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一、中文摘要
在某些數位傳輸通道中，如數位磁性記錄

器，或是數位光記錄器等，為了避免位元信號之間
的相互干擾，以及為了考量時序同步信號的產生，
其位元序列必須受到某些持續長度之限制。以”＋
1”及”-1”為位元之持續長度限制序列可轉換為
以”1”及”0”為位元之持續長度限制序列，稱之為
(d,k)序列，其中 d 為”0”位元之最小持續長度，k
為”0”位元之最大持續長度。由許多（d,k）序列所
成之集合為 (d,k)碼 , 或稱持續長度限制碼
(run-length-limited code, RLL code)。
  在國科會計畫NSC81-0404-002- E -002-002中我
們曾經設計出一些具錯誤更正能力之(d,k)碼。我們
發現這些碼在碼率， 錯誤更正能力及複雜度方面
仍然有許多改善餘地。本計畫中以多層次編碼方式
設計出具有低複雜度，高錯誤更正能力及高碼率之
持續長度限制碼。本計畫也有一個很好的附帶結
果，即是找到一個設計低複雜度二元(n,n-1)迴旋碼
之方法。

英文摘要
  For some digital communication channels, 
such as the digital magnetic recorder, or the 
digital optical recoder, to alleviate the 
problem of inter-symbol interference and to 
assist the synchronization, the associated 
data sequences must be subjected to some 
run length constraint. A run length limited 
sequences with symbols of “+1” and “-1” 
can be convert to a sequences with symbols 
of “1” and “0”, which is called a (d,k) 
sequence, where d is the minimal run length 
of 0’s between two consecutive 1’s and k is 
the maximal run length of of 0’s between 
two consecutive 1’s. A (d,k) code is a 
collection of some (d,k) sequences. Such 
code is also called run-length-limited (RLL) 
code.
  In the project NSC81-0404-E-002-002, 
we have designed some (d,k) codes with 
error correcting capabilities.  Recently, we 
find that there are new techniques which can 
be used to further improve the 

error-capability, coding rates and decoding 
complexity of (d,k) codes.  Based on the 
concept of multilevel coding, in this project, 
we  propose several classes of powerful 
(d,k) codes with high error correcting 
capabilities,  high coding rates and low 
decoding complexity. There is a by product 
of this project. That is we find a method to 
design (n,n-1) convolutional codes with low 
trellis complexity.
二 、計畫的緣由與目的(Goals)

In magnetic recording systems, run length 
constraints on data are usually required to 
reduce the effect of intersymbol interference 
and to support bit synchronization. A class 
of constrained data sequences is called (d,k) 
sequence, where d is the minimum run 
length of 0’s between 1’s and k is the 
maximum run length of 0’s between 1’s. The 
set of all binary (d,k) sequences is denoted 
by Cn(d,k).  The set of all concatenatable 
(d,k) sequences of lengh n which has the 
largest cardinality is denoted by ),(max kdC n . 
is used to denote the set of all binary 
(d,k)sequence of length n.  Based on the set 

),(max kdC n , a class of (d,k) trellis codes with 
single-error-correcting capability was 
proposed in [1].  This code has the
drawback of low error-correcting capability 
and high decoding complexity. In [2], the 
concept of Steiner triple system was used to 
improve the error-correcting capability of 
[1].  The penalty is the decreased coding 
rate.  In [3], a class of (d,k) trellis codes is 
proposed, which is based on multilevel 
coding technique used in [4] and [5].  The 
trellis code proposed in [3] is much better 
than that proposed in either [1] or [2].  
However, there is still room for 
improvement.

In this project, we use several techniques 
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to modify the trellis codes of [3] to find 
some good (d,k) trellis codes.  For the first 
one, we use a convolutional processor [6] to 
replace the delay processor used in [3].  
For the second one, we propose a method to 
find better partition rules for ),(max kdC n .  
For the third technique, we add two bits to 
each sequence in ),( kdC n  Examples are 
provided to demonstrate the superiority of 
the (d,k) codes designed by the proposed 
techniques. In the search for good (d,k) 
trellis codes, we also find a method that can 
design good (n,n-1) convolational codes 
with low trellis complexity. The basic idea is 
that we find an optimum permutation for 
any given (n,n-1) binary convolutional code 
that will yield an equivalent code with the 
lowest state complexity.
三、研究方法與成果 (Methods and 
Results)
In [1], a class of RLL trellis (Lee-Wolf code) 
which have single error correcting capability 
was proposed. A Lee-Wolf code is 
constructed by partitioning ),(max kdC n  into 
two subsets, Ce and Co, and using a rate 
(m-1)/m convolutional code with 2m-1 states 
to select RLL n-tuples in Ce and Co, where 
Ce and Co are the sets of even weight and 
odd weight n-tuples in ),(max kdC n

respectively. It is required that |Ce|≧2m-1 and 
|Co|≧2m-1.

In [5], a multilevel coding technique is 
used to construct trellis coded modulation 
systems. Consider a signal set Ù  that 
consists of 2m signal points. Each signal 
point in Ù  is marked by ù ( s% ), where 
s% =(s1,s2,… ,sm),si∈{0,1} , i=1,2,… ,m. The 
encoding of the system in [5] is illustrated in 
Fig.1. At time t, an r-bit message ( )u t%  is 
encoded by a rate r/m convolutional code C 
to result in an m-bit code 
branch ))(),...,(),(()(~

21 tvtvtvtv m= . The 
output of the multilevel delay processor is 

))(),...,(),(()(~
21 tstststs m= . The output of 

the signal mapper is Ω∈= )())(~( tztsω , 
where mlforlmtvts ,...,1),)(()( 11 =−−= λ
and ë is a constant. The resultant trellis code 

is denoted  by T.  If the mapping between 
the m-tuple s%  and the signal point ù ( s% ) is 
appropriately designed, a large free distance 
for T can be achieved for a signal set Ù  such 
as 8PSK or{0,1}4.  Let Ä (z1,z2) denote the 
distance measure between z1 and z2, where z1, 
z2 ∈ Ù .  If Ù  is a collection of binary 
n-tuples for n ≥ m, then Ä (z1,z2) is the 
Hamming distance between z1 and z2. if Ù  is 
a collection of binary n-tuples for n ≥ m. 
Set partition for Ù  is needed. Let Ù  = 
Ù 0/Ù 1/… /Ù m denote the partition chain for 
Ù  provided that Ù  is a linear space. Each 
partition  Ù j-1/Ù j results in two cosets of Ù j.  
We define
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We then have an m-level distance profile 
{△1,… ,△m}. The free distance of T is 
lower bounded [3,4] by

1

ˆ
0 1ˆ(0 ) 0

( ) min ( )
m

LB j jv C t jv

v t
λ

λ
−

∈
= =≠

∆ = ∆∑ ∑             (2)

The bound △LB(ë) is an increasing function 
of ë and will become a constant value △free 

when ë exceeds a threshold  number ëmin .  
A suboptimal decoding for T can be 
implemented by using the trellis of C [4].  
The suboptimal decoding can fully utilize 
the error-correcting capability guaranteed by 
△free.  Hence, the decoding complexity is 
only slightly higher than that of C.

The coding scheme just described is used 
in [3] to construct RLL codes with good 
correcting capabilities. It difficult to find a 
general rule for choosing Ù  and ù  that can 
yield a trellis code T with the largest free 
distance for a given (d,k) constraint and a 
arbitrary n. In [3], Ù  and ù  are chosen by 
following the partition used in [1]. That is, 
we choose Ù =Ù s1=0 ∪ Ù s1=1, where 

emms Csssss ∈∈==Ω = )}1,0(,...,|),...,,0({ 22101 ω and

omms Csssss ∈∈==Ω = )}1,0(,...,|),...,,0({ 22111 ω .Note 
that Ù  used here is not a linear space.  
However, we can design the partition in a 
similar way except that the partition  
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Ù j-1/Ù j here results in two subsets which 
may not be cosets of Ù j. Now, we have a 
distance profile of{△1=1,△2=2… ,△m≧2}. 
Using the distance profile, RLL codes [3] 
are found which are listed in table 1.
Scheme 1:Convolutional processor
In [6], a trellis coding scheme better than 
that proposed in [3] is proposed.  The 
encoder is shown in Fig. 2 which is 
implemented by replacing the delay 
processor in the encoder of Fig. 1 by a 
convolutional processor. The convolutional 
processor is a rate 1 convolutional code with 
generator matrix P. Here, we denote the 
resultant trellis code by T’.  Let 

1l =0, 2l ,… , ml be nonnegative integers such 
that 1/ −∆∆≤ jjjl for 2 ≤ j ≤ m. We will 
construct a convolutional processor such 
that the bit vj(t) will affect the encoding of 

1j+l  output symbols. Define âm = 0 and    

âj = 
1
( 1)

m
i ii j

ξ
= +

+ +∑ l  for 1 ≤ j ≤ m-1. Then 

we have 
Pi,i=Dâië, 

for i=1,2,… ,m, and
Pi,i-1 =

1 1( 1) ( )

0 , 0
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for i=2,3,… ,m.
With such a convolutional processor we have

1,...,2,1),()( −== mjfortvts mm
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sj(t)= 1
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The free distance of T’ is bounded [6] by
1

1ˆ
0 1ˆ( 0 ) 0

( ) min ( )( )
m
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Similar to the case of trellis code T, the 
bound △LB(ë) is an increasing function of ë 
and will become a constant value △ free 

when ë exceeds a threshold  number ëmin .  
A suboptimal decoding for T’ can also be 
implemented by using the trellis of C [2].  
The suboptimal decoding can fully utilize 
the error-correcting capability guaranteed by 
△free.  Hence, the complexity of decoding 
T’ is slightly higher than that of T.

In this report, we use two different generator 
matrice P and apply the concept from [4] to 
compute their free distances.
Case 1:
We use 1l = 0, 2l = 1, 3l = 0 and â1 = 4, â2 = 
2, â3 = 0. Then, we have
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Case 2:
We use 1l= 0, 2l = 1, 3l = 1, 4l = 0 and â1 = 8, â2 = 5, 
â3 = 1, â4 = 0.  Then, we have
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The parameters of some of the resultant 
trellis RLL codes are listed in table 2.  We 
see that there is only slight improvement of 
no improvement for the codes in table 2 as 
compared to the codes in table 1.
Scheme 2 : Modified par tition:
In [1] and [3], the labeling for the signal set 
Ù is chosen in a random way except that 
s1=0 for the n-tuples in the subset of 
even-weight n-tuples, Ce, and s1 = 1, for the 
subset of odd-weight n-tuples, Co.  
Now we propose a method that can label the 
n-tuples in a systematic way.  The method 
of labeling is described as follows.
1. Partition the signal set ),(max kdC n into 

two disjoint subsets(even parity or odd 
parity).

2. An n-tuple (c1,c2,… ,cn)  labeled by an 

index ∑
=

− +=
n

i

i
icI

1

1 12 .

3. Then, we can arrange the n-tuples of 
),(max kdC n in order according to I. We 

choose the n-tuples with the largest 2m-2

indices and the n-tuples with the smallest 
2m-2 indices from Ce to form 

)}1,0(,...,|),...,,0({ 22101 ∈==Ω = mms sssssω   
We also choose the  n-tuples with the 
largest 2m-2 indices and the n-tuples with 
the smallest 2m-2 indices from Co to form 

)}1,0(,...,|),...,,0({ 22111 ∈==Ω = mms sssssω
4. We number these 2m-1 n-tuples in Ce by 

Ie=1,2,… ,2m-1 consider two n-tuples 
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'CandC with indices I and I’ 
respectively. If I>I’ then Ie>Ie’. Similarly, 
we number the 2m-1 n-tuples in Co by 
Io=1,2,… ,2m-1.

5. The labeling of s2,… ,sm for n-tuples in 

Ù s1=0 is given by ∑
=

− +∗=
m

i

i
isS

2

2 12 ,where 

we set 





+==
=−=

− ievenforiIifiS
ioddforiIifiS

m
e

e
22,2

,12

The labeling of s2,… ,sm for n-tuples in Ù s1=1 
can be similarly derived from Io.

Using this new partition (labeling), we 
rederive the distance profile and the free 
distances of some trellis codes T and T’ 
which are listed in table 3 and table 4 
respectively.  We can see that the trellis 
codes T’ using the modified partition have 
much improved free distances.
Scheme 3 : Inser ting 2 bits as buffer  

In[7], Immink proposed the method which 
inserts additional â bits between adjacent 
(d,k) sequences of length n as merging bits 
so that the concatenated sequence can still 
preserve the d and k constraints. From a 
similar concept we add two bits to the end of 
each n-tuple in Cn(d,k).   If the n-tuple has 
even parity, then we add two bits 10.  If the 
n-tuple has odd parity, then we add two bits 
01.  To ensure that the modified (n+2)–
tuple can be cascaded without violating the 
d and k constraints, we must modify the 
constraints on the head and tail in the n-tuple. 
Hence we can not use Lee-Wolf’s design. 
The new constraints are given as follows.
1. The tail of the codeword must end with a 

run of at least d, and at most k-1 
consecutive zeros.

2. The head of the codeword must begin 
with a run of at least d, and at most k-1 
consecutive zeros.

With the insertion of two bits, we can find 
that the minimum Hamming distance 
between an (n+2)-tuple in Ù s1=0 and an 
(n+2)-tuple in Ù s1=1 is 3.  Hence the 
distance profile is improved. We apply this 
technique of bit insertion to either T or T’. 
We can see the free distance are increased. 

The results are listed in table 5 and table 6 
respectively.
Good (n,n-1) Convolutional Codes:
  In the code search for good (d,k) trellis 
codes, we usually need good (n,n-1) 
convolutional codes. We find that it is 
possible to find an optimum permutation for 
any given (n,n-1) binary convolutional code 
that will yield an equivalent code with the 
lowest state complexity. With this 
permutation, we are able to find many (n,n-1) 
binary convolutional codes which are better 
than punctured convolutional codes of the 
same code rate and memory size by either 
lower decoding complexity or better weight 
spectra.
四 、 結 論 與 討 論 (Concluding 
Remarks)  
  In this project, we propose three 
techniques to construct good (d,k) codes.  
We compare the trellis codes using the 
proposed techniques with a class of 
previously known good (d,k) codes shown 
in [3]. The first technique can help construct 
(d,k) codes which achieve slightly increased 
free distances without sacrificing the coding 
rates while the penalty is the slightly 
increased decoding complexity. The second 
technique is a modified partition rule which 
can help to achieve large free distances in 
case that this technique is incorporated into 
the first technique.  The third technique can 
achieve very large free distance.  However, 
the penalty is the decreased coding rate.
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六、圖表（Figures and Tables）

Fig.1 The encoder of T which uses a delay processor
and a signal mapper.
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9/0.222
dfree=5
(1,2,2)

10/0.2
dfree=5
(1,2,2)

6/0.333
dfree=5
(1,2,2)
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 
 
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10/0.3
dfree=5

(1,2,2,2)

11/0.273
dfree=5

(1,2,2,2)

8/0.375
dfree=5

(1,2,2,2)

Table 1: Trellis code T using the original partition

V λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=6
(1,2,2)

10/0.2
dfree=6
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
 
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10/0.3
dfree=5

(1,2,2,2)

11/0.273
dfree=5

(1,2,2,2)

8/0.375
dfree=5

(1,2,2,2)

Table 3: Trellis code T using the modified  partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
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12/0.167
dfree=9
(3,2,6)

12/1.67
dfree=6
(3,2,2)

9/0.222
dfree=6
(3,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

13/0.231
dfree=6

(3,2,2,4)

15/0.2
dfree=6

(3,2,2,2)

10/0.3
dfree=6

(3,2,2,2)

Table 5: Trellis code T with the insertion of 2 bits

Fig.2 The encoder of T’ which uses a convolutional 
processor and a signal mapper 
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min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
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9/0.222
dfree=5
(1,2,2)

10/0.2
dfree=5
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
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10/0.3
dfree=6

(1,2,2,2)

11/0.273
dfree=6

(1,2,2,2)

8/0.375
dfree=6

(1,2,2,2)

Table 2: Trellis code T’ using the original partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

9/0.222
dfree=7
(1,2,2)

10/0.2
dfree=7
(1,2,2)

6/0.333
dfree=5
(1,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
  

10/0.3
dfree=7

(1,2,2,2)

11/0.273
dfree=6

(1,2,2,2)

8/0.375
dfree=6

(1,2,2,2)

Table 4: Trellis code T’ using the modified  partition

v λ
min

Generator
(1,3) n/rate

dfree
dist_profile

(2,7) n/rate
dfree

dist_profile

(1,7) n/rate
dfree

dist_profile

2
5 1 1 1

5 7 0
 
 
 

12/0.167
dfree=14
(3,2,6)

12/1.67
dfree=9
(3,2,2)

9/0.222
dfree=9
(3,2,2)

2
6 1 1 1 1

3 0 1 2
2 1 3 2

 
 
 
 
 

13/0.231
dfree=12
(3,2,2,4)

15/0.2
dfree=10
(3,2,2,2)

10/0.3
dfree=10
(3,2,2,2)

Table 6: Trellis code T’ with the insertion of 2 bits
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