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For some digital communication channels,
such as the digital magnetic recorder, or the
digital optica recoder, to aleviate the
problem of inter-symbol interference and to
assist the synchronization, the associated
data sequences must be subjected to some
run length constraint. A run length limited
sequences with symbols of “+1” and “-1”
can be convert to a sequences with symbols
of “1” and “0”, which is caled a (dk)
sequence, where d is the minimal run length
of O's between two consecutive 1's and k is
the maxima run length of of O's between
two consecutive 1's. A (d,k) code is a
collection of some (d,k) sequences. Such
code is aso called run-length-limited (RLL)
code.

In the project NSC81-0404-E-002-002,
we have designed some (d,k) codes with
error correcting capabilities. Recently, we
find that there are new techniques which can
be wused to further improve the
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error-capability, coding rates and decoding
complexity of (d,k) codes. Based on the
concept of multilevel coding, in this project,
we propose several classes of powerful
(d,k) codes with high error correcting
capabilities, high coding rates and low
decoding complexity. There is a by product
of this project. That is we find a method to
design (n,n-1) convolutional codes with low
trellis complexity.
(Goals)

In magnetic recording systems, run length
constraints on data are usually required to
reduce the effect of intersymbol interference
and to support bit synchronization. A class
of constrained data sequences is called (d,k)
sequence, where d is the minimum run
length of O's between 1's and k is the
maximum run length of 0’'s between 1's. The
set of all binary (d,k) sequences is denoted
by C"(d,k). The set of all concatenatable
(d,K) sequences of lengh n which has the

largest cardinality is denoted by C._ (d,k).

IS used to denote the set of al binary
(d,k)sequence of length n.  Based on the set
C...(d,k), aclass of (dk) trellis codes with
single-error-correcting  capability  was
proposed in [1]. This code has the
drawback of low error-correcting capability
and high decoding complexity. In [2], the
concept of Steiner triple system was used to
improve the error-correcting capability of
[1]. The pendlty is the decreased coding
rate. In[3], aclass of (d,k) trellis codes is
proposed, which is based on multilevel
coding technique used in [4] and [5]. The
trellis code proposed in [3] is much better
than that proposed in either [1] or [2].
However, there is still room for
improvement.

In this project, we use several techniques



to modify the trellis codes of [3] to find
some good (d,k) trellis codes.  For the first
one, we use a convolutional processor [6] to
replace the delay processor used in [3].
For the second one, we propose a method to

find better partition rules for C_ (d,K) .
For the third technique, we add two bits to
each sequence in C"(d,k) Examples are

provided to demonstrate the superiority of
the (d,k) codes designed by the proposed
techniques. In the search for good (d,k)
trellis codes, we aso find a method that can
design good (n,n-1) convolationa codes
with low trellis complexity. The basic ideais
that we find an optimum permutation for
any given (n,n-1) binary convolutional code
that will yield an equivalent code with the
lowest state complexity.

(Methods and
Results)
In[1], aclassof RLL trellis (Lee-Wolf code)
which have single error correcting capability
was proposed. A LeeWolf code is

constructed by partitioning C.. (d,k) into
two subsets, Ce and C,, and using a rate
(m-1)/m convolutional code with 2™ states
to select RLL n-tuples in Ce and C,, where
Ce and C, are the sets of even weight and
odd weight n-tuples in C (d,k)
respectively. It isrequired that [C¢| 2™ and
ICo| 2™

In [5], a multilevel coding technique is
used to construct trellis coded modulation
systems. Consider a signal set U that
consists of 2" signal points. Each signa
point in U is marked by u( %), where
$=(s1,%,...,Sn),sl {0,1} , i=1,2,....m. The
encoding of the system in [5] isillustrated in
Fig.1. At time t, an r-bit message W(t) is
encoded by a rate r/m convolutional code C
to result in an m-bit code
branch Vv(t) = (v (), % (),...,v,(f)) . The
output of the multilevel delay processor is
() = (5(8),s,(),..,S,(8)) . The output of
the signa mapper is w(3(d)) = AHT W,
where s(f) =y(t- (m- N1I), forl=1,...m
and é is a constant. The resultant trellis code

isdenoted by T. If the mapping between
the m-tuple % and the signal point u(%) is
appropriately designed, a large free distance
for T can be achieved for asignal set U such
as 8PSK or{0,1}*. Let A(z,,z,) denote the
distance measure between z; and z, where z;,
21 U. If U is a collection of binary
n-tuples for n3 m, then A(z1,z) is the
Hamming distance between z; and 7y, if U is
a collection of binary n-tuples for n3 m.
Set partition for U is needed. Let U =
Uo/U4/.../Uy, denote the partition chain for
U provided that U is a linear space. Each
partition  U;.1/U; resultsin two cosets of U;.
We define

i min{D(m@ w(@):wdwE)i w,j=1

.=.l mm{D(w@ w(3)) (3. W)} W

I
fs=s" for:lEi£ jA<jEm
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We then have an m-level distance profile
{ ... m}. The free distance of T is
lower bounded [3,4] by

D.,(/)=min& & v,(0D, @

v(O) 19 t=0 j=1

Thebound | g(&) isan increasing function
of & and will become a constant value e
when & exceeds a threshold number émin .
A suboptimal decoding for T can be
implemented by using the trellis of C [4].
The suboptimal decoding can fully utilize
the error-correcting capability guaranteed by

free. HeNce, the decoding complexity is
only dlightly higher than that of C.

The coding scheme just described is used
in [3] to construct RLL codes with good
correcting capabilities. It difficult to find a
generd rule for choosing U and U that can
yield a trellis code T with the largest free
distance for a given (d,k) constraint and a
arbitrary n. In [3], U and 0 are chosen by
following the partition used in [1]. That is,
we choose U=Ug- Ug-1, Where
Weo ={W(§=05,..5)|S....5,] O} G and
W, ={ms=0s,...5)|S,...5,1 (G} C, .Note
that U used here is not a linear space.

However, we can design the partition in a
similar way except that the partition



U;1/U; here results in two subsets which
may not be cosets of U;. Now, we have a
distance profile of{ 1=1, ,=2..., m 2}.
Using the distance profile, RLL codes [3]
are found which arelisted in table 1.

Scheme 1:Convolutional processor

In [6], a trellis coding scheme better than
that proposed in [3] is proposed. The
encoder is shown in Fig. 2 which is
implemented by replacing the delay
processor in the encoder of Fig. 1 by a
convolutional processor. The convolutional
processor is arate 1 convolutional code with
generator matrix P. Here, we denote the
resultant trellis code by T'. Let
1,=0,1,,...,1,be nonnegative integers such

that | ,£D,/D,,for 2Ej£m. We will

construct a convolutional processor such
that the bit v;(t) will affect the encoding of
I, output symbols. Define &m = 0 and

g = é::j+1(l,+x,.+1) for 1£j£m-1. Then

we have
P;=D"",
fori=1,2,...,m, and
Piji =10 Jf 1,20 (3)
H(D® D 4 4 DOy i ] >0
fori=23,....m.

With such a convolutional processor we have
s,(O)=v,(), for j=12,...m-1
then we have
S()=1y- b)) 1,,=0 (4)
1yt b1A V(- (b,- DDAA v (t- b+1 )1 ,,>0
Thefree distance of T’ isbounded [6] by
D.o(1)=mind & v, +10,) ©
w0yt 0 =0 Jj=1
Similar to the case of trellis code T, the
bound | g(€) isanincreasing function of &
and will become a constant value e
when é exceeds a threshold number &min .
A suboptimal decoding for T' can also be
implemented by using the trellis of C [2].
The suboptimal decoding can fully utilize
the error-correcting capability guaranteed by
free. Hence, the complexity of decoding
T’ isdlightly higher than that of T.

In this report, we use two different generator
matrice P and apply the concept from [4] to
compute their free distances.
Case l:
Weuse 1,=0,1,=1,1,=0and & =4, &=
2, 83=0. Then, we have
' 0 06
P={0* D 0
§o 0 13
Case 2:
Weusel=0,L,=1,1,=1,1,=0and &, = 8, &=5,
4;=1,48,=0. Then, we have
& 0 0 06
p—ng DY 0 O:
“¢o pY D o0*
€0 o o 1
The parameters of some of the resultant
trellis RLL codes are listed in table 2. We
see that there is only slight improvement of
no improvement for the codes in table 2 as
compared to the codes in table 1.

Scheme 2 : M odified partition:

In [1] and [3], the labeling for the signal set
U is chosen in a random way except that
$=0 for the n-tuples in the subset of
even-weight n-tuples, C, and s, = 1, for the
subset of odd-weight n-tuples, Co.

Now we propose a method that can label the
n-tuples in a systematic way. The method
of labeling is described as follows.

1. Partition the signa set C’, (d,k) into

two digoint subsets(even parity or odd

parity).

2. An n-tuple (ci,Cp,...,Cn) labeled by an

index /=8 ¢2"'+1.
i=1
3. Then, we can arrange the n-tuples of
C...(d,k) in order according to |I. We

choose the n-tuples with the largest 2™2
indices and the n-tuples with the smallest
2™2 indices from C. to form

Wo {5 =0,5,...5,)| S5, (OD}

We also choose the n-tuples with the
largest 2™ indices and the n-tuples with
the smallest 2™2indices from C,to form

W, ={U5=08,...5)|$,--5,1 (0D}
4. We number these 2™ n-tuples in Ce by
1=1,2,...,2™" consider two n-tuples



Cand C' with indices | and I
respectively. If I>I’ then [>1g. Similarly,
we number the 2™ n-tuples in C, by
1=1,2,...,2""%

5. The labeling of s,,...,5n for n-tuples in

Ug-oisgivenby S=§ s* 22 +1,where

i=2

we set
i1 §=2i-1 ,if I,=i forodd i
{ §=2iif I,=i+2"? for eveni
The labeling of s,...,sm for n-tuples in Ug=1
can be similarly derived from I,

Using this new partition (labeling), we
rederive the distance profile and the free
distances of some trellis codes T and T
which are listed in table 3 and table 4
respectively. We can see that the trellis
codes T’ using the modified partition have
much improved free distances.

Scheme 3 : Inserting 2 bits as buffer
IN[7], Immink proposed the method which
inserts additional & bits between adjacent

(d,K) sequences of length n as merging bits

so that the concatenated sequence can ill

preserve the d and k constraints. From a

similar concept we add two bits to the end of

each n-tuplein C"(d,k).  If the n-tuple has
even parity, then we add two bits 10. If the
n-tuple has odd parity, then we add two bits

01. To ensure that the modified (n+2)—

tuple can be cascaded without violating the

d and k constraints, we must modify the

constraints on the head and tail in the n-tuple.

Hence we can not use Lee-Wolf’'s design.

The new constraints are given as follows.

1. Thetail of the codeword must end with a
run of a least d, and a most k-1
consecutive zeros.

2. The head of the codeword must begin
with arun of at least d, and at most k-1
consecutive zeros.

With the insertion of two bits, we can find

that the minimum Hamming distance

between an (n+2)-tuple in Ug-o and an

(n+2)-tuple in Ug-; is 3. Hence the

distance profile is improved. We apply this

technique of bit insertion to either T or T'.

We can see the free distance are increased.

The results are listed in table 5 and table 6
respectively.
Good (n,n-1) Convolutional Codes:
In the code search for good (d,k) trellis
codes, we wusualy need good (n,n-1)
convolutional codes. We find that it is
possible to find an optimum permutation for
any given (n,n-1) binary convolutional code
that will yield an equivalent code with the
lowest state complexity. With this
permutation, we are able to find many (n,n-1)
binary convolutional codes which are better
than punctured convolutional codes of the
same code rate and memory size by either
lower decoding complexity or better weight
spectra.

(Concluding

Remarks)

In this project, we propose three
techniques to construct good (d,k) codes.
We compare the trellis codes using the
proposed techniques with a class of
previously known good (d,k) codes shown
in [3]. The first technique can help construct
(d,K) codes which achieve dlightly increased
free distances without sacrificing the coding
rates while the penalty is the dlightly
increased decoding complexity. The second
technique is a modified partition rule which
can help to achieve large free distances in
case that this technique is incorporated into
thefirst technique. The third technigue can
achieve very large free distance. However,
the penalty is the decreased coding rate.
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Figures and Tables
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Fig.1 The encoder of T which uses a delay processor

and a signal mapper.

A Generator (1,3) nirate | (2,7) n/rate | (1,7) nirate
min df ree df ree df ree
dist_profile| dist_profile | dist_profile
5| 1 1| 9022 10/0.2 6/0.333
& = dfree=5 dfree=5 dfree=5
7 0| (1,22 (1,2,2) (1,2,2)
6| 111¢| 10/03 11/0.273 8/0.375
§301 20| Oyee™> Oiree=5 Oiree=5
©132| 1222 | 1222 | 1222

Table 1: Trelliscode T using the original partition

A Generator (1,3()j n/rate (2,7()j n/rate (1,7()j n/rate
min free free free
dist_profile | dist_profile | dist_profile
5|4 1 1¢| 90222 10/0.2 6/0.333
& = de=6 Ciree=6 Crree=5
70| (122 1,2,2) 1,2,2)
6 (a4 111| 10/0.3 11/0.273 8/0.375
B012| Gne5 drre=5 Oire™5
§132;; (1222) | (1222 | (1222

Table 3: Trelliscode T using the modified partition

A Generator (1,3) n/rate | (2,7) nirate | (1,7) n/rate
min dfree dfree dfree
dist_profile | dist_profile | dist_profile
5iaé 1 1 12/0.167 12/1.67 9/0.222
& = Crree=9 Crree=6 Crree=6
7 0| (326 (322 (322
6| 11 1¢| 13/0.231 15/0.2 10/0.3
301 2| Oyee=6 Oree=6 Uirec=6
© 132 3224 | (3222 | (222
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Fig.2 The encoder of T’ which uses a convolutional
processor and a signal mapper

v A Generator (1,3()j n/rate (2,7()j n/rate (1,7()j n/rate
min free free free
dist_profile | dist_profile | dist_profile
5 5|4 1 1¢g| 90222 10/0.2 6/0.333
gs - dfree=5 dfree=5 dfree=5
7 0z (1,22 (1,2,2) (1,2,2)
5 6|a 1116 10003 11/0.273 8/0.375
§301 20| Gyee™6 de=6 Orrec=6
© 132 1222 | 1222 | 1222
Table 2: Trelliscode T’ using the original partition
v A Generator (1,3()j n/rate (2,7()j n/rate (1,7()j n/rate
min free free free
dist_profile | dist_profile | dist_profile
5 5|4 1 1¢g| 90222 10/0.2 6/0.333
gs - dfree=7 dfree=7 dfree=5
7 0z (1,22 (1,2,2) (1,2,2)
5 6|a 1116 10003 11/0.273 8/0.375
301 2| Oree=7 Uree=6 Uirec=6
132 1222 | 1222 | 1222
Table 4: Trelliscode T' using the modified partition
v A Generator (1,3) nirate | (2,7) nirate | (1,7) n/rate
min dfree dfree dfree
dist_profile | dist_profile | dist_profile
5 5|4 1 1¢| 120167 12/1.67 9/0.222
gs - dfree=14 dfree=9 dfree=9
7 Oz | (326) (32,2) (322)
5 6 |a 1 1 18 13/0.231 15/0.2 10/0.3
301 2: COrree=12 COrree=10 Oree=10
gz 1325 (3224) | 8222 | (3222

Table5: Trellis code T with the insertion of 2 bits

Table 6: Trelliscode T' with the insertion of 2 bits
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