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ABSTRACT 
In this paper, feature extraction methods based on frequency. 
warped Minimum Variance Distortionless Response (MVDR) 
spectrum estimation are analyzed and tested. The 
effectiveness of the conventional FFT-based Mel-Frequency 
Cepstrum Coefficients (MFCCs) and the MVDR-based 
features are carefully compared. Two normalization 
techniques are further applied to improve the robusmess of the 
features: the widely used cepstral normalization (CN), and 
newly proposed progressive histogram equalization (PHEQ). 
Extensive experiments with respect to the AURORA2 
database were performed. The results indicated that both the 
MVDR-based features and the normalization processes are 
very helpful. 

1. INTRODUCTION 
The blueprint for the various applications of automatic speech 
recognition (ASR) technologies in the future has been 
extensively laid out and its realization has been highly 
anticipated by many people [I]. But the recognition accuracy 
always plays the most dominating role when the real-world 
applications are considered. It is well known that the 
recognition accuracy of ASR systems is very often seriously 
degraded by the mismatch between the acoustic conditions for 
the training and testing environments and, hence, the 
robustness for ASR technologies with respect to the changing 
acoustic environment has always been a key issue in real 
applications. In this paper we discuss the integration of the 
Minimum Variance Distortionless Response (MVDR)-based 
speech feature extraction with the feature normalization 
techniques which can improve the recognition accuracy and 
the robustness ofthe features. 

Mel-Frequency Cepstral Coefficients (MFCC) derived 
from the F I T  spectrum have shown consistently satisfactory 
performance over a wide variety of application tasks, though 
the optimality for a specific application task is not guaranteed. 
The MVDR spectral estimator proposed by Capon [Z] was 
shown by Lacoss [3] to provide a minimum variance unbiased 
estimate of the signal spectral components. MVDR spectrum 
estimation was previously proposed by Murthi and Rao [4][5] 
as a spectral envelope estimation technique, and has been 
applied to speech recognition by Dharanipragada and Rao 
[6][71. To improve the perceptual resolution of the MVDR 
spectral estimate further, it was then proposed to estimate the 
all-pole model of a speech signal segment on a warped short- 
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term frequency scale. such as the Bark scale or the Me1 scale 
[8][9]. The estimated spectrum gives higher resolution to the 
low frequency regions and thus mimics the frequency 
resolution of the human auditory system [8][9]. In this paper, 
we apply the MVDR spectrum estimation in the feature 
extraction to alleviate the effect of additive noise, and then 
process the MVDR-based features with two feature 
normalization techniques: the widely used cepstral 
normalization (CN) and the newly proposed progressive 
histogram equalization (PHEQ)[15][16], to reduce the 
environmental mismatch and to obtain improved recognition 
accuracy. Experimental results with respect to the AURORA2 
database verified that better performance in the adverse 
circumstances can be actually achieved. 

The remainder of this paper consists of 4 sections. MVDR- 
based feature extraction, frequency-warped signal processing, 
and the feature normalization methods (i.e., CN and PHEQ) 
are very briefly summarized in section 2, the experimental 
conditions are described in section 3, and extensive 
experimental results are presented in sections 4. Section 5 
gives the concluding remarks. 

2. MS'DR-BASED FEATURE EXTRACTION 
AND NORMALIZATION 

Here we briefly summarize the algorithms of the feature 
extraction and normalization schemes discussed in this paper. 

2.1. MVDR Spectrum Estimation 

Consider an FIR filter with impulse response coefficients 
(h(k), 0 s k i M }, where M is referred to as the order of 
this filter, and of the spectral estimator based on this filter. If 
we pass a speech frame (x(n), 0 5 n i N - 1 } through this tilter, 
the output y(n) is given by 

y(n)=CCloh'(k)x(n-k) -hHx(n), 
where 

I(")=[ x(n)x(n-I) ... n(n-M)] and h(n)=[ h(0) h(1) ... h(M)] (1) 
are respectively the vector representing the input signal and 
the filter coefficients, and " H  indicates the Hermitian of a 
matrix. The filter can be designed in such a way that at a 
specified normalized frequency C (-0.5 if, < 0.5) the 
frequency response is unity, that is, 

where e(f,) E [ I ... ei'(irrJ]T Assume that the 
input signal x(n) is zero-mean, E[x(n)] = 0, the variance of the 
output signal y(n) is then 

h"e'(f,) = 1, (2) 
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U: =Edy(nl']=E[hHx(n)xH(n)h]=hHR,(n)h, (3) 
where R,(n) is the (M+I)-by-(M+l) sample autocorrelation 
matrix of the signal segment x(n). 

By minimizing the output signal variance in equation (3) 
subject to the distortionless response constraint in equation (2), 
we obtain an FIR filter with which the signal component at r; 
is undistorted and the other frequencies are attenuated as much 
as possible, or 

min[h"R,(n)h] sublecr I D  h H e * ( f , ) = l ,  

and the solution to this optimization problem was shown to he 
(4) 

[31 

15) 
\- , 

where h;(n) is the filter that gives unity response for the 
frequency component f, and dependent on both the input data 
and the specified frequency f. The MVDR spectrum estimated 
at a specified normalized frequency r; can actually he 
evaluated directly [12][13], 

(6) 
pmR(f,)= eT(ft)R:(n) e'(<)' 

Thus it is not necessary to find hi@) explicitly in equation (5) 
to estimate the signal spectrum at any frequency of interest. 
We can also move the normalized frequency f in the range 
of-0.5 to 0.5 freely to sample the signal spectrum. In this way, 
we have "distortionless response" at the frequency of interest f; 
while minimum leakage power components from all other 
frequencies. 

2.2. Frequency-Warped Signal Processing 

In frequency-warped signal processing techniques, the 
warping process can he achieved by replacing the unit-delay 
element by a firsturder all-pass filter with a transfer function 
[ l O l [ I  ll[SIPl 

(7) 
whose phase response is 

G=wgIo(e-~)l = 0 + 2.arct iml~-s in(w) / (  1 -.l.ws(o))], (8) 
which determines the frequency mapping relations, where A is 
a design parameter, o is the angular frequency 
( - E  s o = 2 n f, < x 1, and 6 is the warped angular frequency. 
The frequency mapping functions for different values of the 
parameter A are plotted in Fig I. The wnversion from the 
conventional linear frequency f ( 0  s f <  4k, k) to the well- 
known Mel-frequency fm., is given by 

1 

D(z) = (2-' - A) / (I - W'),  

fd = 2595 .log,o(l + f /  700). (9) 

For 8-kHz sampling frequency, the optimal value of h for 
the frequency mapping to approximate the Mel-scale warping, 
in terms o f  total squared-error sampled at frequencies spaced 
I-Hz apart from 0 to 4k Hz, is about 0.362436 (?,'), However, 
as will be shown later on in the experiments below, other 
values of A may give better recognition performance. 

2.3. Warped MVDR Feature Extraction 

The warped-MVDR spectrum estimation performed in this 
research is based on the warped correlation terms (in the 
warped autocorrelation matrix) obtained using the system 
shown in Fig 2 [IO]. The warped autocorrelation matrix R, 
thus obtained is Toeplitz and practicalty invertible, and then 
the warped linear prediction (LP) cdefficients,%,'s, can be 

solved using the Levinson-Durbin algorithm 
The warped MVDR spectrum can he wmputed directly as 

where the intermediate parameter sequence ,,(k) is defined as 

~ ~ ~ ~ L ( M + l - k - 2 i ) a . , i a . , i . , . k = 0 , 1 ~ . . , M .  (I1) 
)I(k)= pM 

v ' ( - k ) ,  k = -M,-M+1, ..., -1. 

are the coefficients of the M-th 

order prediction error filter; PM is the expected prediction-error 
powerofthe filter [14]. 

We can then apply the Mel-filtering and DCT steps to 
calculate the feahlrc parameters just as for MFCCs. The 
frequencies we chose to estimate the MVDR power spectrum 
arc uniformly distributed on the Mel-frequency axis, hut 
converted back to the linear frequency, over the usable 
frequency range (64 - 4k Hz). The total number of spectrum 
samples is determined by two parameters: ( I )  the number of 
channels in the filterbank, and (2) the number of samples in 
each channel. The usable signal frequency range and the above 
two parameters determine the actual locations of these sample 
points. Because the MVDR spectrum samples are taken 
uniformly in the Mel-frequency domain, the filters used in the 
filterhark to obtain the feature parameters are designed to be 
half-overlapped triangular filters with equal width, as shown in 
Fig 3. It is in fact a "Mel-scaled filterhank". We take 10 
samples per channel in the 23-channel filterhank, so there are 
120 sample points in total which are comparable in number to 
the 256-point FFT spectrum samples (126 points in the usable 
frequency range). 

2.4. Feature Normalization Techniques 

The cepstral normalization ((3) can he expressed as 

I 
and aM.d  = I), a m ,  I ...,aM,M 

e,  =z;'"(c, -pJ 
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Fig 3. Filterbanks (a) for conventional FFT spectrum, 
(b) for basic and warped MVDR spectra 

where E, is the covariance matrix of the 12-dimensional 

vector of the cepstral coefficients, either FFT- or MVDR- 
based, and p, is the mean vector. We didn’t apply CN on the 
log energy component in the feature vector to get better 
recognition results. 

Progressive Histogram Equalization (PHEQ) was recently 
discussed extensively [15, 161. Histogram equalization (HEQ) 
has been proved to provide significant improvements in speech 
recognition under noisy environment, in which the cumulative 
distribution function of the feature parameters, usually 
evaluated from an utterance, is normalized to a reference 
distribution. Instead, PHEQ performs the histogram 
equalization (HEQ) over a reference interval progressively 
moving with the frame being considered. Based on the 
assumption that the additive noise is time-varying, 
equalization with respect to some short interval near the 
present frame makes bener sense than to a whole utterance. 
For a feature parameter of a noisy speech frame located at time 
f the corresponding reference interval for feature 
normalization can be defined to be between time indices sand 
e, where s < t S e  . So a total of n = e-s+l temporally 
neighboring feature parameters are collected from the 
reference interval, on which histogram equalization (HEQ) can 
then be performed. The length of the reference interval, n, can 
be carefully chosen [15][16]. In this research, the reference 
distribution is assumed to be the standard normal. 

There are also advantages of PHEQ over the utterance- 
wise feature normalization approaches in terms of real-time 
processing requirements. For the utterance-wise approach, the 
processing can be performed only when the complete utterance 
is received. With the progressive approach, the processing can 
be in parallel with the waveform read-in and feature extraction 
processes. The time delay can thus he substantially reduced. 

3. EXPERIMENTAL CONDITIONS 
The experiments reponed in this paper were conducted on the 
database AURORA2 Ten different types of noise, as 
representatives of real-world noise, were included in this 
database. We use both the clean training and multi-condition 
training data sets to construct two sets of HMM models, All 
the three sets of testing conditions in AURORA2 task were 
tested, i.e., set A (subway, babble, car, and exhibition noise), 
set B (restaurant, street, airport, and train station noise), and 

set C (subway and street noise, with channel effect). Each of 
the two training data sets in the AURORA2 database consists 
of 8440 utterances of English connected digit strings. The 
MFCC feature extraction follows the W1007 front-end, which 
gives 14-coefficient (CO412 and log energy) feature vector 
1171. Our MVDR-based 13-dimensional feature vectors consist 
of the 12 MVDR-based cepstral coefficients (CI to C12) and 
the log energy, which were then used to obtain the delta and 
delta-delta components to form the 39-dimensional features 
for the following recognition tasks. For the MVDR spectrum 
estimation, M = 40 and N = 200 are defined pryiously in sec. 
2.1 and in equation ( I ) .  

4. EXPERIMENTAL RESULTS 
The experimental results are presented in the following 
sections. 

4.1. Baseline Experiments 

In Table 1, the word accuracies with FFT-based MFCCs are 
taken as the baseline and the results are listed in the first row. 
The following rows are for the MVDR features. A = 0 is for 
original MVDR, while other values of X are for frequency- 
warped cases. The results in Table I show that in each column 
a good choice of h for MVDR-based features can actually 
offer better results than the baseline FFT-based MFCCs, when 
X i  0.5 

I X=0.91 268 29.9 33.1 3.0 1 63.1 59.0 5.8 596 
rable 1. Word accuracies for baseline FIT-based MFCCs 

and MVDR-based features 

4.2. Applying Cepstral Normalization 

The results of applying CN on the FFT-based MFCCs and 
MVDR-based features are shown in Table 2. As compared to 
those shown in Table 1, we can see CN offers significant 
improvements for all cases, and again in each column, a good 
choice of A for MVDR-based features can provide better 
accuracy than the baseline FFT-based MFCCs. 

4.3. Progressive Histogram Equalization (PHEQ) 

Here PHEQ was used for feature normalization to replace CN 
as in sec. 4.2, and the corresponding results are shown in 
Table 3. The length of the reference interval in PHEQ, i.e. n in 
sec. 2.4, is empirically chosen to be 100, which roughly 
corresponds to a speech segment of one-second time span. 
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Comparing the data in Table 3 to those in Table 2, for 
clean-training very significant improvements are evident in 
each case. But the improvements become relatively limited for 
multi-condition-training. Apparently PHEQ is a very powerful 
feature normalization technique, not only for FFT-based 
MFCCs, but equally applicable for MVDR-based features as 
well. Also it is again apparent that with PHEQ, in most cases a 
good choice of h for MVDR features can offer better results 
than FFT-based MFCCs, although here the improvements 
become less significant. It seems that in the cases tested here 
with a powerful normalization process, the choice of a good 
feature parameter becomes less important. Note that for the 
mulfi-condition-training case, regardless of FFT-based 
MFCCs or MVDR-based features, the improvements that 
PHEQ can offer (Table 3) as compared to CN (Table 2) are 
relatively limited, except for test set C. This may be explained 
as follows. PHEQ is applied to the cepstrum coefficients to 
alleviate the residual mismatch, and can deal with the channel 
mismatch in test set C efficiently. The goal of applying 
(progressive) histogram equalization is to normalize the 
feature distributions, or to limit the feature dynamics to be 
within some statistical range. With multi-condition trainin& 
the feature distribution may he much more complicated than a 
single standard normal as we assumed here. 

I ”- 174.7 768 733 749 I 893 87.7 868 I 
74.9 773 73.4 89.0 880 867 879 

89.4 881 &69 8815 

Table 2. Word accuracies for cepstral-normalized FFT- 
based MFCCs and MVDR-based features 

89.0 I 

81.4 81.9 820 818 885 876 887 883 
815 81.7 81.6 81.6 87.9 869 879 U6 
& I 1  3.9 m.0 8013 858 846 85.7 853 
775 769 Tis 77.4 827 81.4 825 gu 
703 6% 718 703 761 743 760 755 
55.0 535 55.0 415 I 6a6 57.7 59.5 SSY 

Tables 3. Results of applying PHEQ for FIT-based 
MFCCs and MVDR-based features 

5. CONCLUSIONS 
In this paper, we refine the feature extraction scheme for 
speech recognition by the warped MVDR-based approaches. 
Cepstral normalization (CN) and progressive histogram 
equalization (PHEQ) were further applied to improve the 
robustness of the warped MVDR-based features. The results of 
the experiments showed that the MVDR-based features can 
offer better recognition accuracy than the conventional FFT- 
based MFCCs if a good parameter A can be chosen. 
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