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A study of a plane wave obliquely incident on a nonlinear slab of positive Kerr coefficient in total internal reflection (TIR) 
state is reported. Various bistable and multi-valued transmissions are investigated as the incident power varies. Especially, the 
mechanism of the resonant transmission is analyzed in detail, and an explanation of the invariance phenomenon in the first jump 
positions is proposed, Finally, a method for designing good bistable switchings is given. 

1. Introduction 

Nonlinear interface problems have received much 
attention recently because they are potentially useful 
as ultra-fast optical switches and logic elements, and 
the operating power can be greatly reduced [ 1,2 ]. A 
series of  theoretical works on nonlinear interfaces in 
total internal reflection (TIR)  state were published. 
Typical examples are the plane-wave theory [ 3 ] and 
the study of  2D gaussian beams under slowly-vary- 
ing envelope approximation [4,5 ], which all predict 
the switching behavior of  the transmittivity. Re- 
cently, Chen and Mills [6] have discussed the nor- 
mal incidence of  a plane wave on a nonlinear slab, 
in which bistable and resonant transmissions were 
found. The bistable and multi-stable phenomena have 
found applications in the fields such as optical 
switching [7,8], optical circuit, and optical memory 
[9 ], which are essential to the development of  op- 
tical communicat ion and optical computers [10].  

In this paper, a plane wave obliquely incident on 
a nonlinear slab of  positive Kerr coefficient in TIR 
state is studied. In section 2, general results will be 
presented and multi-valued actions of  transmittivity 
will be discussed. In section 3, the existence and 
characteristics of  the resonant transmission will be 
examined and formulae for calculating the resonant 
transmission directly will also be derived. In section 
4, a unique phenomenon of  the TIR  state, invariance 
of  the first jump position under the slab-length's 

variation, will be pointed out and computed results 
for the first jump will also be compared with the pre- 
vious results for a nonlinear interface [3,4]. 

2. Mathematical formulation and general results 

Let a .f-polarized plane wave 

Ei.~ =.lEo exp [ - ik~ (x cos q/+ z sin ~,) ] 

be obliquely incident on a nonlinear slab as shown 
in fig. 1, where d is the slab length and q/is the in- 
cident angle. The symbol ~'cr=COS-~(X//~-3/E~ ) de- 
notes the TIR angle of  the interface between two lin- 
ear media el and ~3. Express the transmitted wave 
and the wave in the slab as 

~cr 

z=O 

YA e2 

L 

>Z 
z=d 

Fig. 1. Geometry of the nonlinear slab. 
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Et=yTEo exp [ - ik2(x cos ~ '  + z sin gt' ) ] , 

E=yEoe(z) exp [ i0 (z )  ] exp( - i k ~ x  cos ~u) . 

Then by the following the process of  ref. [6],  one has 
the relations for the wave fields 

l(z' ) 

f ( A I + ~ Z I 2 _ ½ N _ 1 3  W 2 ) _ I / 2 d I  

l(d' ) 

= _ + 2 ( d ' - z ' ) ,  (1)  

l ( d '  ) = W/(n2 sin q / ) =  IT[ e , (2)  

½ N I 2 ( 0 ) -  (62+ n 2 sin2q/) I ( 0 ) +  [4n 2 sin2q/ 

+ ~ 2 W / ( n  2 sin ~,' ) -2n~  Wsin ~u-n2 Wsin ~r 

- N W 2 / ( 2 n  2 sin2~ ' ) ]  = 0 .  (3)  

Here new variables and parameters  are introduced: 
k i ~ ~  ( i = 0 ,  1, 2, 3), z' =koz, d ' - kod ,  ni~  
x/ei/eo, 62n 2 cos2~,-n  2, l (z '  )=-eZ(z ' ), N-~,E2/eo,  
~,' =-cos -~ (k~cos ~'/k2), while A and W are integra- 
tion constants. Basically, only the relationship be- 
tween the transmitt ivi ty I TI 2 and N is needed. From 
( ! ), l (z '  ) may be expressed in terms of jacob ian  el- 
liptic functions [11] and (3)  is the resultant non- 
linear equation for W, which can be solved by the 
damped Newton method [ 12 ]. A nonlinear slab with 
positive coefficient in T I R  state means e , > 0  and 
~2>0,  so l(z '  ) can be expressed as 

(i) N ~ n 2 s i n 2 ~ ' + ~  2, 

2n: sin oJ' 

+ / +2n2NWsino) '  
2n2 sin m' ' 

h =- W~ (n2 sin e ) '  ) , 

13 ~ N - I { (  ~2-  2n;N-~09, ) 

2n2 sin J +2n2NWsin  . 

Eq. (3)  is solved for several cases, as illustrated in 
figs. 2-5. It should be remembered  that if e, is fixed, 
then the variation of N is equivalent to the variat ion 
of  incident optical power. Figs. 2 and 3 show Wpical 
examples for mult i-valued transmissions. Note that 
resonant transmissions ( I T I 2 =  1 ) occur at C, D, E, 
F (fig. 2) which also show periodicity and symmetry  
in field distributions (fig. 3). If  N increases from 
zero, then a sudden switching of transmitt ivi ty takes 
place when passing through the first j ump  as defined 
in fig. 2. Certainly, there are more jumps  if N is fur- 
ther increased. The first j ump  is emphasized here be- 
cause it represents the transition from surface waves 
to oscillatory waves, as indicated by A-C  in fig. 3. 
These important  characteristics will be examined 
rigorously in later sections. 

To gain a better insight to the multi-valued trans- 

11 (12 - -13 )  +13(11 -12)cn2  ( • ) 
I ( z ' )  = (12_13)..1_(11_12)cn2(.) , O<~z'<~d', 

c n ( ' ) - - c n  ( ~ N ) l / 2 ( l u - 1 3 ) l / 2 ( d ' - z  ' ) I i - 1 3 J "  

(4a)  

(ii) N>n~ sin2~ ' +~2, 

l ( z ' )=l~  +(12-11)cn2(.) ,  O<~z' <~d' , 

cn(.  ) =-en{ ( ½N)l/2(I2 -13) ' /2(d ' - z '  ) I2 - I , - ]  
12 -- 13 J " 

(4b)  

In both cases, 

1.2 

¢- 

I! 
0.81 

0.E 

0.Z 

0.~ 

f-C D~ E~-~b t~F 

B 

mp 
qL- A 

I 

-O~;-S I0-~ 10 °3 10 -~ 10 -I 

Fig. 2. Transmitt ivi ty I TI 2 versus N (=~,E~/~o) .  q = e 2 =  1.93 %, 
e3= 1.88 Co, d =  10 20 (20: free-space wavelength),  q /=7 °, q/or 
=9.23  ° . 
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Fig. 3. Field-amplitude distributions l e(z) I in the slab corresponding to the states defined in fig. 2. 

1.2 
missions, the cases with different slab-lengths and 
incident  angles are considered, respectively, in fig. 4 1 

and fig. 5. The mult i-valued actions become notable 0.8 
as the slab-length increases or the incident angle de- 
creases. In figs. 4 and 5, bistable transmission curves ~ 06 
are also observed, which are very useful in optical E 
switching. As will be shown in section 4, good bist- ~ 04 

t _  

able curves can be obtained in general situation. "~ 02 
(Here good bistable curves mean the ones with very ] 

0 great contrast for switching within a narrow bistable 
region.) Note that the above conclusions are not - 02  
limited to small incident angles which must be as- 
sumed in refs. [3-5 ]. As for numerical  results, only 
symmetric configurations (El = e2) are presented. 

~. ~ " "  . .  . " L L -  . . . . . .  

: ". ~ "  " ' .... / I  . ." 
: .. ,. i I : '. ,. / 
: . .  ".. / ,  / 
: " ' .  "'. / 
: " . .  ", / 
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. .  IX "~ 

.:----~:~:7 . . . .  d=1 8~, ~o 
.............. ..:::-::,.). - -  a = 3 1 0  ~ o 

....... d=10.0 "h o 
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N 

Fig. 4. Transminivity I TI 2 versus N for three values of d. 
tl =t2= 1.93 to, ts= 1.88 to, ~= 7 °, ~uc,= 9.23 °. 

181 



Volume 75, number 2 OPTICS COMMUNICATIONS 15 February 1990 

12 

0. ,  

O~ i i'" ........ 
- - - 1 ~ = 3 2 '  

'~, =25 ° 
....... 1~ =18" 

. . . . . . . . . . . . . . . . . . . . . .  ' . . . . . .  " : : : :  -. v . v  ........... ....... 

0.5 1 15 2 25 3 35 4 4.5 
N 

Fig. 5. T r a n s m i t t i v i t y  I TI z versus  N for  three  va lues  o f  ~. 

q = ~2 = 10 ,1%,  % = 5 %, d =  0 .243  20, ~cr = 45.3 °. 

3. Analysis of resonant transmissions 

First, the necessary condition for the existence of  
resonant transmissions is derived. Putting I ( 0 ) =  1 
and I T I 2 = I  in (3) gives 

< =~2, (5) 

which is the desired condition. Thus resonant trans- 
missions never occur in asymmetric configurations. 
Next, with ~1=~2, I ( 0 ) = 1 ,  and 1TI2=2 be substi- 
tuted into (4),  one has cn(.  )2= 1. Then by the pe- 
riodic nature of  the jacobian cosine function cn( . ) ,  
one may derive the desired formulae for resonant 
transmissions, 

(i) N<~n2sin2q/ +62, 

(½N)'/2(I~-13)'/2d'=2nK(Ii~--7)3) 

n = 1 , 2 , 3  ..... M .  (6a) 

(ii) N>n 2 sin2q/+52,  

(½N)l/2(1-13)l/2d'=2nK(~-13)l-ll , 

n =  ( M +  1 ), ( M + 2 ) ,  ( M + 3 ) ,  .... (6b) 

Here K(. ) is the elliptic integral of  the first kind. Ob- 
viously, the periodicity and symmetry o f  the field 
distributions are simply the results of  cn ( . ) .  Cal- 

culations have also proved that eq. (6) is consistent 
with the numerical results computed from eq. (3).  
Fig. 3 is a typical example where C, D, E, F corre- 
spond to n = 1, 2, 3, 4 in eq. (6).  Further compari- 
sons with ref. [6] show that the resonant transmis- 
sion here is of  different nature. 

4. Analysis of the first jump 

The first jump is defined, in fig. 2, as the state 
where the first switching action takes place when N 
increases from zero. The first jump position, occur- 
ring at N=No,  has the intuitive meaning that, if 
~ t i r=- - s in - l ( J (~3+%N)/El  ), then No is approxi- 
mately the value of  N for ~'tir=~'. Then it is found 
that the position of  the first j ump is almost i nvariant 
under variation of  the slab length, an important  phe- 
nomenon which can also be concluded from fig. 4. 
This phenomenon may be explained by the following 
consideration. Specifically, the wave field is essen- 
tially confined to the region around the nonlinear in- 
terface before the first jump (refer to fig. 6 for il- 
lustration), which is similar to the well-known 
concept of  TIR in the linear theory. Thus the first 
jump should mainly depend on the physical condi- 
tion o f  the interface at z = 0  and is not influenced by 
the thickness of  the slab. The wave field is not con- 
fined to the interface immediately after the first jump, 
which is also shown in fig. 6. 

By the invariance argument, our first j ump  result 
for a nonlinear slab problem can be used to compute 
the one for a nonlinear interface problem merely by 
letting the slab-length approach infinity. The plane- 
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Fig. 6. Field-amplitude distributions l e(z) 
fore and after the first jump in fig. 2. 

in the slab just be- 
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Table 1 
Positions of first jump from three different approaches. 

Ourresults ReK [3] Re£ [4] 

5 ° 0.0210 0.0212 0.0263 
7 ° 0.0110 0.0106 0.0124 
8 ° 0.0061 0.0062 

wave theory o f  a nonl inear  interface was considered 
in ref. [3] and a 2D gaussian beam incident  on a 
nonl inear  interface was discussed in ref. [4] .  Com- 
parison of  the posi t ions of  the first j u m p  for three 
cases is given in table 1, where good agreement  is ob- 
served. The mechanisms for multi-valued actions and 
resonant  t ransmiss ions  are different  for these three 
cases by noting the different boundary  condi t ions  at 
infinity. But the first j u m p  posi t ions are mainly  de- 
t e rmined  by the physical  condi t ion at the interface. 
This again explains the good agreement  in the first 
j u m p  posi t ions for these three cases. 

F rom the above considerat ion,  a method  for ob- 
taining good bistable switchings is then proposed  by 
selecting 

(posi t ion o f  first j u m p )  

(posi t ion of  first resonant  t r a n s m i s s i o n ) ,  

where the first resonant  t ransmission is calculated by 
eq. (6) .  Typical examples are d- -3 .10  2o in fig. 4 and 
~,=25 ° in fig. 5. 

5. Conclusions 

Two unique phenomena associated with TIR state, 
the resonant  t ransmission and the first j ump,  have 
been analyzed in detail .  A simple method  has also 
been proposed  for designing good bistable switch- 
ings, F rom a sufficient cr i ter ion for instabi l i ty  [ 13 ], 

dlTIE/dN<O and IdlTlE/dN[> IT[E/N, (7)  

it is easy to verify that  the proposed  bistable trans- 
mission curves have only two stable states [14] ,  
which means  practical  bistable switchings can exist. 
The stabil i ty problem of  the mult i -valued transmis-  
sions (fig. 2) is difficult  to analyze and chaotic re- 
sults of  stabil i ty are expected. Appl ica t ions  of  the 
mult i -valued transmissions,  such as mult i -valued 
logic [ 15 ], are possible after the stabil i ty problem of  
the mult i -valued t ransmissions is investigated in 
detail.  
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