the Lemma 6, we have the following corollary.

Corollary 6.1. The counting problems of the n-queen and the toroidal n-queen prob-
lem are both beyond the #P-class.

Proof. Because (the number of solutions of n-queen) ¿ (the number of solutions of
the toroidal n-queen problem) ¿ (the number of standard strong complete mappings
of cyclic group Zn), and the input lengthes of three problems are all log (n) size, the
counting problems of the (toroidal) n-queen problem are both beyond the #P-class.

Theorem 7. The counting problem of complete mappings for <nite abelian groups G
is beyond the #P-class.

Proof. By the fundamental theorem of Jnite abelian groups, every Jnite abelian group
G is the direct product of cyclic groups of prime power order. We can take G as
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Table 1

Structure CS QG LP G AG CG

Closed
√ √ √ √ √ √ √ √

Left-cancellation
√ √ √ √ √ √

Cancellation
√ √ √ √ √

Left-identity
√ √ √ √ √ √

Identity
√ √ √ √ √

Association
√ √ √

Commutation
√ √

Cyclic
√

#P-complete Yes Yes Yes ? ? ? No No
#P-complete? (conjecture) Yes Yes No

Note: CS: closed structure, QG: quasigroup, LP: loop, G: group, AG: abelian group, and CG: cyclic
groups.

G = Zp,1
1
× Zp,2

2
× Zp,3

3
× : : :× Zp,k

k
where p16p26p36 : : :6pk are primes and if

i6 j; pi = pj then ,i6 ,j. So we can use (p1; ,1; p2; ,2; p3; ,3; : : : ; pk ; ,k) to encode
the abelian group G. Let n= |G|. We have ,i6 log2 n; k6 log2 n, and p6 n. So the
space required to encode G is less than (log2 n + log2 (log2 n)) × k6 2 × (log2 n)

2 =
O((log2 n)

2). So we can encode any Jnite abelian group G using O((log2 |G|)2) space.
Let t=log (n)2. Since cyclic groups are abelian, by the proof of Theorem 5 the output
length is V(2

√
t log (p)=p − √

t). By Lemma 4, the counting problem of complete
mappings for abelian groups is not in the #P-class.

4. Discussion

We summarize the above theorems in Table 1. We conjecture that the counting
problem of complete mappings for a group is beyond the #P-class. This is because the
growth rate of the number of groups with respect to the size of groups is very small
[1] (A000001) (open the url in [1], and see the sequence numbered A000001). And we
think there may be an encoding method to describe a group with a very short length.
However we guess that for a loop [1] (A057997) or a quasigroup [1] (A002860) the
counting problems of complete mappings are both #P-complete.
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