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ABSTRACT

With the rapid developments of wireless communications, it is highly desired for users to access the network
information with spoken dialogue interface via hand-held devices at any time, from anywhere. One possible
approach towards this goal is to perform speech feature extraction at the hand-held devices (the clients) and have
all other recognition tasks and dialogue functions absorbed by the server. This report investigated distributed
Chinese keyword spotting and verification under this scenario. A “phonetically distributed” Mandarin speech
database including all possible Mandarin syllables and context relationships with frequencies roughly proportional
to those occurring in daily Mandarin conversation is used to train abest set of vector quantization codebooks, such
that the syllable recognition accuracy degradation due to quantization errors is minimized. Enhanced Chinese
keyword spotting techniques were then developed using utterance verification approaches with weighting
parameters optimized by MCE training. Experimental results indicated that the keyword verification approach
achieved significant improvements in keyword spotting performance, and the overall results integrating vector
quantization, keyword spotting and verification is quite satisfactory.
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1 INTRODUCTION

With the rapid devel opment of wireless communications, strong demands are emerging for the users to access the
network information via simple hand-held devices at any time, from anywhere. As the size of such hand-held
devices shrinks while that of human fingers doesn’t, spoken dialogues will no doubt become one of the few most
attractive interfaces for user-network interaction. The concept of Distributed Speech Recognition (DSR) was
developed under such a scenario, in which the complicated speech recognition processes can be distributed over
the network with servers absorbing the majority of the computational requirements and the hand-held devices as
the clients.

One possible approach for such DSR concept is to have the speech signal feature extraction performed at the
hand-held devices (or the client), while leaving everything else at the servers. There are quite severa possible
advantages for this approach. First, the computational requirements at the client are low, thus practically feasible
for many different designs of hand-held devices. Second, transmission of the compact feature parameters via
wireless channels may need much less bandwidth, which is very precious for wireless networks, as compared to
the transmission of the entire speech signals. Of course, there also exist various difficulties for this approach as
well. One of them is the efficient representation of the feature parametersin form of binary digits, so that they can
be transmitted in wireless packets. The Split Vector Quantization (SV Q) approach as proposed by the European
Telecommunication Standards Institution (ETSI) is one possible approach, in which the MFCC parameters are
vector quantized before transmission. But one challenging issue, anong many others, with this approach is the
extra recognition errors induced by the quantization errors. The work described in this report is based on the SVQ
approach, but considering the phonetic distribution of Mandarin Chinese.

The focus of this report is two-fold. The first is the SVQ codebook design taking into account the phonetic
distribution of Mandarin syllables. The purpose is to make sure the degradation in accuracy for Mandarin syllable
recognition can be minimized after the vector quantization. This is because Mandarin Chinese is a syllable-based
language and syllable recognition accuracy translates directly into any other metrics for user-network interaction,
such as the word accuracy, keyword spotting rate, average precision rate for information retrieval, or speaker
intention understanding rate. The second focus of the paper is the enhanced approaches for Chinese keyword
spotting, because keyword spotting is the enabling fundamental element for many spoken dialogue systems. Here
we used improved utterance verification approaches with parameters optimized by Minimum Classification

Error (MCE) methods to verify the spotted keywords. In other words, the input keyword is accepted if
r(X|K >th (1)

elsewergject it, where x isthe observed signal, k isthe spotted key-word, r (>) is some confidence measure,
and th is athreshold. This implies the primary goa is to keep the fase alarm rate very low. This is because
incorrectly received keywords may lead to misunderstanding in dialogues, which is difficult to recover, therefore
such errors should be minimized in any case. On the other hand, if some keywords are missing, the system can

always ask the user to repeat his question. Thisis the way to improve the dialogue reliability.



2. SPLIT-VECTOR QUANTIZATION (SVQ) FOR DISTRIBUTED SPEECH
RECOGNITION (DSR) ENVIRONMENT

A Distributed Speech Recognition (DSR) system is one in which the network clients may call for some recognition
services and the recognition task is primarily performed in the server, while the network may include wireless
channels or the Internet. One of the most significant issuesin DSR is to transmit sufficient speech information for
recognition purposes in a band-limited channel and to minimize the recognition errors, given unavoidable
quantization errors and channel transmission errors. Besides, because the client devices may have very limited
computation functionalities and memory size, a proper division of the recognition task between the client and the
server is also very important. In this report, our approach was based on the ETSI standard [1]; that is, at client side
the MFCC (Mel-frequency Cepstrum Coefficient) coefficients are vector quantized and then transmitted to the
server, and the first and second derivatives for MFCCs are then generated and the recognition task performed at
the server. In this way, the limited computation requirements for feature extraction makes it feasible for many
different designs of hand-held devices to serve as the clients, and dl the complicated speech recognition and
dialogue modeling jobs can be absorbed by the server.

We used 13 MFCCs per frame, consisting of C;, Cs,..., Cy, plus the log-energy E. Without vector quantization,
the data rate required for transmission of the 13 real numbersis still high as high as 41.6 kbps(1 floating number =
32 hits, a total of 13 floating numbers per frame, 100 frames per second). This is why we need to compress the
MFCC vectors by SVQ (Split Vector Quantization) as proposed by ETSI, athough the detailed quantization
scheme used in the studies here are dlightly different. The procedure for SVQ is simple. Fist, afew coefficients are
grouped together to form sub-vectors, and then a VQ codebook is trained for each sub-vector. Based on the ETSI
experiences, we assume that neighboring MFCCs (eg. C, and C,.;) are usualy more correlated, while the
log-energy component is less correlated to all the other components. So we group every two subsequent MFCCs
into a sub-vector, and leave the energy component alone to be a single sub-vector. Thisis illustrated in Figure 1.
We then assigned different codebook sizes for each sub-vector considering the desired transmission bit rates; that
is, the allowed quantization errors for different sub-vectors should be properly selected. Finally, we use k-means
algorithm [2] to train the codebooks for the sub-vectors. The detailed experimental results will be further

illustrated |later on in section 4.
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Figure 1: Building up sub-vectors.

3. KEYWORD SPOTTING AND VERIFICATION
In a dialogue system, the incorrectly recognized keywords may lead to serious misunderstanding. In such cases
the user may need to use very long conversation to bring the dialogue back to the right track, if the conversation

doesn’t totally deviate from what the user wants. But if some keywords are missing, the system can aways ask the



user to repeat the question. Such situation becomes more critical in wireless environment. This is why spotting
and verification of keywords are important.

With the above considerations, the approach used in this report is key-word verification based on utterance
verification approaches. The simplest utterance verification is the so-called dichotomizer, i.e, to use the
likelihood ratio of the best key-word candidate to the 2™ key-word candidate to determine the confidence measure

of the best key-word [3],

@

pX 1KY
AX|KP)

r(X1k9)=d 1>th

where o[} is the sigmoid function, k9 is the best keyword candidate, k@ isthe 2™ key-word candidate, X
is the observed signal, ,(x|x) is the confidence measure for the best keyword KY, and th is a threshold.
Therefore the best keyword candidate k@ is accepted when the confidence measure is high enough; else we
reject it.

There have been avariety of different approaches to verify the utterances, just to name afew below.

Using anti-model s trained from the cohort set Q of the desired keyword [4],

PX1KD) ©)

PX kD)

r(X1k) =d ]

where k® istheanti-model of k&

Using the posterior probability directly as the confidence score [5],

PIX | KY) p(k®) 4

X1K2) = p(k® | X) =
r(X1K?) = pk® | X) 00

Using filler models and OOV models with the N-best word candidates [6],
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where K is the /” best key-word candidate, f is the filler model, j is the OOV model, k',
f and j~ are the anti-models, I, //_ |, are weighting coefficients to be selected, and the

summation in the first termis over all the N-best candidate words.

The key-word verification approach used in this report is similar to that in equation (5), but with a small

modification as given below, which was found to provide good results for the task here in our experiments.

0y = & AX|K?) AX|f) (6)
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where the likelihood scores for k? and f were approximated by the geometric mean of the relevant

probabilities, as shown in the following formula,
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The coefficients Vil sl yo1,} Were optimized using the Minimum Classification Error (MCE) method, as

proposed previously [6].

4, EXPERIMENTAL RESULTS

The first task is to develop a set of VQ codebooks good enough in minimizing the syllable recognition accuracy
degradation due to quantization errors for Mandarin Chinese. Thisis because Mandarin Chineseis a syllable-based
language, and syllable recognition accuracy trandates directly into any other metrics such as word accuracy,
keyword spotting rate, average precision for information retrieval, and speaker intention understanding rate. A
carefully designed “phonetically-distributed” Mandarin speech corpus for daily conversation applications was
therefore used in training the VQ codebooks. This corpus not only includes all the Mandarin syllables and context
relationships, but al the Mandarin syllables and context relationships appear in this corpus with frequencies
roughly proportional to their distributionsin daily conversation in Mandarin Chinese. The VQ codebook optimized

with this corpus therefore serves the purpose here in this study.

VQ Codebooks Bit Bit Allocation to
Rates(kbps) the sub-vectors

(A) 8777766 47 8| 7| 7| 7| 7| 6| 6

(B) 7766666 4.4 7| 7| 6| 6| 6| 6| 6

Table 1. The Bit Allocation to the two sets of VQ codebooks.

Two sets of VQ codebooks were developed with their bit allocation shown in Table 1, requiring 4.7 kbps and
4.4 kbps respectively in transmission assuming 10 frames/sec. In each case the free syllable recognition accuracy
(i.e., no knowledge about the lexicon and no language model) has been optimized as shown in Table 2. Initial/Final
models were used in the Mandarin syllable recognition here, where Initial is the initial consonant for the syllable,
while Fina is everything after the Initial, including the vowel/diphthong part plus optional medials and nasal
endings. It should be pointed out that the vector quantization produces quantization errors. Therefore if the syllable
HMMs are trained with unguantized MFCC coefficients while the test MFCC coefficients are vector quantized,
this was a mismatched condition just like noisy speech recognition by clean speech models. On the other hand,
since the VQ codebooks are known to the server, the matched condition is achievable by simply using the vector
quantized MFCC coefficients to train the syllable HMMs. In Table 2, the first row is the baseline test with syllable
HMMs trained by unquantized MFCC coefficients and the test speech features also unquantized. The next two

rows are for the mismatched condition. It can be found that with both VQ codebooks the syllable accuracy was



seriously degraded. The last two rows of Table2, are for the matched condition, i.e., the syllable HMMs are trained
with vector quantized MFCC coefficients. It can be found that with both VQ codebooks and matched HMM

training condition, only very slight accuracy degradation was observed.

V Q codebooks Free Syllable Recognition Bit
Accuracy (%) Rate

Mix2 | Mix4 | Mix8 | (kbps)

Baseline 54.02 60.79 67.75
(without VQ)

(A)8777766 40.06 45.51 51.02 4.7

(mis-matched)

(B)7766666 39.93 45.05 50.54 4.4

(mis-matched)

(A)8777766 52.73 | 59.71 | 66.98 4.7
(matched)

(B) 7766666 52.72 59.63 66.78 4.4
(matched)

Table 2. Free Syllable Recognition Accuracy for different sets of VQ codebooks under matched/mismatched

conditions.

The test database for the keyword spotting and verification includes utterances spoken by 10 speakers, each
producing 100 utterances, with one key-word in each utterance, therefore a total of 1000 test utterances. The
key-word set used in the test is the bank namesin Taiwan, about 2400 in total. The key-word detection isbased on
forward search. We used the general filler model to detect the keywords through the forward search. The
likelihood of the keyword is obtained by backtracking the Viterbi path.

The keyword spotting results are plotted as ROC curves as shown in Figures 1, 2, 3 and 4. Figure 1 shows the
baseline results. The upper curve is the results when no vector quantization is performed, while the two lower
curves are for the two vector quantization codebooks (A)8777766 and (B)7766666, without specia efforts for
keyword verification. Apparently the vector quantization errors actualy degraded the keyword spotting
performance, even if the degradation in syllable accuracy was aready minimized. Also, it is cleat that lower bit
rate gives lower performance. Figure 2 is the improvements achieved by keyword verification techniques for the
codebook set (A)8777766. Here the lowest curve in Figure 2 is the baseline curve in the middle of Figure 1, while
the two upper curves are obtained with 2-class(equation (2)) and N-best(equation (6)) verification approaches. We
can see that the verification does offer very significant improvements, and the N-best approach proposed in this
report is especialy attractive. Figure 3 is similar to Figure 2 except it is for codebook set (B)7766666, so the
lowest curve in Figure 3 is the lowest curve in Figure 1. Figure 4 finally compares al results using N-best
verification(equation (6)), where the highest curve is for the case without vector quantization but with N-best

verification applied (significantly higher than the baseline without vector quantization, as in Figure 1, also shown
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Figure 1: The baseline results: keyword spotting without specia efforts on keyword verification.
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Figure 2: The results for codebook set (A)8777766: both 2-class and N-best verification techniques offers
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Figure 3: The results for codebook (B)7766666: both 2-class and N-best verification techniques offers some

improvements.
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Figure 4: The best results obtained with N-best keyword verification compared to the baseline result without

vector quantization.



curve), while the two curves in the middle are the best curves in Figures 2 and 3 for codebook sets (A)8777766
and (B)7766666. It can be found that with the proposed approach, not only the performance degradation caused by

vector quantization is not a problem any longer, but even better performance becomes obtainable.

5. CONCLUSIONSAND FUTURE WORKS

In this study, we implemented vector quantization for Mandarin speech to be used in distributed speech
recognition under wireless environment, and see the interesting results that Chinese keyword spotting
performance can be significantly improved by keyword verification techniques with parameters optimized by
MCE training. The studies in this report analyzed only the effects of quantization errors. Transmission errors and

packet loss will be considered in the next step.
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