
1

行政院國家科學委員會專題研究計畫成果報告
具錯誤更正能力的持續持續長度限制碼 (II)

Run Length Limited Codes with Error Correcting Capabilities(II)
計畫編號：NSC 89-2213-E-002-121
執行期間：89年 8月 1日至 90年 7月 31日

 主持人：林茂昭 國立臺灣大學電信所

一、中文摘要
在某些數位傳輸通道中，如數位磁性記錄

器，或是數位光記錄器等，為了避免位元信號之間
的相互干擾，以及為了考量時序同步信號的產生，
其位元序列必須受到某些持續長度之限制。以”＋
1”及”-1”為位元之持續長度限制序列可轉換為
以”1”及”0”為位元之持續長度限制序列，稱之為
(d,k)序列，其中 d 為”0”位元之最小持續長度，k
為”0”位元之最大持續長度。由許多（d,k）序列所
成之集合為 (d,k)碼 , 或稱持續長度限制碼
(run-length-limited code, RLL code)。
 在國科會計畫NSC81-0404-002- E -002-002中我
們曾經設計出一些具錯誤更正能力之(d,k)碼。我們
發現這些碼在碼率， 錯誤更正能力及複雜度方面
仍然有許多改善餘地。本計畫中以多層次編碼方式
設計出具有低複雜度，高錯誤更正能力及高碼率之
持續長度限制碼。本計畫也有一個很好的附帶結
果，即是找到一個設計低複雜度二元(n,n-1)迴旋碼
之方法。

英文摘要
 For some digital communication channels,
such as the digital magnetic recorder, or the
digital optical recoder, to alleviate the
problem of inter-symbol interference and to
assist the synchronization, the associated
data sequences must be subjected to some
run length constraint. A run length limited
sequences with symbols of “+1” and “-1”
can be convert to a sequences with symbols
of “1” and “0”, which is called a (d,k)
sequence, where d is the minimal run length
of 0’s between two consecutive 1’s and k is
the maximal run length of of 0’s between
two consecutive 1’s. A (d,k) code is a
collection of some (d,k) sequences. Such
code is also called run-length-limited (RLL)
code.
 In the project NSC81-0404-E-002-002,
we have designed some (d,k) codes with
error correcting capabilities. Recently, we
find that there are new techniques which can
be used to further improve the

error-capability, coding rates and decoding
complexity of (d,k) codes. Based on the
concept of multilevel coding, in this project,
we propose several classes of powerful
(d,k) codes with high error correcting
capabilities, high coding rates and low
decoding complexity. There is a by product
of this project. That is we find a method to
design (n,n-1) convolutional codes with low
trellis complexity.
二 、計畫的緣由與目的(Goals)

In magnetic recording systems, run length
constraints on data are usually required to
reduce the effect of intersymbol interference
and to support bit synchronization. A class
of constrained data sequences is called (d,k)
sequence, where d is the minimum run
length of 0’s between 1’s and k is the
maximum run length of 0’s between 1’s. The
set of all binary (d,k) sequences is denoted
by Cn(d,k). The set of all concatenatable
(d,k) sequences of lengh n which has the
largest cardinality is denoted by),(max kdC n .
is used to denote the set of all binary
(d,k)sequence of length n. Based on the set

),(max kdC n , a class of (d,k) trellis codes with
single-error-correcting capability was
proposed in [1]. This code has the
drawback of low error-correcting capability
and high decoding complexity. In [2], the
concept of Steiner triple system was used to
improve the error-correcting capability of
[1]. The penalty is the decreased coding
rate. In [3], a class of (d,k) trellis codes is
proposed, which is based on multilevel
coding technique used in [4] and [5]. The
trellis code proposed in [3] is much better
than that proposed in either [1] or [2].
However, there is still room for
improvement.

In this project, we use several techniques

2

to modify the trellis codes of [3] to find
some good (d,k) trellis codes. For the first
one, we use a convolutional processor [6] to
replace the delay processor used in [3].
For the second one, we propose a method to
find better partition rules for),(max kdC n .
For the third technique, we add two bits to
each sequence in),(kdC n Examples are
provided to demonstrate the superiority of
the (d,k) codes designed by the proposed
techniques. In the search for good (d,k)
trellis codes, we also find a method that can
design good (n,n-1) convolational codes
with low trellis complexity. The basic idea is
that we find an optimum permutation for
any given (n,n-1) binary convolutional code
that will yield an equivalent code with the
lowest state complexity.
三、研究方法與成果 (Methods and
Results)
In [1], a class of RLL trellis (Lee-Wolf code)
which have single error correcting capability
was proposed. A Lee-Wolf code is
constructed by partitioning),(max kdC n into
two subsets, Ce and Co, and using a rate
(m-1)/m convolutional code with 2m-1 states
to select RLL n-tuples in Ce and Co, where
Ce and Co are the sets of even weight and
odd weight n-tuples in),(max kdC n

respectively. It is required that |Ce|≧2m-1 and
|Co|≧2m-1.

In [5], a multilevel coding technique is
used to construct trellis coded modulation
systems. Consider a signal set Ù that
consists of 2m signal points. Each signal
point in Ù is marked by ù (s%), where
s% =(s1,s2,… ,sm),si∈{0,1} , i=1,2,… ,m. The
encoding of the system in [5] is illustrated in
Fig.1. At time t, an r-bit message ()u t% is
encoded by a rate r/m convolutional code C
to result in an m-bit code
branch))(),...,(),(()(~

21 tvtvtvtv m= . The
output of the multilevel delay processor is

))(),...,(),(()(~
21 tstststs m= . The output of

the signal mapper is Ω∈=)())(~(tztsω ,
where mlforlmtvts ,...,1),)(()(11 =−−= λ
and ë is a constant. The resultant trellis code

is denoted by T. If the mapping between
the m-tuple s% and the signal point ù (s%) is
appropriately designed, a large free distance
for T can be achieved for a signal set Ù such
as 8PSK or{0,1}4. Let Ä (z1,z2) denote the
distance measure between z1 and z2, where z1,
z2 ∈ Ù . If Ù is a collection of binary
n-tuples for n ≥ m, then Ä (z1,z2) is the
Hamming distance between z1 and z2. if Ù is
a collection of binary n-tuples for n ≥ m.
Set partition for Ù is needed. Let Ù =
Ù 0/Ù 1/… /Ù m denote the partition chain for
Ù provided that Ù is a linear space. Each
partition Ù j-1/Ù j results in two cosets of Ù j.
We define

{ }










≤<≤≤=

Ω∈∆

=Ω∈∆

=∆
≠

≠

mjjiforss

ssss

jssss

ii

ss

ss

j
jj

jj

1,1:'

,)}'̂(),ˆ(:))'̂(),ˆ(({min

1,)'̂(),ˆ(:))'̂(),ˆ((min

'

'

ωωωω

ωωωω

(1)
We then have an m-level distance profile
{△1,… ,△m}. The free distance of T is
lower bounded [3,4] by

1

ˆ
0 1ˆ(0) 0

() min ()
m

LB j jv C t jv

v t
λ

λ
−

∈
= =≠

∆ = ∆∑ ∑ (2)

The bound △LB(ë) is an increasing function
of ë and will become a constant value △free

when ë exceeds a threshold number ëmin .
A suboptimal decoding for T can be
implemented by using the trellis of C [4].
The suboptimal decoding can fully utilize
the error-correcting capability guaranteed by
△free. Hence, the decoding complexity is
only slightly higher than that of C.

The coding scheme just described is used
in [3] to construct RLL codes with good
correcting capabilities. It difficult to find a
general rule for choosing Ù and ù that can
yield a trellis code T with the largest free
distance for a given (d,k) constraint and a
arbitrary n. In [3], Ù and ù are chosen by
following the partition used in [1]. That is,
we choose Ù =Ù s1=0 ∪ Ù s1=1, where

emms Csssss ∈∈==Ω =)}1,0(,...,|),...,,0({ 22101 ω and

omms Csssss ∈∈==Ω =)}1,0(,...,|),...,,0({ 22111 ω .Note
that Ù used here is not a linear space.
However, we can design the partition in a
similar way except that the partition

3

Ù j-1/Ù j here results in two subsets which
may not be cosets of Ù j. Now, we have a
distance profile of{△1=1,△2=2… ,△m≧2}.
Using the distance profile, RLL codes [3]
are found which are listed in table 1.
Scheme 1:Convolutional processor
In [6], a trellis coding scheme better than
that proposed in [3] is proposed. The
encoder is shown in Fig. 2 which is
implemented by replacing the delay
processor in the encoder of Fig. 1 by a
convolutional processor. The convolutional
processor is a rate 1 convolutional code with
generator matrix P. Here, we denote the
resultant trellis code by T’. Let

1l =0, 2l ,… , ml be nonnegative integers such
that 1/ −∆∆≤ jjjl for 2 ≤ j ≤ m. We will
construct a convolutional processor such
that the bit vj(t) will affect the encoding of

1j+l output symbols. Define âm = 0 and

âj =
1
(1)

m
i ii j

ξ
= +

+ +∑ l for 1 ≤ j ≤ m-1. Then

we have
Pi,i=Dâië,

for i=1,2,… ,m, and
Pi,i-1 =

1 1(1) ()

0 , 0
(...), 0i i i

i

i

if
D D ifβ λ β λ− −− −

=
 + + >

l

l
l

 (3)

for i=2,3,… ,m.
With such a convolutional processor we have

1,...,2,1),()(−== mjfortvts mm

then we have
sj(t)= 1

1 1 1 1

() , 0
() ((1)) ... ()), 0

j j j

j j j j j j j j

v t
v t v t v t

β λ
β λ β λ β λ

+

+ + + +

− =
 − ⊕ − − ⊕ ⊕ − + >

l
l l

(4)

The free distance of T’ is bounded [6] by
1

1ˆ
0 1ˆ(0) 0

() min ()()
m

LB j j j jv C t jv

v t
λ

λ
−

−∈
= =≠

∆ = ∆ + ∆∑ ∑ l (5)

Similar to the case of trellis code T, the
bound △LB(ë) is an increasing function of ë
and will become a constant value △ free

when ë exceeds a threshold number ëmin .
A suboptimal decoding for T’ can also be
implemented by using the trellis of C [2].
The suboptimal decoding can fully utilize
the error-correcting capability guaranteed by
△free. Hence, the complexity of decoding
T’ is slightly higher than that of T.

In this report, we use two different generator
matrice P and apply the concept from [4] to
compute their free distances.
Case 1:
We use 1l = 0, 2l = 1, 3l = 0 and â1 = 4, â2 =
2, â3 = 0. Then, we have

4

3

0 0
0

0 0 1

D
P D D

λ

λ λ

 
 = 
 
 

Case 2:
We use 1l= 0, 2l = 1, 3l = 1, 4l = 0 and â1 = 8, â2 = 5,
â3 = 1, â4 = 0. Then, we have

8

7 5

4

0 0 0
0 0

0 0
0 0 0 1

D
D D

P
D D

λ

λ λ

λ λ

 
 
 =
 
  
 

The parameters of some of the resultant
trellis RLL codes are listed in table 2. We
see that there is only slight improvement of
no improvement for the codes in table 2 as
compared to the codes in table 1.
Scheme 2 : Modified par tition:
In [1] and [3], the labeling for the signal set
Ù is chosen in a random way except that
s1=0 for the n-tuples in the subset of
even-weight n-tuples, Ce, and s1 = 1, for the
subset of odd-weight n-tuples, Co.
Now we propose a method that can label the
n-tuples in a systematic way. The method
of labeling is described as follows.
1. Partition the signal set),(max kdC n into

two disjoint subsets(even parity or odd
parity).

2. An n-tuple (c1,c2,… ,cn) labeled by an

index ∑
=

− +=
n

i

i
icI

1

1 12 .

3. Then, we can arrange the n-tuples of
),(max kdC n in order according to I. We

choose the n-tuples with the largest 2m-2

indices and the n-tuples with the smallest
2m-2 indices from Ce to form

)}1,0(,...,|),...,,0({ 22101 ∈==Ω = mms sssssω
We also choose the n-tuples with the
largest 2m-2 indices and the n-tuples with
the smallest 2m-2 indices from Co to form

)}1,0(,...,|),...,,0({ 22111 ∈==Ω = mms sssssω
4. We number these 2m-1 n-tuples in Ce by

Ie=1,2,… ,2m-1 consider two n-tuples

4

'CandC with indices I and I’
respectively. If I>I’ then Ie>Ie’. Similarly,
we number the 2m-1 n-tuples in Co by
Io=1,2,… ,2m-1.

5. The labeling of s2,… ,sm for n-tuples in

Ù s1=0 is given by ∑
=

− +∗=
m

i

i
isS

2

2 12 ,where

we set





+==
=−=

− ievenforiIifiS
ioddforiIifiS

m
e

e
22,2

,12

The labeling of s2,… ,sm for n-tuples in Ù s1=1
can be similarly derived from Io.

Using this new partition (labeling), we
rederive the distance profile and the free
distances of some trellis codes T and T’
which are listed in table 3 and table 4
respectively. We can see that the trellis
codes T’ using the modified partition have
much improved free distances.
Scheme 3 : Inser ting 2 bits as buffer

In[7], Immink proposed the method which
inserts additional â bits between adjacent
(d,k) sequences of length n as merging bits
so that the concatenated sequence can still
preserve the d and k constraints. From a
similar concept we add two bits to the end of
each n-tuple in Cn(d,k). If the n-tuple has
even parity, then we add two bits 10. If the
n-tuple has odd parity, then we add two bits
01. To ensure that the modified (n+2)–
tuple can be cascaded without violating the
d and k constraints, we must modify the
constraints on the head and tail in the n-tuple.
Hence we can not use Lee-Wolf’s design.
The new constraints are given as follows.
1. The tail of the codeword must end with a

run of at least d, and at most k-1
consecutive zeros.

2. The head of the codeword must begin
with a run of at least d, and at most k-1
consecutive zeros.

With the insertion of two bits, we can find
that the minimum Hamming distance
between an (n+2)-tuple in Ù s1=0 and an
(n+2)-tuple in Ù s1=1 is 3. Hence the
distance profile is improved. We apply this
technique of bit insertion to either T or T’.
We can see the free distance are increased.

The results are listed in table 5 and table 6
respectively.
Good (n,n-1) Convolutional Codes:
 In the code search for good (d,k) trellis
codes, we usually need good (n,n-1)
convolutional codes. We find that it is
possible to find an optimum permutation for
any given (n,n-1) binary convolutional code
that will yield an equivalent code with the
lowest state complexity. With this
permutation, we are able to find many (n,n-1)
binary convolutional codes which are better
than punctured convolutional codes of the
same code rate and memory size by either
lower decoding complexity or better weight
spectra.
四 、 結 論 與 討 論 (Concluding
Remarks)
 In this project, we propose three
techniques to construct good (d,k) codes.
We compare the trellis codes using the
proposed techniques with a class of
previously known good (d,k) codes shown
in [3]. The first technique can help construct
(d,k) codes which achieve slightly increased
free distances without sacrificing the coding
rates while the penalty is the slightly
increased decoding complexity. The second
technique is a modified partition rule which
can help to achieve large free distances in
case that this technique is incorporated into
the first technique. The third technique can
achieve very large free distance. However,
the penalty is the decreased coding rate.
五、參考資料(References)
[1] LEE, P., and WOLF, J.K.: “A general error correcting code
construction for run length limited binary channels,” IEEE Trans.
Inform. Theory, 1989, 35, (6), p.1330-1335
[2]Mao-Chao Lin Technical report, NSC81-0404-E-002-002
[3]H.H. Tang and M.C. Lin, “Class of Multilevel run length
limited trellis codes, ” Electronics Letters , Volume: 35 Issue: 25,9
Dec 1999Page(s): 2192 –2193
[4]HELLSTERN. G: “Coded modulation with feedback decoding
trellis codes,” IEEE Conf. Comm., 1993, pp. 1071-1075
[5] J.Y. Wang and M.C. Lin, “On constructing trellis codes with

large free distances and low decoding complexities,” IEEE Trans.
Commun., vol.45, no.9, pp.1017-1020, Sept. 1997.
[6]M.C. Lin; Y.L. Ueng; J.Y. Wang,” Two trellis coding schemes
for large free distances,” Communications, IEEE Transactions on,
V(48) 2000 pp. 1286 –1296
[7]Immink, K.A.S. “Run length-limited sequences”, Video, Audio
and Data Recording, 1990. Eighth International Conference on,
1990 pp. 176 -182

5

六、圖表（Figures and Tables）

Fig.1 The encoder of T which uses a delay processor
and a signal mapper.

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=5
(1,2,2)

10/0.2
dfree=5
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

10/0.3
dfree=5

(1,2,2,2)

11/0.273
dfree=5

(1,2,2,2)

8/0.375
dfree=5

(1,2,2,2)

Table 1: Trellis code T using the original partition

V λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=6
(1,2,2)

10/0.2
dfree=6
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
 
 

10/0.3
dfree=5

(1,2,2,2)

11/0.273
dfree=5

(1,2,2,2)

8/0.375
dfree=5

(1,2,2,2)

Table 3: Trellis code T using the modified partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

12/0.167
dfree=9
(3,2,6)

12/1.67
dfree=6
(3,2,2)

9/0.222
dfree=6
(3,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

13/0.231
dfree=6

(3,2,2,4)

15/0.2
dfree=6

(3,2,2,2)

10/0.3
dfree=6

(3,2,2,2)

Table 5: Trellis code T with the insertion of 2 bits

Fig.2 The encoder of T’ which uses a convolutional
processor and a signal mapper

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=5
(1,2,2)

10/0.2
dfree=5
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

10/0.3
dfree=6

(1,2,2,2)

11/0.273
dfree=6

(1,2,2,2)

8/0.375
dfree=6

(1,2,2,2)

Table 2: Trellis code T’ using the original partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=7
(1,2,2)

10/0.2
dfree=7
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

10/0.3
dfree=7

(1,2,2,2)

11/0.273
dfree=6

(1,2,2,2)

8/0.375
dfree=6

(1,2,2,2)

Table 4: Trellis code T’ using the modified partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

12/0.167
dfree=14
(3,2,6)

12/1.67
dfree=9
(3,2,2)

9/0.222
dfree=9
(3,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
 
 

13/0.231
dfree=12
(3,2,2,4)

15/0.2
dfree=10
(3,2,2,2)

10/0.3
dfree=10
(3,2,2,2)

Table 6: Trellis code T’ with the insertion of 2 bits

	page1
	page2
	page3
	page4
	page5

