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This is the second year of a three year project. In
the first year of a three year project, we introduce a
novel minimum noise structure for 2-channel filter
banks. In this report, we generalize the results of
the first year to the M-channel case. The resultant
optimal transform coder is called prediction based
lower triangular transform (PLT). The PLT has the
same coding gain as the Karhunen-Loeve transform
(KLT). Compared with the KLT, the PLT has a
much lower cost. In addition, it enjoys many other
advantages that make it an attractive candidates
for lossless and lossy image compression.
Keywords: Image compression, wavelet, coder
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Transform coding has found many applications in
various areas of signal processing and communica-
tion [1]. Fig. 1 shows a transform coder implement-
ed using multirate building blocks. It is well known
that the optimal unitary transform that yields the

maximum coding gain is the KLT. Due to its signal
dependence and computational cost, the KLT is of-
ten only used as a benchmark for performance com-
parison. In many applications, suboptimal signal
independent transforms like discrete cosine trans-
form (DCT) are often used.

Recently there are interests in applying the KLT
to universal transform coding. By estimating the
statistics from quantized data, the authors in [2]
derive a class of universal transform coders using
KLT. No side information is needed because both
encoder and decoder can access the quantized da-
ta. In [3], the authors introduce a classification
based method using KLT. The signal space is di-
vided into a number of classes and a fixed transform
is designed for each class. In [4], it was shown that
under the assumption that the quantization noise
is white, the coding gain of the best non unitary
transform cannot be better than that of KLT. In
this report, we introduce a class of optimal nonuni-
tary transform that has the same coding perfor-
mance as KLT. In addition to its excellent coding
performance, the new transform has many other
features that make it an attractive choice for signal
compression. Many results in this paper will be s-
tated without proof. Readers are referred to [5] for
details.
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Consider Fig. 1. Let x(n) and y(n) be respectively
the input and output vectors of the transform T.
Assuming that the input is real and WSS, then the
M x M autocorrelation matrices are related as
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R, = TR,T”. (1)



x(Mn-M+1) b))

x(Mn-M+2)

G

q,n)

- q,(n)

L »

2 (Mn) B . -
VA X n y ~ n
il Ry el 8

x(n) y(n)

1: An M-dimensional transform coder.

Since R, is symmetric, its eigenvectors are or-
thonormal. By choosing these eigenvectors as the
column vectors of T, R, is diagonal. In other word-
8, the transform coefficients y;(n) are uncorrelated.
Such a unitary transform T is the well-known KLT.
One can show [1] that KLT maximizes the coding
gain of the transform coder. Let o2 be the input
variance and 0% (k) be the variances of z3(n) for
KLT. Then under optimal bit allocation, the cod-
ing gain of KLT is given by [1]
o3 oz

cg = _ -
KLT HQ/I:BI [U%(LT(k)] /M " [det Rw]l/M(Q)

However the KLT is not the only transform that has
this decorrelation property. In fact, there exists a
lower triangular matrix T such that the transform
coefficients yi(n) are decorrelated. To see this, we
need to use the following lemma from matrix theory

[6]:

Lemma 1 The LU decomposition of matrices [6]:
Let A be an M by M nonsingular matriz. Sup-
pose that all of its principle submatrices Ag are
nonsingular. Then A can be written as

A =LDU, (3)

in which L (respectively U) is a lower (respectively
upper) triangular matriz with all diagonal entries
equal to 1, and D is a diagonal matrix. Moreover
the matrices L, U and D are unique. In particu-
lar, D is determined by det[Dg] = det[A k], where
K=1,...,N.

It is not difficult to show that if the matrix A is
symmetric, then the unique matrices U and L in
Lemma 1 are related as U = L. Applying this fac-
t to (1), we immediately see that there is a unique

lower triangular matrix P such that PR, (M)PT
is a diagonal matrix. Such a transform P will be
called Prediction-based Lower triangular Transfor-
m (PLT). The reason for this name will become
clear later. The geometric mean (GM) of the sub-
band variances 0%, becomes

M-1
H [U%LT(k)]l/M = det[PRwPT]l/M — det[Rw]l/M‘

k=0

(4)
The GM of 6%, (k) is the same as that of 0%, (k).
However the PLT is not unitary and one can show
[5] that the quantization noise ¢;(n) in Fig. 1 will
be amplified by the inverse PLT at the decoder.
Therefore the coding gain of the PLT is less than
that of KLT in (2) if the traditional transform cod-
ing structure in Fig. 1 is used. To solve this prob-
lem, we will introduce a novel minimum noise struc-
ture for the PLT in the next section.

Given any input with autocorrelation matrix R,
PLT can be obtained by using the Gaussian elim-
ination in O(M?). However since R, is Toeplitz,
the computation of PLT can be done in O(M?). To
see this, let pg ; be the coefficients of P in the kth
row and let

P (z) =1 +pk,k_1z_1 +... +pk,oz_k, (5)

for k=1,...,M — 1. If we take Pg(z) as the kth
order prediction filter of z(n), then the transform
coefficients yx(n) are the kth order prediction er-
ror ex(n — M + k + 1). Using the orthogonality
principle from linear prediction theory [1], one can
show that E{yx(n)y;(n)} = 0 for k # j. From
Lemma 1, we know that the lower triangular ma-
trix with such a decorrelation property is unique.
Therefore the matrix P formed by the prediction
filter coeflicients is the PLT. Hence P is called the



prediction-based lower triangular matrix. Using the
Levinson-Durbin fast algorithm, all the kth order
prediction filters (for k =1,..., M — 1) can be ob-
tained in O(M?). The kth subband variance for
PLT, 0%, +(k), is equal to the kth order prediction
error variance, £(k).

4 Ladder-based and MINLAB
Structures for PLT

Using two different factorization forms of lower tri-
angular matrices, we are able to find two struc-
turally PR implementations using ladder structure
for PLT [5]. In this paper, we will discuss only one
of the structures and readers are referred to [5] for
the other. Note that the lower triangular matrix P
can be decomposed as

P=P,P,...Py_i, (6)

where the elementary matrix Py, is

Ik OM—k—lxk

Pk: Pro .-+ PkEk—1 1 ... 0

kaM—k—l IM—k—l

Using (6), we have P~ = Py} | ...P{'. The in-
verses of these elementary matrices, P,;l can be
obtained by replacing the nontrivial elements py, ;
in P with —py, ;. Fig. 2 shows the ladder-based im-
plementation obtained from this factorization for
the case of M = 4. The advantages of the lad-
der structure are two-fold: (1) In the absence of
quantizers, the PLT coder continues to have PR
even when all the multipliers p; ; in the structure
are quantized to a finite precision. (2) The inverse
transform also has py; as its multiplier and it can
be obtained by inspection.

However, the PLT is a nonunitary matrix, so is
its inverse. Hence the PLT coder does not have
the energy preservation property. In general, the
quantization noise generated in the subbands will
be amplified at the decoder. To see this, consider
Fig. 2. The inputs to the multipliers py ; at the
encoder are the unquantized data while the inputs
to the multipliers p; ; at the decoder are quantized
data. That means, the predictors at the encoder
use unquantized data as their observations while

the predictors at the decoder use the quantized
data. It is this mismatch that causes the noise
amplication. To avoid the mismatch of observa-
tions, one can modify the structure so that the in-
puts to the multipliers p; ; at the encoder are the
quantized data instead of the original unquantized
values. The encoder of the modified structure for
M = 4 case is shown in Fig. 3 and the decoder
is the same as Fig. 2. From the figure, one can
verify that the structure has the unity noise gain
property. This property holds even for correlated
and colored quantization noise. The implementa-
tion in Fig. 3 will be referred to as MInimum Noise
LAdder-based Biorthogonal (MINLAB) structure
for PLT. Using the unity noise gain property and
the fact that the GM of the subband variances is e-
qual to det[R;], one can prove that the coding gain
for the MINLAB PLT coder is the same as KLT.

x(n)

3: The encoder of a PLT MINLAB structure,
the decoder is the same as Fig. 2.

The PLT has many other advantages. For ex-

ample, they can be used to implement a universal
transform coders that have the ability to adapt to
the input statistics. Lossless transform coders can
also be derived from PLT after the simple addition
of some rounding operation in the MINLAB struc-
ture.
AR(1) Inputs: If the input is an AR(1) process
with correlation p, then all the prediction error
polynomials Pg(z) in (5) will have the same form
(1— pz~1). The PLT in this case has the following
closed form

1 0 0 0
—-p 1 0 0
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2: Ladder-based implementation of a four-channel PLT coder.

Once p is known, we can find P by inspection, no
computation is needed. Therefore the optimal uni-
versal PLT coder introduced in Section 4 becomes
very simple, we need to estimate only one parame-
ter p. The coding gain in this case becomes

=1

CGprr,min(M) = [1 —1p2] " (8)

When M is large, the above gain approaches the
coding gain of a DPCM coder. Also note that the
transform in (7) is almost independent of the input
signal. An M x M PLT for AR(1) process need-
s only (M-1) multiplications and additions. Thus
its complexity is lower than the DCT which has a
complexity of O(M log M). Moreover the PLT in
(7) is optimal for all AR(1) processes, unlike DCT
which is optimal only when p approaches 1.

5 HERRET:

The result of this project is very satisfactory. We
have proposed a class of low cost optimal trans-
form coders. The following comparison shows that
the proposed PLT outperforms the KLT in many
aspects:

1. PLT has the same coding performance as the
KLT.

2. The design cost of PLT is much lower than
that of KLT. The implementational of PLT is
less than one half of KLT.

3. Unlike KLT, PLT has a structurally PR im-
plementation using simple building blocks.

4. PLT coders can implement both lossy and loss-
less compression while KLT in general cannot
be used for lossless coding.

5. Unlike KLT, PLT has the simple form in (7) for
AR(1) inputs. In this case, the M-dimensional
PLT takes only M — 1 multiplications and ad-
ditions for each input block. Moreover it is
almost signal independent.
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