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Bounds on the Undetected Error Probabilities of 
Linear Codes for Both Error Correction 

and Detection 
MAO-CHAO LIN 

Abstract -The (n, k ,  d 2 2t + 1) binary linear codes are studied, which 
are used for correcting error patterns of weight at most t and detecting 
other error patterns over a binary symmetric channel. In particular, for 
t = 1, it is shown that there exists one code whose probability of unde- 
tected errors is upper bounded by (n + 1]2"-k - n ] - l  when used on a 
binary symmetric channel with transition probability less than 2 / n .  

I .  INTRODUCTION 

In pure ARQ systems, linear codes are used solely for detect- 
ing errors. Suppose that we apply linear codes to a binary 
symmetric channel (BSC) with transition probability p. It 11, pp. 
78-79] has been proved that for each p with 0 I p I 1 ,  there 
exists an ( n , k )  binary linear code whose probability of unde- 
tected errors (PUDE) is upper bounded by 2 - ( n - k ) .  Hamming 
codes and double error correcting primitive BCH codes [2 ] ,  [3 ]  
have been proved to satisfy the inequality if the transition 
probability p is no greater than 1 / 2 .  

Pure ARQ systems have the problem of low throughput if the 
transition probability in the BSC is high. Therefore, in hybrid 
ARQ systems [ l ]  especially in type-I hybrid ARQ systems, linear 
codes are used for correcting some low weight error patterns 
and detecting many other error patterns. Therefore, it is inter- 
esting to study the probability of undetected errors for linear 
codes that are used for both error correction and error detec- 
tion over the BSC. In this correspondence, our study is divided 
into two parts. In the first part, we study the class of ( n ,  k ,  d 2 3) 
systematic linear codes that can be used for correcting every 
single error and detecting other error patterns. We show that 
there exists one code whose PUDE is upper bounded by ( n  + 1) 
. [ 2 n - k  - n]-l  when the transition probability is less than 2 / n .  
In the second part, we study the ( n , k )  systematic linear codes 
that are used for correcting some low weight-error patterns and 
detecting other error patterns. Suppose that 1 - R > H(2A).  We 
show that there exists an ( n ,  Rn,d 2 2An + 1) linear code whose 
PUDE is closely upper bounded by 2 - [ ' - R - H ' A ) ] n  as n ap- 
proaches infinity and the transition probability is less than A (if 
it is used to correct all the error patterns of weight at most An 
and to detect other error patterns). 
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11. CODES FOR ERROR DETECTION A N D  
SINGLE-ERROR CORRECTION 

Consider the ensemble r of all systematic ( n ,  k ,  d 2 3) binary 
linear codes. The generator matrix of an ( n ,  k )  systematic linear 
code V is of the form G = [ I  PI, where I is the k X k identity 
matrix and P is some k ( n  - k )  matrix. A necessary and suffi- 
cient condition for V to have minimum distance of at least 3 is 
that no two rows of P are identical and each row in P must 
have weight of at least 2. Therefore, the cardinality of r is 

iri = [ 2" - k  - 1 - ( - k ) ]  . [ 2" - k  - 1 - (. - k )  - 11 

. . . [2"-k - 1 - ( n  - k)  - ( k  - l)] 

[ 2" - - 1 - ( n - k )] ! 
[ 2 n 4  - 1 - n ] !  (1) - - . 

We denote the codes in r by VI, V , ; .  .,Tr,. Let A l . ,  be the 
number of weight-w codewords in v, where I = 1,2; . ., Irl, and 
w = 0,3,4,. . . , n. Suppose v is used to correct every single error 
and detect other error patterns over a BSC with transition 
probability p ,  its PUDE is 

n 

JTEIv) = c [(w + l ) . A , , , + I  + A I , ,  + ( n  - w + l ) . ~ , , w - l ]  

.PW(1  - p ) " -  W .  (2) 

w = 2  

If the probability of choosing each code in r is equally likely, 
the average PUDE over all the codes in r is 

Note that each nonzero n-tuple appears in at most Ir'l codes in 
r, where 

ir'i I [2n-k - I - ( ~  - k ) ]  - I - ( ~  - k ) - i ]  

. . . [2n-k - 1 - ( n  - k )  - ( k  -2)] 

12n-k - 1 - ( n  - k ) l  ! 
(4) 
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with codes in rD, then 

f m  

= 2 c ,e (;)(:)(;::) Combining (4)-(7) we have 
w = D m = O i = O  n + l  

( 1  - p ) n  - w  - m  + 2 i  
. P W  + m  - 2r  (8) 

ir'i 
iri P ( E )  I - ( n + l )  I 2"-k. 

It follows from (8) that, for each p ,  there exists a code in r 
whose PUDE is at most n + 1 / 2 " - k  - n. Note that the term 
~"'(1- P I " - "  is an increasing function of p if p I w / n .  Hence, 
for each code y in I', P ( E I y )  is an increasing function of p if 
p I 2 / n .  Therefore, we see that there exists at least one code in 
r such that its PUDE is upper bounded by 

111. CODES FOR ERROR DETECTION A N D  
MULTIPLE-ERROR CORREC~ION 

The ensemble of all the systematic ( n ,  k )  linear codes contains 
2 k ( n - k )  distinct codes while at most 

of them contain nonzero codewords of weight less than d .  Thus, 
the ensemble of all the systematic ( n , k , d  2 D )  linear codes rD 
contains 

distinct codes. Let V, be a code in r,, and let A/ , , ,  be the 
number of codewords of weight w in 5, where 1 = 1,2; . ., lrDl. 
Assume D = 2t + 1 .  If V, is used for correcting all the error 
patterns of weight no more than t and detecting other error 
patterns, then its PUDE [4] is 

n I m i n ( t - i , n - w )  

P(EIV,)= c 4 . w  c c 
w = D  i = O  j = O  

If we define as zero for i > n or i < 0, then we can replace 
the index term of min(t - i ,  n - w) in (10) by t - i .  If each code 
in rD is selected equally likely, by taking the average of (10)  over 

(3 

= w = D m = O  5 i (;)E(:::)(:) i = O  

I 

= c (;). 
m = O  

Thus 
I 

lf'l m = O  (2 
~(E) I -  (;)< D - l  . ( 1 4 )  

2 " - k -  ( y )  IrDl m = 0 

i = O  

This shows the existence of a code in rD with PUDE upper 
bounded by (14)  for p I ( t  + l ) /n .  If we take D to be 3, (14) 
does not reduce to (8), since here we use a looser bound in 
estimating the size of the ensemble of codes. Note that the 
requirement of 2"-k  - n > 0 in (8) is a necessary and sufficient 
condition for the existence of ( n , k )  binary linear codes of 
distance of at least 3, while the requirement of 

D - I  

i = O  
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in (14) is only a sufficient condition for the existence of ( n ,  k)  
binary linear codes of distance at least D. From (14), we note 
that if 

New Results on Self-Orthogonal Unequal Error 
Protection Codes 

ZHI CHEN, PINGZHI FAN, AND FAN JIN 

Abstract -A lower bound on the length of binary self-orthogonal 
unequal error protection (UEP) codes is derived, and two design proce- _ .  

is substantially smaller than 2“-& then there exists an ( n ,  k)  
code in r, whose PUDE is closely upper bounded by 

dures for constructing optimal self-orthogonal UEP codes are proposed. 
Using this bound, we comment on some known codes. 

This result agrees with our intuition, since this PUDE is the 
probability of error patterns which belong to i) cosets of 
the standard array for a linear code as p = 1/2. 

Now we want to examine the behavior of PUDE when n 
approaches infinity. Let t = An, k = Rn, where 0 < A < 1/4. 
Then, D - 1 = 2An. It [5] can be shown that 

and 

where H ( A ) =  -Alog,A -(l-A)Iog,(l-A). Thus 

I .  INTRODUCTION 

In data transmission and processing, error-correcting codes 
can provide efficient error protection. But in many applications, 
not all digits are equally important, and errors in more impor- 
tant digits are more serious than those in less important digits. 
Thus, it is appropriate to use codes with unequal error protec- 
tion capability. 

Since such codes were first introduced by Masnick and Wolf 
[l], many results have been achieved [2], [3]. Usually, a decoding 
algorithm for such a code is complicated, so it is necessary to 
design UEP codes which can be implemented easily. Self- 
orthogonal UEP codes are therefore introduced. We first derive 
a lower bound for such codes, and then propose hvo procedures 
for constructing codes that are optimal among the systematic 
self-orthogonal UEP codes. Comparison with known codes [4] is 
also given. 

11. LOWER BOUND FOR SELF-ORTHOGONAL UEP CODES 
2H(A)n 

2(1-R)n -2H(ZA)n ’ 
Definition 1: For a linear [n ,k]  code C over the alphabet 

GF(q), the separation vector S(G) = (S(G),, S(G),; . .,S(G),) 
of length k, with respect to a generator matrix G of C, is 
defined by 

(17) 

If H(2A) < 1 - R, as n approaches infinity, (17) becomes 

(18) S(G) ,  = min(wt(mG)lm E G F ( q ) k , m ,  # O}, i =  1,2;. . ,k.  

Hence, we show that for the ensemble of linear codes of length 
n ,  which are used for correcting all the error patterns of weight 
no more than An and detecting other error patterns, there exists 
at least one code such that its PUDE is upper bounded by 
2-[1-R-H(A)1n as n approaches infinity, if 1 - R > H(2A) and 
p I A .  It is interesting to see that for each transmission of such a 
code, the probability of acceptance by the receiver is 

P ( A )  2 1 - ( ; ) .pyl-p)n-W. 
w = A n + l  

Using the inequality (A.6) in [6], (19) yields 

P( A )  2 1 - (( p/A)’[( 1 - A ) / ( l -  p ) ] I - * ] ” ,  for p < A .  
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The parameters of such a code are usually written as [n ,  k, S(G)] 
and, in general, depend on the particular choice of the genera- 
tor matrix G as well as on C. 

Given a binary [n,  k] code, if the parity check rules are chosen 
such that no two codeword digits appear together in more than 
one parity-check equation, then the code is said to be self- 
orthogonal (in this correspondence, we examine self-orthogonal 
codes in this sense, see also Massey [5]). In addition, if the 
message digit m, in such a code is checked by at least J ,  parity 
check digits, then the component s, of the separation vector of 
the code is at least J ,  +l. For a self-orthogonal UEP code, the 
message digit m, can be protected against LJ, /2] errors with the 
majority logic decoding algorithm. 

In many practical applications, it is more convenient to use 
the following definition to describe UEP codes. 

Definition 2: R = (rl  , r , , .  . . , rr and D = (d 1, d,, . . . , d,) are 
called the code rate vector and distance vector respectively, 
where d l ; . . ,d l  are distinct, and (d,;. . ,d,}=(S(G),=s,lj= 
1,2;..,k). Let k ,  be the number of message digits with the 
same d,, and let r, = k, / n  be the part code rate, for i = 
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