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Scale-Domain Method for Transmission Line Problems and
Modified Method of Lines for PCB Ground Bounce Problems
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Abstract

The Method of Lines (Mol) is used to analyze
the ground bounce noise and resonance effects of a
multi-layered PCB power plane, which affects the
propagation of ground bounce noise in actual
motherboard system. When the problem size is
extended to several wavelengths of the highest
operating frequency, this approach is more efficient
than other methods like the FDTD. From the obtained
numerical and experimental informationr, we can
predict the effects of decoupling capacitors and slits
on planar resonance frequency. On the other hand, we
use Haar wavelet scale domain (HWSD) method to
compute the transients of transmission lines. This
method is versatile to handle dispersive line and
nonlinear loads with arbitrary signal shapes. The
ability of the HWSD method makes it another
efficient tool for transients computation.

Keywords: method of lines, ground bounce noise,
planar resonance frequency, scale
domain, Haar, wavelet, dispersion,
nenlinear effects.

I Introduction

When multi-layer PCB assemblies are used, it
can be divided into layers of signal, power, and
ground pianes. The power plane is sometimes split on
the same plane to separate, for example, the analog
circuitry and digital logic and voltage reference areas.
Due to the lead inductance of package, the output
stage of chip will produce current surge during
transitions. We call it ground bounce noise or deita-1
noise. The noise can degrade the machine cycle time
by causing delays and false switching and must be
controlled for high performance system. Moreover, it
becomes very significant on power and ground planes
at the resonance frequencies of the plane. Such a
noise may pollute the sensitive regions, increase the
noise level in the system and produce some
unpredictable radiation interference. Hence the
prediction of resonance frequencies of power planes
becomes important. Using the cavity model we can
obtain a series of resonance frequencies for regions of
rectangular shape. But the cavity model is not
applicable when the coupling effects of slits and
decoupling capacitors exist. Thus, we have to use
numerical electromagnetics to predict it. The Mol is
found more efficient than FDTD and MPIE(Mixed
Potential [ntegral Equation) methods when the size of
the problem is extended to several wavelengths of the
highest operating frequency.

In addition, we propose the HWSD method for
transients computation of transmission lines. This
method is a general approach to handle lossless, lossy,
dispersive lines and both linear and nonlinear loads
with arbitrary shapes, which other methods can’t do
all well.

I Method of Lines and Equivalent Circuit Model
For our problem, constant permittivity & is

assumed for each dielectric layer. Conducting strips
of vanishing thickness are located at the interfaces



between each layer. From the Maxwell equations, we
can derive a Helmholtz equation

i d¢ Fo .. _

pe +ay’ + e +&p=0
To limit the area of discretization, we enclose the
structure by perfect magnetic wall on the edges. Each
region in the power plane is separated by slits whose
widths are around 20 to 40 mils. Both planes may
sprinkle with small holes. To simplify the problem we
assume that these small holes have slight effects on
resonance frequency. Because the distance between
two planes is much smaller than the wavelength of
the highest operating frequency, we assume that the
field components in the z direction are constant. Then
we need only deal with the x and y variation in the
Helmholtz equation, which is approximated by

[- WP+ k;gj)a =0

where ¢ is a column vector representing the
collection of sampled @’s on the e or h-lines and

P, is a constant matrix. The above equation is
transformed by

o=Tp
to get a system of uncoupled ordinary differential
equations

[k:ej-;ﬁIJ;:o

where T is the transformation matrix composed of
eigenvectors according to

== = ==

The resonance frequency then can be obtained
= A _ <
' k;;menar hJe_,
For the feeding, we apply an equivalent current
source to simulate the coaxial cable feed as shown in
Fig 1. With an impressed current source, the electric
field is given by

E.= jm;t(k:e,:!:—h";g]i J.
N

The numerical effort in computing the field is small

because the matrix P, is sparse. Since the
decoupling capacitors are much smaller than the
wavelength and the size of the plane, and an
equivalent circuit model can be used to approximate
these elements. The conducting and displacement
currents flowing through a cell can be expressed as

IA— = jwngr —[E " d; =jmﬂsrAMEl

1 < _Eh
I, =—|E-dlz=
- ZJ. ZL
respectively. Z, =R+ jol+1/joC is, therefore, the

equivalent impedance of decoupling circuit, L is the
inter-connect inductance, R is the loss factor, and C is
the capacitance of the decoupling capacitor. The iotal
current is the sum of the above two currents and then
the equivalent current density can be obtained as

RE, 1
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where 7, =Z\|Z,, Z, =%¢BC , and C, =£U€’A%

is the inter-plane capacitance. In addition, the

coupling between two sides of a slit is modeled as a

capacitor connecting both sides. The formulae are
(~hE 4 RE™ ]-zl— =t
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Here the width of the slit is small and approximated
by one subdivision.

Il Haar Wavelet Scale Domain Method
The general telegraphist’s equations in time

domain are

—%v(x,r) =R-i(x,0)+ L%f’(x,f)
,_Ej(x t) = G'V(I r]+C£v(x ")
ax e
Approximate the signals by
v(x,0) = Y v, (), (6
2=
i(x,t)~ ij(x)hj.k 9
J=1

where A, ,(#) is the scaled Haar wavelet [3] with
duration At defined

( 2%, j-1+ ;jl)m <t
<(-1+ 22‘?;1),5:
haO=1 % G-+ Eharss
( -1+2g:,2)m
0, others

By inserting the approximation into the transmission
line equations and integrating with respect to t, the
time-dependent

equations transforms to a system of discrete

original system of continuous

time-independent matrix equations
d 1 ,
- E[v] =({[R]+ -A—I[L])[f]
d

= s
— 5 i=(Gl+ N[C])[v}



Once these matrices are determined, equations can be
manipulated in a way similar to those in the
time-harmonic case. Problems with linear loads thus
can be solved directly, and nonlinear loads can be

dealit with by a common iterative scheme,
IV Numerical Examples

Consider an FR4 double side rectangular plane whose
size is 10cm*10cm and dielectric constant is 4.4. We
set two test ports on the plane. One is at (Scm, Scm),
and another is at (5em, 2cm). Using the cavity model
the resonance frequencies are shown in Table 1 up to
3 GHz. Figure 1 displays simulation result, which
agrees with the experimental data. The peaks in Fig.
1 are consistent with the resonance frequencies in
Table 1, but we can’t find the ¢1, 10, or 11 modes in
our simulation, because port 1 is on the central line of
the plane, and is at a null-field point of these mode
patterns. For the same structure, we place eight InF
capacitors neat port |. The equivalent inductance of
the via hole is about 1.25nH for FR4. After adding
these capacitors, we find a minimum around 100MHz
in Fig 2. Because the operating frequency is very low,
we can explain this phenomencn by its equivalent
circuit. Assume that all capacitors and inductances
are identical and the board can be regarded as a
capacitor of capacitance C,. The input impedance of
the equivalent circuit is
7 - -l ,C,
) ijC‘+Cn i—mzLdCdCa
where L, =L/8 ,and C,=8C . The minimum

around 100 MHz is just the resonance frequency of a
series LC circuit composed of the inter-connect
inductor and the decoupling capacitor. Around this
band port 2 can’t receive much power. On the other
hand, the first maximum is due to the resonance of a
parallel LC circuit composed of the inter-connect
inductor and the inter-plane capacitor. The effect of
the number of capacitors is shown in Fig 3. From Fig.
3 we can observe that an increase in the number of
capacitors has little influence since it is related to a
resonance due to lumped circuits. Also the first peak
moves toward higher frequencies as the number of
capacitors increases. Another consideration is the
capacitance of individual decoupling capacitors. If we
use different capacitance, from Fig. 4 we find that the
first peak around 700MHz is almost the same in the
first two cases because the capacitance of the
decoupling capacitors are much greater than that of
the inter-plane capacitors of the PCB. Serious
influence on the first peak will occur when the
capacitance of capacitors is near the inter-plane
capacitance.

Fig 5 is the verification of the HWSD method
with the 1D FDTD. The figure also shows the
convergence of the HWSD method by two different
parameters, Fig 6 is the verification with the phasor

technique and the IFT (inverse Fourier transform),
which a unit rectanguiar puise propagating along a
infinite Debye dispersive transmission line. The
results are consistent. In the last example, we try to
compute the transients of a Debye dispersive line with
nonlinear loads. The convergence of Fig 7 shows the
ability of the HWSD method to deal with the
combined problem.

V Conclusion

The resonance effect of & muiti-tayered PCB power
plane has been predicted by the MoL. Compared with
other method, the MoL is more efficient when the
problem size is extended to several wavelengths of the
highest operating frequency. For the HWSD method,
we have validated its usefulness in dispersive
transmission lines with nonlinear loads. Tt is indeed a
effective and simple technique for a variety of
transient problems of transmission lines.
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Table 1: Propagation mode frequencies in the parailel
plate resonator.
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Abstract

In this paper, we propose a staircase
approximation to solve for the transients
of dispersive transmission lines with
nonlinear loads. Numerical examples,
verified with the FDTD method and the
traditional frequency-domain approach,
are included. Such an approach is with
easy formulation and straightforward
numerical solutions, especially when
dealing with multisection lines.

I Introduction

As the clock rate of digital circuits goes
higher and higher, dispersion of
transmission lines takes a more crucial
role than before. With dispersion, the
pulse shape is distorted, which leads to
variations of duration, rise time and fall
time. If the pulse shape is distorted,

nearby signals are difficult to distinguish
if care is not taken. In short, only when
signals can be predicted and controlied
beforehand do the digital circuits
function correctly, especially when the
dispersion effect is a major concern.

For microwave circuits, frequency
response can be obtained either directly
in uency domain or indirectly in
time domain via FFI. Although the
harmonic balance method [1] is widely
adopted in solving nonlinear loads in
frequency domain, transmission lines in
that method are usually dealt with in
time domain, which inevitably faces the
problem with dispersion and nonlinear
loads if high frequency effects are taken
inte account.

To treat the transient response of
dispersive  transmission
frequency-domain method is adopted
traditionally. It suffers, however, not
only the difficulty with the preserce of

lines, the



nonlinear loads but also the slow
numerical integration when taking the
inverse Fourier transform. The FDTD,
another candidate, is capable of settling
nonlinear loads, but has difficulties
when frequency-dependent factors must
be considered. In addition, the FDTD

becomes involved in dealing with
multisection transmission lines, which
further limits its applications.

The scale domain method [2] can
solve for the transients of dispersive
lines with nonlinear loads through a
straightforward formulation. The next
section will give a sketch of the staircase
approximation, a simplification of the
scale domain method. Section III
provides some numerical examples, and
the last section draws some conclusions.

I Formulation

The dispersive telegraphist’s equations
in time domain are

8 8
Ly =Ri+—(L*i 1
V=R at( *i) (1)

—§i=Gv+§(C*v) @)

where the star “*” represents the
convolution operation to account for

dispersion. Approximate the signals by

Wzt = v, R, () ©
i(n0)= 31, (o)h, () @

=

where A (1) is the unit rectangular

pulse with duration As. This is called
the staircase approximation since the
voltage and current signals at a given x

is now approximated by a staircase- like
function. By inserting (3) and (4) into (1)
and (2) and integrating with respect to t,

the onginal system of continuous
time-dependent equations transforms to
a systern of discrete time-independent

matrix equations

_.;:[v] =([R]+ -;—[L]){f] ()

d .. 1
- ..{E[,] = ({G]+ > [CDIV] (6)

where [v] and [7/] are column
matrices and [R], [L], [C], [C]
are square matrices with

[R] = R[/] (7
[G]=0l1]) (8
[L1= LM} )

[CY=CIMT™ (e, l1] +§[Dfs1) (10)

Here [I] stands for identity matrix and

05 0 -+ - 0
1 05 ° :
[M]=] : ) . :
: .05 0
|1 e e ] O.SJ
’iz[ebu-ﬁl}m _Zebh—j‘.l.'_'.t +
eb(i—i—i}ﬁ:] i> J
[Dis]=d, = ) f_[ea(;-;ﬂw ety _
bl
bir] » i=]
0 i<
Assume Debye dispersion [3]

C{w) =Ce (@)
e (w)=¢, + y(w)



&, — £,
@) =—"——
x{@) L+ jat,
So
g_g—eun __'Ir
X = e *U()

0
by inverse Fourier transform, and

E, - &,
a=——"

correspondingly. Here £, means the
relative permittivity at de, &, is the
relative permittivity at @ =<, and ¢,
stands for the Debye relaxation constant.

Once these matrices are determined,
equations can be manipulated in a way
similar to those in the time-harmonic
case. Problems with linear loads thus
can be solved directly, and nonlinear
loads can be dealt with by a common
iterative scheme [2].

Il Numerical Results

To prove the usefulness of the staircase
approximation, consider a two-section
lossless ( R=G =0} transmission lines
shown in Fig. 1, and shunt with a
capacitor and a nonlinear load at the
interconnection and the right terminal.
At the same time, generator with an
internal resistor is placed at the left end.
As the first example, assume both
sections of the transmission lines are
with the same parameters, £=0.5(m),
L=05uH/m), and C=02(nF/m).
In addition, a matched generator excites

unit rectangular pulse with duration
w =1(nsec). The nonlinear loads are
described by i=001xv? for v>0
and i=0 for v<0, and shunt with
capacitors C, =50(pF). The resultant
voltage signal at x=1.0(m) calculated
by the staircase approximation (solid
ling) and the FDTD (dashed line) are
shown in Fig. 2. Both match well. The
zero voltage before 10{nsec) is due to
the delay of propagation. The rise and
fall of the wvoltage signal between
10(nsec) and 20(nsec) are related to
the charge and discharge of capacitors
caused by the finite duration pulse. The
rise after 20(nsec) is excited by the
reflection from the interconnection.

Next, let’s remeve the nonlinear
loads the Debye
dispersion to both transmission lines
with parameters &, =9, £, =4 and

and introduce

w, =1/¢, =5z x10° . Apply the same

pulse excitation and replace the internal
resistor by R, =150(Q2). The voltage

response calculated at x=0.5(m) and
x=1.0{m) by the staircase approxi-
mation (solid line} and the frequency-
domain transform method (dotted line)
are illustrated in Fig. 3. The zero voltage
are again due to the propagation delay.
The smoother shapes and smaller
magnitude, compared with the previous
example, reveal the effect of dispersion.
The agreement of both curves validates
the capability of our method in dealing
with dispersive transmission lines.



Last, but not least, assume the same
parameters used in the second example
and apply the nonlinear loads utilized in
the first example. The results are
exhibited in Fig. 4, in which the solid
line is with the parameters Af=10.1
(nsec) and 512 bases while the
dashed line adopts Ar=0.2(nsec) and
256 bases. The results show that the
convergence of our method is pretty
good.

IV Conclusion

We have proposed the staircase approxi-
mation and shown its usefulness in
dealing with transients of multisection
dispersive transmission lines with non-
linear loads. Numerical results verified
with the FDTD and the conventional
frequency-domain method have been
exhibited. This method can be easily
formulated and applied to problems with
frequency-dependent loads, which 1is
important for more realistic applications.
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Muiti-Layered PCB Power Plane Resonance Analysis
Using Method of Lines

Ming-Iu Lai, Jean-Fu Kiang and Shyh-Kang Jeng
National Taiwan University
Graduate Institute of Communication Engineering and
Department of Electrical Engineering
(E-mail: skjengi@ew.ce.ntu.edu.tw)

Abstract: The Method of Lines (MoL) is used to analvze the
resonance eifect of a multi-layered PCB power plane, which
affects the propagation of ground bounce noise in actual
motherboard system. When the problem size is extended to
several wavelengths of the highest operating frequency, this
approach is more cfficient than other metheds like the Finite
Difference-Time Domain {FD-TD) method and the Mixed
Potential Integral Equation (MPIE} method. From the
obtained numeric and experimental information. we can
predict the effects of decoupling capacitors and stits on planar
resonance frequency.

Index Terms-Method of Lines. ground bounce noise, planar
resonance frequency.

1. Introduction

When multi-layer PCB assemblies are used, it can be divided
into layers of signal, power, and ground planes [1]. The
power plane is sometimes split on the same plane to separate.
for example, the analog circuitry and digital logic and voltage
reference areas [1]. Due to the lead inductance of package,
the output stage of chip will produce curremt surge during
transitions. We call it ground bounce noise or deita-l noise.
The noise can degrade the machine c¢ycle time by causing
delays and false switching and must be controfled for high
performance system [2). Moreover, it becomes  very
significant on power and ground planes at the resonance
frequencies of the plane. Such a noise may pollute the
sensitive regions. increase the noise level in the svstem and
produce some unpredictable radiation interference [3]. Hence
the prediction of resonance frequencies of power planes
becomes important. Using the formula of cavity model we
can easily obtain a series of resenance frequencies for regions
of rectangular shape. But the cavity model is not applicable
when the coupiing cffects of slits and decoupling capacitors
exist.

Accerding to numerical and experimental results [4]-[9], the
lowest resonant frequency zone of the power plane is usually
up to several hundreds MHz, thus we have 10 use numerical
electromagnetics to predict it. The most popular methods for
solving such a problem are the Finite Difference - Time
Domain {FD-TD} method [7] and the Mixed Potential
Integral Equation {MPIE} method [8}[9]. However, these
approaches will take long time in computing when the size of
the problem is extended 1o several wavelengths of the highest
operating frequency.

In this paper we'll introduce the Method of Lines (MoL) to
deal with this problem. The MoL is found more efficient than
FD-TD and MPIE methods. In Section 2 we formulate the
problem by the Method of Lines and equivalent circuit model.
In Section 3 we exhibit some simulation and measurement
results and give some discussions on the results. In Section 4
we give a brief conclusion.

2. Method of Lines and Equivalent Circuit Model

2.1 Method of Lines

For our problem, constant permittivity ¢ is assumed for each
dielectric layer. Conducting strips of vanishing thickness are
located at the interfaces between each layer. From the
Maxwell equations, we can derive a Helmholtz equation
Q+£"—f~+~alf’+k:w=0 ()
(7, S T o
with « the angular frequency, # the permeability of free
space, ¢ the zcomponent of the electric or the magnetic
field, £° =@°ue . The coordinate system is shown in Fig. 1.

Fig. 1: The coordinate system of the problem.

To lirit the area of discretization. we enclose the structure by
perfect magnetic wall on the edges [12]. Each region in the
power plane is separated by slits whose widths are around 20
to 40 mils. Both planes may sprinkle with small holes. To
simplify the problem we assume that these small holes have
slight effects on resonance frequency. Because the distance
between two planes is much smaller than the wavelength of
the highest operating frequency, we assume that the tield
components in the z direction are constant. Then we need
only deal with the x and y variation in the Helmholtz
equation. After discretization, the Helmholtz equation is
approximated by

'f = . Sy= -
i—h*PLt+ke ! p=0 2}
L £, an {

where g; is a column vector representing the coliection of

sampled @ ‘s on the e or h-lines shown in Fig. 2 and P.isa
constant maitrix.



The above equation is transformed by
v=Tp (3)
to get a system of uncoupled ordinary differential equations
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Fig. 2: The ¢ and h-lines for y=y,.
(:.:;.;,7-;:*?];:0 (4)

where 7 is the transformation matrix composed of
eigenvectors according to

T P.T=2 (3)
The resonance frequency then can be obtained
A, cA,
@ == (6)

hﬂ‘ LE,E, h,f.‘:

For the feeding, we apply an equivalent current source to
simulate the coaxjal cable feed as shown in Fig 3. With an
impressed current source, the clectric field is given by

E. = jw;.t( ke [~ h"?”TII (7)
K

The numerical effort in computing the field is small because

P
|1

(a) (b)

Fig. 3: (a} The structure of coaxial feed. (b} The squivalent
method of coaxial feed.

the matrix £. is sparse.

1.2 Equivalent Circuit Model

Since the decoupling capacitors are much smaller than the
wavelength and the size of the plane. and an equivalent
circuit model can be used to approximate these elements. The
conducting and displacement currents flowing through a cell
can be expressed as

L= sz, [E-d5=jors AL, (%)
!hz-—L E-dfsg—*h (9
Z, Z

respectively. Hence Z, = R~ jal +1/joC is the equivalent
impedance of decoupling circuit, L is the inter-connect
inductance [12), R is the loss factor, and C is the capacitance
of the decoupling capacitor. The rotal current is the sum of
the above two currents and then the equivalent current
density can be obtained as

hE, 1

=22 1 10
T 10

ael?

where Z0=Z,12, . Zo= Y}, + and ¢, =5 s

the inter-plane capacitance.
In addition, the coupling between two sides of a slit is
modeled as a capacitor connecting both sides. The formulae

are
(- hE™ < hE }ZL =7 {(n
a ;
J = f R
: _4_‘,ZL( ) {12)
A
Jrvl.; _ E:—I,_; _ EI".J ]
: _4,,,3((' ) {13)

Here the width of the slit is small and approximated by one
subdivision.

3. Results and Discuossions

3.1 Rectangular Plane and Decoupling Capacitors

Consider an FR4 double side rectangular plane whose size is
10cm*10cm and dielectric constant is 4.4. We set two test
ports on the plane. One is at {Sem. Scm), and another is at
(5cm, 2cm). Through the cavity model the resonance

frequencies are given by

¢ mY (Y
v R I
with a and b the length of the sides of the power plane. ¢ the
lightspeed in free space and m and n the mode numbers.
Table 1 shows the resonant freguencies and the corresponding
indexes up to 3 GHz. Figure 4 displays the simulation result.
which agrees with the experimental data. The peaks in Fig. 4
are consistent with the resonance frequencies in Table 1. but
we can’'t find the 01, 10, or 11 modes in our simulation.
because port 1 is on the central line of the plane. and is at a
nuil-field point of these mode pattems.
For the same structure, we place eight InF capacitors near
port . The equivalent inductance of the via hole is about
1.25nH for FR4.

fo=

Table 1: Propagation mode frequencies in the parallel piate
resonator.

mn 7o (GHz)
00 0
Olor 10 0.715
11 oIt
20 or (12 1.430
i2or21 1.599
p) 2,022
3 or I3 2261
32 or 23 2.578
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After adding these capacitors. we find a minimum around
100MHz in Fig 5. Because the operating fequency is very
low. we can explain this phenomenon by its zquivalent
circuit. Assume that all capacitors and inductances are
identical and the board can be regarded as a capacitor of
capacitance ', . The input impedance of the equivalent
circuit is
7 - i-w'l,C,

T jelfC,+C,)-e'L C 0]

where L =L/8 .and C =8C . The minimum around 100

(15)

MHz is just the resonance frequency of a series LC circuit
composed of the inter-connect inductor and the decoupling
capacitor. Around this band port 2 can’t receive much power.
On the other hand, the first maximum is due to the resonance
of a parallel LC circuit composed of the inter-connect
inductor and the inter-plane capacitor. The effect of the
number of capacitors is shown in Fig 6. From Fig. 6 we can
observe that an increase in the number of capacitors has little
influence since it is related to a resonmance due to lumped
circuits. Also the first peak moves toward higher frequencies
as the number of capacitors increases. Another consideration
is the capacitance of individual decoupling capacitors. If we
use different capacitance, from Fig. 7 we find that the first
peak around TO0MHz is almost the same in the first two
cases because the capacitance of the decoupling capacitors

are much greater than thar of the inter-plane capacitors of the
PCB. Serious influence on the first peak will occur when the

capacitance of capacitors is near the inter-plane capacitance.
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Fig. 6: The effect of the number of capacitors.
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3.2 Effect of slits

Consider a rectangular plane whose size is 10cm*Scm. [n the
first case we etch two 2mm slits on the upper plane, and in
the second case two Zmm slits on the upper and the bottom
plane. The simulation and experimental results are exhibited
in Fig 8. They are consistent only around the first peak. The
simulation results are not as good at high frequency. The
reason may be that our algorithm is based on the assumption
of constamt field in the z direction. while when the e-lines are
near the slit, the field component in the z direction should
have a large variation. Besides, we only use a capacitor to
simulate the coupling effect, which may be good only for low
frequency, and more complex coupling effect across the slot
could happen in the high frequency region.
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4, Conclusions

Based on the Method of Lines a new numerical tool has been
propased. One advantage of this approach is that it’s more
efficient than convential numerical methods. For example,
when we deal with a rectanpular plane whose size is
10em* 1 0cmn, our approach takes about 1 minute for a single
frequency on a PC with an AMD K-6-300 CPU. In the same
platform using IE3D sofeware to solve the same problem
takes about 40 mimues for one frequency. Though this
method has some troubles in high frequency, it has good
proformance up 10 1 GHz Finally, our numerical results also
suggest two rules for the [avout of power and ground planes:
1).Use the slits on power plane as less as possible.

2).Put the sensitive chips or intensive noise sources near the
central part of a rectanglar region to reduce the oumber of
excited resonance modes.
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