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Abstract (Keywords: bi-directional amplifier,
MMIC, TEMS)

This project proposes the research and
development of the monolithic microwave/
millimeter-wave  bi-directional — amplifiers
using Si-based process technology. The
major target of this project is to develop the
Si-based monolithic microwave/millimeter-
wave integrated circuit (MMIC) bi-directional
amplifiers. This research will use the thin-film
microstrip line (TFMS) on Si substrate and
develop the  microwave/millimeter-wave
passive components for the bi-directional
amplifier. The thin-film microstrip line and
the related passive component will be used for
the bi-directional amplifier design to achieve

high performance and miniature chip size.
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A 35-50 GHz IQ-Demodulator in 0.13-um CMOS Technology

Chin-Shen Lin, Hong-Yeh Chang*, Pei-Si Wu, Kun-You Lin, and Huei Wang

Dept. of Electrical Engineering and Graduate Institute of Communication Engineering,
National Taiwan University, Taipei, 10617, Taiwan, R.O.C.

*Dept. of Electrical Engineering, National Central University, Taoyuan City, 32001, Taiwan, R.O.C.

Abstract — A broadband millimeter-wave (MMW) IQ
demodulator is presented in this paper using standard 1P8M
0.13-um CMOS technology. This IQ demodulator consists of two
Gilbert-cell mixers, one 90° broadside coupler, and one
Wilkinson power divider. This IQ demodulator has a conversion
loss better than 3 dB from 35 to 50 GHz. The magnitude
imbalance and image-signal rejection ratio are smaller than 1 dB
and greater than 25 dBc, respectively. The 16-QAM baseband
signals with 1 MHz symbol rate are used to test the digital
demodulation performance. The 16-QAM baseband signals can
be demodulated with an EVM of 6.3%. The chip area of this IQ
demodulator is 0.9 x 1 mm? including all testing pads.

Index Terms — CMOS, demodulator, Gilbert cell, microwave
monolithic integrated circuit (MMIC), mixer

1. INTRODUCTION

Recently, complementary metal oxide semiconductor
(CMOS) technology demonstrates the potential for wireless
applications in millimeter-wave frequencies, such as gigabits
point-to-point links, local area networks with extraordinary
capacity in 60 GHz, and vehicular radar at nearby frequencies
due to advantages of highly-integrated capability and potential
low cost for mass production. CMOS integrated circuits have
been reported in several millimeter-wave frequency bands,
such as a 60-GHz low-noise amplifier [1], a 51-GHz VCO [2],
a 60-GHz push-push VCO [3], and a 60-GHz receiver front-
end [4]. All show that CMOS technology has high potential
for MMW frequency applications.

IQ-demodulator is an important component in RF receiver
with digital modulated baseband signals. It is usually placed
between RF LNA and baseband circuits. It is advantageous to
integrate a system on single chip in CMOS. In millimeter-
wave frequency, only CMOS mixers have been reported, but
lack of IQ demodulation function [5]-[8]. GaAs-based and
SiGe HBT IQ demodulators in millimeter-wave frequency
range are reported in 60-GHz receivers [9]-[11] with several
GHz bandwidths.

This paper presents a 35-50 GHz IQ demodulator in
standard bulk MS/RF 1P8M 0.13-um CMOS process. This IQ
demodulator has a conversion loss less than 3 dB from 35 to
50 GHz. The magnitude imbalance and image-signal rejection
ratio are smaller than 1 dB and greater than 25 dBc,
respectively. The 16-QAM baseband signals with 1 MHz
symbol rate are used to test the digital demodulation
performance. The 16-QAM baseband signals can be well

1-4244-0688-9/07/$20.00 ©2007 IEEE

demodulated with an EVM of 6.3%. The total dc power
consumption is 178 mW.  The chip area of this IQ
demodulator is 0.9 x 1 mm’ including all testing pads.

II. CIRCUIT DESIGN

The MMIC process is a standard bulk MS/RF 1P8M 0.13-
wm CMOS process provided by Taiwan Semiconductor
Manufacturing Company (TSMC). Eight copper metal layers
are available for interconnection. The top metal is thickened
to 3.3 um to decrease the metal loss. A metal-insulator-metal
(MIM) capacitor of 1 fF/um’ has been developed using oxide
inter-metal dielectric. Poly resistors and spiral inductors are
also available in this process. Additional deep N-well is used
to isolate NMOS from lossy substrate. The 18-fingers NMOS
device with finger width of 2 um has a dc transconductance
(G,) of 23 mS biased at 0.7-V V and 0.65-V V. The device
can achieve an f,  of 90 GHz and an f, of 76 GHz.

The circuit schematic of this broadband IQ demodulator is
shown in Fig. 1. It consists of two mixers, one 90° coupler,
and one Wilkinson power divider. The circuit topology of the
mixers is Gilbert-cell mixer [8]. The RF transistors are biased
in saturation region to provide higher gain for RF input signal.
The LO transistors are biased at near pinch-off region to act as
switches. A current source is used under the differential pair
to control the total bias current of this Gilbert-cell core and the
charge injection technique is also employed in this circuit.
Two resistors are chosen as the load of this circuit for very
low IF frequencies. In order to match the input impedance of
the next stage, two common drain buffer stages are added to
achieve the impedance matching. Two Marchand baluns are
used to convert the LO and RF signals from single-ended
signals to differential signals.

Thin film microstrip lines are employed in this design,
including the Wilkinson power divider. The bottom metal
(metal 1) is used as the ground plane and the top metal (metal
8) is selected as the signal line of the thin film microstrip line.
The port impedances for the three ports are all 50 Q. The
quarter-wave-length lines in the power divider are meandered
to reduce the chip area.
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Fig. 2. Microphotograph of this IQ demodulator with a chip area
of 0.9 x 1 mm”.

The 90° coupler at RF port is implemented using
broadside-coupled lines. The broadside-coupled lines are
implemented using the top two metal layers (metal 8 and
metal 7). This broadside-coupled coupler is also meandered to
save the chip area.

Fig. 2 shows the microphotograph of this IQ demodulator
with a chip area of 0.9 x 1 mm’ including all testing pads. The
RF and LO ports are on the left and right sides of this chip,
respectively. The IF-ports of the I- and Q-channels are placed

RF

Circuit schematic of this IQ demodulator, which consists of two Gilbert-cell mixers, one broadside coupler, and one Wilkinson

symmetrically on the top and bottom sides of the chip. To
avoid the mismatch, all components and metal connections are
placed as symmetrical as possible. The total dc power
consumption is 178 mW with a dc supply voltage of 3.3 V.

III. EXPERIMENTAL RESULTS

This circuit is measured via on-wafer probing for RF and
LO ports through ground-signal-ground probes. IF ports are
connected to PCB with bonding wires as output ports. Four
dc blocking capacitors are used to block the dc current to the
output ports.

To measure the conversion loss performance, the Agilent
E8257D and Agilent 83650L signal generators are used for
LO and RF sources, respectively. The measured conversion
loss swept over LO power saturates at LO power of 8 dBm at
RF frequency of 40 GHz with 10 MHz IF frequency.
Therefore, 8-dBm LO power is used to drive this IQ
demodulator over the entire RF-frequency range. Fig. 3
shows the single-ended conversion gain of the 1Q demodulator.
The single-ended conversion gains of I- and Q-channels are
better than -3 dB from 35 to 50 GHz. The magnitude
imbalance between I- and Q-channels is lower than 1 dB from
35 to 50 GHz. The high magnitude imbalance below 30 GHz
is due to the insertion loss difference between the through and
coupled ports of the broadside coupler, but it will not affect
35-50 GHz circuit performance. Fig. 4 shows the image
signal rejection ratio of this IQ demodulator. The image-
signal rejection ratio is better than 25 dBc from 35 to 50 GHz.

To measure the demodulation quality, an Agilent E§257D
signal generator is used for LO source. The baseband signals
are generated by using an Agilent E4438C vector signal
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Fig. 4. Image signal rejection ratio of this IQ demodulator.

generator, which is coded with a pseudorandom bit stream.
Then the baseband signals are connected to an Agilent
E8247C signal generator to up-convert to millimeter-wave
frequencies and feed into RF port. The output IF signals are
connected to Agilent infinitum 54833D oscillation scope to
calculate the demodulated results. The 16-QAM baseband
signal is modulated with symbol rate of 1 MHz, and then up-
converted to 46 GHz to feed into RF port. The constellation
of the demodulated 16-QAM signals are shown in Fig. 5. The
eye diagrams of the I- and Q-channels are shown in Fig. 6.

The output spectrum of this IQ demodulator is shown in Fig. 7.

The measured EVM of this circuit is 6.3%. Therefore, it is
verified that this demodulator is suitable for broadband digital
demodulation applications.

IV. CONCLUSIONS

A broadband IQ demodulator using 0.13-um CMOS process
has been demonstrated. This circuit has good amplitude

balance and image signal rejection ratio over wide bandwidth.
The measured results show that digital modulated signals can
be demodulated well. From this demonstration, it is observed
that the CMOS technology has high potentials for low cost
MMW components.
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A 10.8-GHz CMOS Low-Noise Amplifier Using Parallel-Resonant
Inductor
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Abstract — A noise-reduction design method using parallel-
resonant technique is demonstrated to improve the noise
performance of a 10-GHz CMOS cascode low-noise amplifier,
which is designed and implemented in a standard mixed-
signal/RF bulk 0.18-um CMOS technology. Measurements show
a power gain of 10 dB with noise figure of 2.5 dB at 10.8 GHz,
which is believed to be the lowest NF among the LNAs using bulk
0.18 pm CMOS at this frequency.

Index Terms —CMOS, low-noise amplifier (LNA).

1. INTRODUCTION

CMOS low-noise amplifiers (LNAs) have been extensively
investigated for possible low-cost integration. Around 10
GHz, many implementations have demonstrated significant
results, such as a folded-cascode variable gain LNA centered
at 8-9 GHz with only 1-V power supply [1], a cascode LNA
centered at 7 GHz by using dual-gate MOSFET and shielded
pads in 0.25-um CMOS process [2] and a cascode LNA
centered at 13 GHz by using patterned-ground shield and
helical inductors [3].

Since the low-noise characteristics of a cascode LNA will
be compromised at higher frequencies, a parallel-resonant
technique was proposed to mitigate the noise contribution
from the cascode device, therefore improves the noise
performance of a cascode amplifier at 5 GHz [4].

In this paper, the analysis of a noise-reduction design
method using parallel-resonant technique based on [4] is
demonstrated. This methodology is implemented to further
improve the reported 10-GHz CMOS cascode LNA, which
was designed with improved device-size selection method,
and achieved a noise figure of 2.9 dB [5]. With the parallel-
resonant technique, the noise figure has been reduced to 2.5
dB, which is believed to be the lowest one among the
previously reported LNAs using bulk CMOS process at this
frequency.

II. NOISE ANALYSIS

It can be shown that, based on a similar analysis as [4], the
noise figure of a cascode amplifier in Fig. 1 is

F =F +F

2linput referred

v AR o, \'( wC?
=1+ M ARy @ — o (™,
4kTR, 4kTR, ) Oy, g

1-4244-0688-9/07/$20.00 ©2007 IEEE

where R is the source resistance, y, is a bias-dependent
parameter for the second transistor M,, g4, is the zero-bias
drain conductance of M,, gm, is the transconductance of M,,
Cx is the parasitic capacitance presents at the node X between
M, and M,, and v, and i, are the input-referred noise voltage
and current for the first stage, respectively. Equation (1)
shows the parasitic capacitance (Cy) indeed has an important
impact on the noise figure of a cascode amplifier. If channel
length modulation in the input stage of the cascode amplifier
(M) is neglected, the drain noise of the cascode device (M)
contributes almost no noise especially at low frequencies. At
high frequencies, however, the total capacitance, including
parasitic capacitance C, at node X between M, and M,, as
illustrated in Fig. 1, causes the drain noise of the cascode
device (M) to contribute to the output noise, thus increase the
noise figure.

To reduce this noise contribution from the cascode device
(M2), a parallel-resonant inductor (Lp) placed at the node X
between M1 and M2, can be used to resonate the Cx, as shown
in Fig. 2.

T
c. +
o
X RFoy

i
—p =

Fig. 1. Schematic for a cascode amplifier with parasitic
capacitance (C,) presents.
-
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Al

o—igMm X RFou
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Fig. 2. Schematic for a cascode amplifier with parasitic

capacitance (C,) and associated L, used to resonate it.
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In this paper, the noise figure of a cascode amplifier using

parallel-resonant technique is
- 2

- le ZRsZ
4kTR, A4KkTR,
2 22 2 2
sincaa[ e o) @
e + waCle_” @ry

where Oy, is the Q-factor of the on-chip parallel-resonant
inductor (L) and @, =1//L,Cy -

In (1) and (2) Cx is evaluated to be 0.246 pF and Qy, is
estimated to be 10. Since the process, device size, biasing
point and frequency of this LNA is equal to those of the LNA
in [5]. The noise of the LNA wusing parallel-resonant
technique is evaluated to be 1.54 dB by (2) which is 0.7 dB
better than the 2.24 dB noise figure without parallel resonant
technique evaluated by (1).
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Fig. 3. Schematic of the 10-GHz CMOS LNA using the parallel-

resonant technique.
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Fig. 4. Simulated noise improvement of the 10-GHz CMOS LNA

using parallel-resonant technique.

II1. CIRCUIT DESIGN

This 10.8-GHz LNA is implemented in a commercial
standard 0.18-um mixed-signal/RF CMOS technology which

provides one poly layer for the gate of the MOS and six metal
layers for inter-connection [5].

To demonstrate the parallel-resonant technique at higher
than 5 GHz, the proposed 10.8-GHz LNA using parallel-
resonant technique was designed and implemented. This
methodology is implemented to further improve the reported
10-GHz CMOS cascode LNA, which was designed with
improved device-size selection method, and achieved a noise
figure of 2.9 dB [5] (the device widths were both 160 um with
0.18-um gate length). The inductor L, at the node X between
M, and M, is used to resonate out C.. The output matching is
accomplished with an LC impedance transformation network.
C,, is 112 fF and was implemented with two 224-fF capacitors
in series to desensitize the process variation. Parasitic
capacitances of input and output RF pads are also included in
the circuit simulation. Fig. 3 presents the complete schematic
diagram of the 10.8-GHz CMOS LNA using the parallel-
resonant technique. A 1.5-nH inductance L, is used to achieve
a noise figure improvement of 0.4 dB over the repeated 10
GHz LNA [5] as shown in Fig. 4.

The circuit simulation is performed in the software ADS
[71, and the inductors and MIM capacitors are all simulated by
the full-wave EM simulator, Sonnet [8]. Figure 5 presents the
chip photo of the 10.8-GHz CMOS LNA, with a chip size of
0.65 x 0.71 mm”.

Vei GND Va2

GND

Fig. 5. Chip photo of the 10-GHz CMOS LNA using parallel-
resonant technique with a chip size of 0.65 x 0.71 mm®.

IV. MEASUREMENT RESULTS

The LNA was measured via on-wafer probing. The
measured and simulated gain and input/output return losses
from 0.045 to 20 GHz are shown in Fig. 6. The measured
LNA performs 10-dB peak gain at 11.4 GHz. The measured
and simulated noise figures from 9 to 13 GHz are illustrated in
Fig. 7, which shows a noise figure of 2.5 dB at 10.8 GHz. The
measured 1-dB compression point (P, ) is +2.5 dBm and the
measured two-tone input-referred third-order intercept point
(ITP3) is +4.1 dBm. The total current consumption for this
LNA is 11 mA from a 1.6-V power supply.
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TABLE 1
PREVIOUSLY REPORTED CMOS LNAS OPERATED AROUND 10 GHZ

References Process Architecture Fr((agtlj_lezr;cy (Gdzgr; FN(|§§ ;ee ”(Fc;:la_%/rFr’f)dEs FE:):%; C?;ﬁﬁzl)z e
2] (00_2"532) Cascode 7 6.2 33 | +8.4/NA | 13.8 | 0.86x0.61
[1] (00_1'\’&'332) Folded Cascode 8 13.7 32 | NA-132 | 224 | 1x09
[1] (OCQVIB?JrSn) Folded Cascode 9 12.2 3.7 NA/-8.7 19.8 1x0.9
[3] (00_1'\’&'332) Cascode 13 4.9 467 | +85NA | 97 | 0.31x0.33
5] (()C_g\"s?ﬂsn) Cascode 10 11.25 2.9 NANA | 17.6 | 0.74x0.65

This Work (()(?’1'\’&'3?;) rg:::;ﬂetegﬁﬁ‘gﬁ'e 10.8 1(1 onggH% 2.5 +4.1/+2.5 | 17.6 | 0.65x0.71

Table I summarizes the performance comparisons among the
i PP related references. It reveals that our LNA has the lowest
(it noise figure compared with the previously reported LNAs
-Simulated using bulk CMOS processes operating around 10 GHz.
-Simulated
-Simulated

V. CONCLUSION

A2AR%

A 10-GHz LNA using the parallel-resonant technique is
successfully implemented in a standard 0.18-um CMOS
technology. This LNA shows a measured gain of 9 dB with a
measured noise figure of 2.5 dB at 10.8 GHz and demonstrates
lowest noise figure among the previously reported LNAs
using bulk CMOS process around this operating frequency.
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