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ABSTRACT

In this paper, feature extraction methods based on frequency-
warped Minimum Variance Distortionless Response (MVDR)
spectrum  estimation are analyzed and tested. The
effectiveness of the conventional FFT-based Mel-Frequency
Cepstrum  Coefficients (MFCCs) and the MVDR-based
featurcs are carefully compared. Two normalization
techniques are further applied to improve the robustness of the
features: the widely used cepstral normalization (CN), and
newly proposed progressive histogram equalization (PHEQ).
Extensive experiments with respect to the AURORA2
database were performed. The results indicated that both the
MVDR-based features and the normalization processes are
very helpful.

1. INTRODUCTION

The blueprint for the various applications of automatic speech
recognition (ASR) technologies in the future has been
extensively laid out and its realization has been highly
anticipated by many people [1]. But the recognition accuracy
always plays the most dominating role when the real-world
applications are considered. 1t is well known that the
recognition accuracy of ASR systems is very often seriousty
degraded by the mismatch between the acoustic conditions for
the ftraining and testing environments and, hence, the
robustness for ASR technologies with respect to the changing
acoustic environment has always been a key issue in real
applications. In this paper we discuss the integration of the
Minimum Variance Distortionless Response (MVDR)-based
speech feature extraction with the feature normalization
techniques which can improve the recognition accuracy and
the robustness of the features.

Mel-Frequency Cepstral Coefficients (MFCC) derived
from the FFT spectrum have shown consistently satisfactory
performance over a wide variety of application tasks, though
the optimality for a specific application task is not guaranteed.
The MVDR spectral estimator proposed by Capon {2] was
shown by Lacoss [3] to provide 2 minimum variance unbiased
estimate of the signal spectral components. MVDR spectrum
estimation was previously proposed by Murthi and Rao [4][5]
as a spectral envelope cstimation technique, and has been
applied to speech recognition by Dharanipragada and Rao
[6](7]- To improve the perceptual resolution of the MVDR
spectral estimate further, it was then proposed to estimate the
all-pole mode! of a speech signal segment on a warped short-
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term frequency scale, such as the Bark scale or the Mel scale
[8][9]. The estimated spectrum gives higher resolution to the
low frequency regions and thus mimics the frequency
resolution of the human auditory system [8][9]. In this paper,
we apply the MVDR spectrum estimation in the feature
extraction to alleviate the effect of additive noise, and then
process the MVDR-based features with two feature
normalization techniques: the widely used cepstrai
normalization {CN) and the newly proposed progressive
histogram equalization (PHEQ)15][i6], to reduce the
environmental mismatch and to obtain improved recognition
aceuracy. Experimental results with respect to the AURORA2
database verified that better performance in the adverse
circumstances can be actually achieved.

The remainder of this paper consists of 4 sections. MVDR-
based feature extraction, frequency-warped signal processing,
and the feature normalization methods (i.e., CN and PHEQ)
are very briefly summarized in section 2, the experimental
conditions are described in section 3, and extensive
experimental results are presented in sections 4. Section 5
gives the concluding remarks.

2. MVDR-BASED FEATURE EXTRACTION
AND NORMALIZATION

Here we briefly summarize the algorithms of the feature
extraction and normalization schemes discussed in this paper.

2.1. MVDR Spectrum Estimation

Consider an FIR filter with impulse response coefficients
{h(&), 0 < k < M}, where M is referred to as the order of
this filter, and of the spectral estimator based on this filter. Tf
we pass a speech frame {x(n),0 <n < N -1} through this filter,
the output y(n) is given by
M
ymy=3 b (ox(n-k) =h"x(n),

where

x(n) =[ x(n) x(n-1) ... x(n-M} ] and h{n) =[ h(0} h(1} .. h(M) ] (1)
are respectively the vector representing the input signal and
the filter coefficients, and “H™ indicates the Hermitian of a
mairix. The filter can be designed in such a way that at a
specified normalized frequency £ (-0.5 <f, < 0.5) the
frequency response is unity, that is,

he'(f;) = 1, @

where e(f) = [ 1e2%% ¢#*h _ M2sO]T Assume that the
input signal x{n) is zero-mean, E[x(n)] = 0, the variance of the
output signal y(n} is then
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o} =Efly(n]’ J=EM"xmx" (n)h]=h*R, (}h, Q)
where R,{n) is the (M+I}-by-(M+1} sample autocorrelation
matrix of the signal segment x(n).

By minimizing the output signal variance in equation (3)
subject to the distortionless response constraint in equation (2),
we obtain an FIR filter with which the signal component at f;
is undistorted and the other frequencies are attenuated as much
as possible, or

mhin[h"Rx(n)h] subject 1o hMe*(f) =1, @
and the solution to this optimization problem was shown to be
(31
R} (me'(f;
h] (n) = T X ( -l) ( l.) s
e (IR (me (F) ®
where hi(n) is the filter that gives unity response for the
frequency component £, and dependent on both the input data
and the specified frequency £i. The MVDR spectrum estimated
at a specified normalized frequency f; can actually be
evaluated directly [12][13],

e 0= Ry ey ©)

Thus it is not necessary to find h(n) explicitly in equation (35)
to estimate the signal spectrum at any frequency of interest.
We can also move the normalized frequency £ in the range
of 0.5 to 0.5 freely to sample the signal spectrum. In this way,
we have “distortionless response” at the frequency of interest £,
while minimum leakage power components from all other
frequencies.

' 2.2, Frequency-Warped Signal Processing

In frequency-warped signal processing techniques, the
warping process ¢an be achieved by replacing the unit-delay
clement by a first-order all-pass filter with a transfer function
[1OI[11][8][9]
D(z)=(z" -0 /{1-2z™"), )
whose phase response is
d=arg[D{e ™)) = w + 2-arctan[A-sin(e) / ( 1- 4-cos(w))], (8)
which determines the frequency mapping relations, where  is
a design parameter, @ is the angular frequency
(-r<w=2nf <x) and & is the warped angular frequency.
The frequency mapping functions for different values of the
parameter A are plotted in Fig 1. The conversion from the
conventional linear frequency f (0<f<4k, Hz) to the well-

known Mel-frequency £, is given by
£, =2595Jog,,(1+ £/ 700). (&)

For 8-kHz sampling frequency, the optimal value of A for
the frequency mapping to approximate the Mel-scale warping,
in terms of total squared-error sampled at frequencies spaced
1-Hz apart from 0 to 4k Hz, is about 0.362436 (3."). However,
as will be shown later on in the experiments below, other
values of ), may give better recognition performance.

2.3. Warped MVDR Feature Extraction

The warped-MVDR spectrum estimation performed in this
research is based on the warped correlation terms (in the
warped autocorrelation matrix) obtained using the system
shown in Fig 2 [10]. The warped autocotrelation matrix R

thus obtained is Toeplitz and practically invertible, and then
the warped linear prediction (LP) cdefﬁcimtg,aM s, can be
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solved using the Levinson-Durbin algorithm,
The warped MVDR spectrum can be computed directly as

S (10)
Zk:—M u(k)e—jz xfk
where the intermediate parameter sequence k) is defined as
R
nk) =4 Py

PM'\JDpr (w) =

T M1k -2, k=01, M, (1D

p-K),
and g, (=1), By ps iy € the coefficients of the M-th

order prediction error filter; Py is the expected prediction-error
power of the filter [14].

We can then apply the Mel-filtering and DCT steps to
calculate the feature parameters just as for MFCCs. The
frequencies we chose to estimate the MVDR power spectrum
are uniformly distributed on the Mel-frequency axis, but
converted back to the linear frequency, over the usable
frequency range (64 ~ 4k Hz). The total number of spectrum
samples is determined by two parameters: (1) the number of
channels in the filterbank, and (2) the number of samples in
each channel. The usable signal frequency range and the above
two parameters determine the actual locations of these sample
points. Because the MVDR specirum samples are taken
uniformly in the Mel-frequency domain, the filters used in the
filterbank to obtain the feature parameters are designed to be
half-overlapped trianguiar filters with equal width, as shown in
Fig 3. It j5s in fact a “Mel-scaled filterbank™, We take 10
samples per channel in the 23-channel filterbank, so there are
120 sample points in total which are comparable in number to
the 256-point FFT spectrum samples (126 points in the usable
frequency range).

2.4, Feature Normalizatien Techrigues

The cepstral normalization {CN) can be expressed as
él = r‘:m (ct - "l'c)
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where x, is the covariance matrix of the i2-dimensional

vector of the cepstral coefficients, either FFT- or MVDR-
based, and p_is the mean vector. We didn’t apply CN on the

log energy component in the feature vector to get better
recognition results.

Progressive Histogram Equalization (PHEQ) was recently
discussed extensively [15, 16]. Histogram equalization (HEQ)
has been proved to provide significant improvements in speech
recognition under noisy environment, in which the cumulative
distribution function of the feature parameters, usually
evaluated from an utterance, is normalized to a reference
distribution. Instead, PHEQ performs the histogram
equalization (HEQ) over a reference interval progressively
moving with the frame being considered. Based on the
assumption that the additive noise is time-varying,
equalization with respect to some short interval near the
present frame makes betier sense than to a2 whole utterance.
For a feature parameter of a noisy speech frame located at time
t, the corresponding reference interval for feature
normalization can be defined to be between time indices s and
¢, where s<t<e . So a total of n=e-s+1 temporally
neighboring feature parameters are collected from the
reference interval, on which histogram equalization (HEQ) can
then be performed. The length of the reference interval, n, can
be carefully chosen [15][16]. In this research, the reference
distribution is assumed to be the standard normal.

There are also advantages of PHEQ over the utterance-
wise feature normalization approaches in terms of real-time
processing requirements. For the utterance-wise approach, the
processing can be performed only when the complete utterance
is received. With the progressive approach, the processing can
be in parallel with the waveform read-in and feature extraction
processes. The time delay can thus be substantially reduced.

3. EXPERIMENTAL CONDITIONS

The experiments reported in this paper were conducted on the
database AURORA2. Ten different types of noise, as
representatives of real-world noise, were included in this
database. We use both the clean training and multi-condition
training data sets to construct two sets of HMM models. All
the three sets of testing conditions in AURORAZ2 tasks were
tested, i.c., set A (subway, babble, car, and exhibition noise),
set B (restaurant, streef, airport, and train station noise), and
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set C (subway and street noise, with channel effect). Each of
the two training data sets in the AURORAZ2 database consists
of 8440 utterances of English connected digit strings. The
MFCC feature extraction follows the WI007 front-end, which
gives 14-coefficient {C0~C12 and log energy) feature vector
[17]. Our MVDR-based 13-dimensional feature vectors consist
of the 12 MVDR-based cepstral coefficients (C1 to C12) and
the log energy, which were then used to obtain the delta and
delta-delta components to form the 39-dimensional features
for the following recognition tasks. For the MVDR spectrum
estimation, M = 40 and N = 200 are defined previously in sec.
2.1 and in equation (1).

4. EXPERIMENTAL RESULTS

The experimental results are presented in the following
sections.

4.1. Baseline Experiments

In Table 1, the word accuracies with FFT-based MFCCs are
taken ag the baseline and the results are listed in the first row.
The following rows are for the MVDR features. A = 0 is for
original MVDR, while other values of } are for frequency-
warped cases. The results in Table 1 show that in each column
a good choice of & for MVDR-based features can actually
offer better results than the baseline FFT-based MFCCs, when
A<0.5.

Training Sets | Cleen Treining (0~20B) | Muki-Corxition Traning (0-20dB}
TSk | AJ Bl Claw] AT BJ ClA
FFT-basd
MiCCs | 613 BT 61 6L1| 818 83 BB &0
A=0] 602 6 666 601 830 [ 8602] 85 861 |
glr0l @s 584 685 634 882 8656 | 840 %ggg_k
B [A=02] 96 59 @4 W6 B Kl
2[1=03 c0 R 614 6l1] 882 854 838 xss
5 L=3'| %¥5 570 &9 PR WL &K1 HB5 %0
(=04 @5 83 o2 616[.885 8! B2 &9
g A=05]045 D 546 G0 | 873 86 84 U8
1=06| 588 55 77 F3| &8 RS 816 B3
é %=0.7| 525 485 81 530| ©8 WO M4 04
2=08l 460 £5 22 42| 73 M8 B2 M5
1=09] 268 29 31 30| GI_ N0 %8 P6

Table 1, Word accuracies for baseline FFT-based MFCCs
and MVDR-based features

4.2. Applying Cepstral Normalization

The results of applying CN on the FFT-based MFCCs and
MVDR-based features are shown in Table 2. As compared to
those shown in Table 1, we can see CN offers significant
improvements for all cases, and again in each column, a good
choice of L for MVDR-based features can provide better
accuracy than the baseline FFT-based MFCCs.

4.3. Progressive Histogram Equalization (PHEQ)

Here PHEQ was used for feature normalization to replace CN
as in sec, 4.2, and the corresponding results are shown in
Table 3. The length of the reference interval in PHEQ, i.e. nin
sec. 2.4, is empirically chosen to be 100, which roughly
corresponds to a speech segment of one-second time span.



Comparing the data in Table 3 to those in Table 2, for
clean-training very significant improvements are evident in
each case. But the improvements become relatively limited for
multi-condition-training. Apparently PHEQ is a very powerful
feature normalization technique, not only for FFT-based
MFCCs, but equally applicable for MVDR-based features as
weli. Also it is again apparent that with PHEQ, in most cases a
good choice of 3 for MVDR features can offer better results
than FFT-based MFCCs, although here the improvements
become less significant. It seems that in the cases tested here
with a powerful normalization process, the choice of a pood
feature parameter becomes less important. Note that for the
multi-condition-training  case, regardless of FET-based
MFCCs or MVDR-based features, the improvements that
PHEQ can offer (Table 3) as compared to CN (Table 2) are
relatively limited, except for test set C. This may be explained
as follows. PHEQ is applied to the cepstrum coefficients to
alleviate the residual mismatch, and can deal with the channel
mismatch in test set C efficiently. The goal of applying
(progressive) histogram equalization is to normalize the
feature distributions, or to limit the feature dynamics to be
within some statistical range. With multi-condition training,
the feature distribution may be much more complicated than a
single standard normal as we assumed here.

Training Seis.| ~ Clean Training (0-20dB) | Multi-Condition Trairing (0-20dB)
TeatSs | A Bl Clam] AT B ¢ [ag
FFTbesed
MRCLe | AT T8 T3 9| 893 #1788 &0
A=0| 752 717 B6 55| 893 80 83 880
Q|AZOU M9 I3 T 752| B0 8O &7 819
T |A=02| 765 T84 751 766 | 6 4| 87 KRR
=203 B0 D) %4 L8] 294 81 %9 8IS
gpx T2 B4 63 TI3| 94 8RO &2 8N
& (A=04] 775 786 %5] 76| 895 880 | 873 882 |
E A=05| %62 70 753 762| W7 872 8l 83
ZIA=06 751 756 I MH8| 8§77 &7 5 %O
% 2=0.7| 27 M4 M8 0| 851 I 8Ll O
1=08| 650 &3 622 68| M8 T4 MO TIO
=09\ 457 454 21 44] 49 612 54 612

Table 2. Word accuracies for cepstral-normalized FFT-

based MFCCs and MVDR-based features
Training Sets | Clean Training(0-20dB) | Muli-Condition Training (0~20dR)
TetSs A B[ Clae]l AT B[] ¢ |Aw
FFTbased :
MG, | 818 szs% R7 05| 894 888 88 O
L=018L1 £2 818 817| 81 85 W6 K7
Q[A=0.1] 817 28 R4 03] M6 B0 BN | P2 |
i[2=021812 %26 28 22| 893 886 BN W9
=03 20 ow 81 Be| 90 0 [mof] R
glzxsmmmmmmms&s
A=0.4| 814 819 R0 813]| 8BS 86 KT K3
E x=0.5{ 815 817 Bl6 86| 879 89 &9 &6
g A=0.6] 801 799 800 %00| 858 M6 &7 853
A=0.7| 75 69 TIB8 TIA| R7 84 05 822
2=0.8| 03 &8 718 W3| 761 M3 WO 55
A=09] 550 535 550 45| 606 577 85 589

Tables 3. Results of applying PHEQ for FFT-based
MFCCs and MVDR-based features
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5. CONCLUSIONS

In this paper, we refine the feature extraction scheme for
speech recognition by the warped MVDR-based approaches.
Cepstral normalization (CN) and progressive histogram
equalization (PHEQ) were further applied to improve the
robustness of the warped MVDR-based features. The results of
the experiments showed that the MVDR-based features can
offer betier recognition accuracy than the conventional FFT-
based MFCCs if 2 good parameter A can be chosen.
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