AN ESTIMATE OF THE EXPLOITATION RATE OF Anguilla japonica ELVERS IMMIGRATING INTO THE COASTAL WATERS OFF SHUANG-CHI RIVER, TAIWAN #### WANN-NIAN TZENG Department of Zoology, National Taiwan University, Taipei, Taiwan 107, Republic of China (Received February 27, 1984) Wann-Nian Tzeng (1984) An Estimate of the Exploitation Rate of Anguilla japonica Elvers Immigrating into the Coastal Waters off Shuang-chi River, Taiwan. Bull. Inst. Zool., Academia Sinica 23(2): 173-180. Based on the daily catch data of elvers in the coastal waters off Shuang-chi River in northeastern Taiwan from December 1982 to March 1983, the number of shoals immigrated into the coastal waters was determined and their initial population size were estimated by Delury method. The present study reveals that there were seven dominant elver shoals immigrated to the coastal waters in this period. The duration of fishing days for each shoal was different. The longest period lasted for 9 days, while the shortest one lasted only 4 days. Average fishing period was 6 days. Their initial population size were estimated as 916.4-23,780.9 elvers. Exploitation rate reached 44.1-75.4% of the initial immigrating population size. Since the beginning of eel culture in Taiwan in 1965, the elvers which are drifted from open sea toward coastal waters and concentrated on estuary (Bertin, 1965; Tesch, 1977) have become an important larval fishery resources in estuaries. There are four species of anguillids in Taiwan, namely Anguilla japonica, A. marmorata, A. celebesensis and A. bicolor pacifica. Among them, A. japonica is most abundant and suitable for cultivation. The fishing season for the elvers is from November to February, in which the peak catch happens in December and January (Tzeng, 1983b). In general, fishermen caught the elvers during their upstream migration at night. Fishig gears include hand net and boat beam trawling net in inner river. Recently, due to the severe pollution of the river and the heavy demanding of elver (Tzeng, 1983 a), the fishing area of elvers was extended from inner river to estuaries and coastal waters. Fishing method was also strengthened to include set net at river mouth and hand trawling at coastal waters. In addition, price of elvers has also substantially increased (Shang, 1973). Therefore, fishing effort is also intensified. Consequently, possible overexploitation is concerned by fishery biologists. However, there are yet no any studies have been conducted. The purpose of this study is to analyze the exploitation rate of the elvers for better understanding of the status of exploitation of elver resources in Taiwan. #### MATERIAL AND METHOD From December 1982 to March 1983, questionnaries of daily catch of elvers were collected from 70 local fishermen who harvested elvers in the coastal waters off Shuang-chi River in northeastern Taiwan (Fig. 1). Fig. 1. The relase site () and the fishing ground of elvers () in the coastal waters off Shuang-chi River, northeastern Taiwan. The questionnaries include fishing date, fishing efforts, fishing method, species, yield and weather conditions. Fishermen categorized the elvers into white-type and black-type according to caudal pigm-The white-type was sold to eel entation. farms, but the black-type has not been cultured in Taiwan. The former is A. japonica, while the latter includes the other three species (Tzeng, 1983a). Because the white-type elver is commercially important species and the dominant one, only the catch statistics of white-type elvers were used in this study. Catch per unit fishing effort (CPUE; number of elver/per person/per night) was viewed as an index of the relative abundance of elvers in the fishing ground. To understand the tendency of elver recruitment, the moving average of CPUE in three successive days were computed. According to daily change of CPUE, migration of elvers in the fishing ground was traced. Maximal CPUE indicated that recruitment had completed. After that, due to fishing and emigration, CPUE decreased gradually. CUPE would increase again when the next recruit immigrated into the fishing ground. The original population size of each shoal was calculated by Delvry method (Delury 1947, 1951, 1954) $$L_nC_t/X_t = L_nqN_0 - q\Sigma X_t$$ where, L_n : natural logarithm C_t : catch in number on t-th day N_0 : initial population size q: catchability-the fraction of the population taken by 1 unit of fishing effort X_t : fishing effort in man-night on t-th day ΣX_t : cumulative fishing effort until t-th day in number of man-night Then, according to the amount of recruitment and cumulative catch, the rate of exploitation of each immigrating shoal was estimated, i. e. $$E = \sum C_t / N_0$$ where, E: rate of exploitation ΣC_t : cumulative catch N_0 : initial population size Furthermore, based on the recaptured data of marked elvers released on December 17, 1982, January 12 and February 12, 1983 (Tzeng, 1984) as well as the catch data of unmarked elvers in the same place and similar fishing period, instantaneous rate of emigration and immigration was computed by using Ketchen method (Ketchen 1953, Ricker 1958). #### RESULTS #### 1. Recruitment According to the fluctuation of daily CPUE (Fig. 2), it was found that there are seven dominant elver shoals immigrated into the coastal waters off Shuang-chi River during the period from December 1982 to March 1983. Fig. 2. Daily changes of CPUE (Nos./man-night) and fishing effort (man-night) for the elvers caught by hand trawling in the coastal waters off Shuang-chi River, Dec. 1982-Mar. 1983. Horizontal bar indicates the duration of fishing period for each one of the elver shoals; i.e. the period from the day when recruitment of a shoal was complete to the day when another shoal began to immigrate. The duration of fishing period for each one of the shoals, or the period from the day when recruitment of a shoal was complete to the day when another shoal began to immigrate, was indicated by the horizontal bar in Fig. 2. The duration of fishing days for each shoal was different. The longest period lasted for 9 days (17-25, December 1982), while the shortest one lasted only for 4 days (2-5, January 1983). Average fishing period was 6 days. The peak of CPUE indicated a larger size of immigrants. As was shown in Fig. 2, the shoals immigrated into the coastal waters on December 17, 1982, January 23 and February 13, 1983 were larger. The other shoals which immigrated into the coastal waters on January 2, 11, February 21 and March 13, 1983 were smaller. # 2. Initial population size and rate of exploitation The initial population size of the 7 immigrating shoals was estimated to be 916.4-23,780.9 elvers (e.g. in Fig. 3; Table 1). Rate of exploitation on these shoals was calculated as 44.1-75.4% of the initial Fig. 3. Regression of CPUE on cumulative fishing effort based on the catch data of elvers caught in the coastal waters off Shuang-chi River during the period of December 17-25, 1982. population size (Table 1). The rate of exploitation was further checked by mark-recapturure experiments of elvers in the coastal waters off Shuang-chi River on December 17, 1982, January 12 and February 12, 1983. The regression line of CPUE on cumulative effort (ΣX_t) in these three investigations was shown in Fig. 4. Their rate of exploitations were TABLE 1 The initial population size (N_0) , catchability (q) and rate of exploitation (E) estimated from the regression of CPUE on cumulative fishing effort based on catch data of 7 immigrating shoals of elvers | | Duration | | | | | Estimated | | | | | |----|------------------|------|--------------|--------------|--------|-----------|----------|---------|----------------------|--| | | Fishing Date | days | ΣX_t | ΣC_t | r | F-value | N_0 | q | Rate of exploitation | | | 1. | Dec. 17-25, 1982 | 9 | 209 | 15817 | -0.977 | 148.955** | 23,780.9 | 0.01077 | 66.5% | | | 2. | Jan. 2-5, 1983 | 4 | 25 | 1022 | -0.885 | 7.19618 | 1,461.9 | | 69.9 | | | 3. | Jan. 11-16 | 6 | 88 | 3516 | -0.925 | 23.635** | 7,973.4 | 0.00705 | 44.1 | | | 4. | Jan. 23-28 | 6 | 97 | 6607 | -0.915 | 20.519* | 12,252.8 | | 53.9 | | | 5. | Feb. 13-18 | 6 | 150 | 9118 | -0.945 | 33.260** | 16,492.1 | | 55.3 | | | 6. | Feb. 21-26 | 6 | 58 | 1890 | -0.984 | 125.213** | • | 0.04378 | 75.1 | | | 7. | Mar. 13-17 | 5 | 24 | 691 | -0.966 | 36.325** | • | 0.06055 | 75.4 | | ΣX_t : cumulative fishing effort in man-night ΣC_i : cumulative catch in number of elvers r: correlation coefficient F-value: the probability of significance of regression line is given as *: 5%, **: 1%, ns: non-significance. Fig. 4. Regression of CPUE on cumulative fishing effort based on the mark-recapture data of elvers released in the coastal waters off Shuang-chi River. M1, M2 and M3 indicate three different investigated periods; i.e. Dec. 17-20, 1982, Jan. 12-16 and Feb. 12-15, 1983 respectively. 43.8%, 74.9% and 61.6% of the initial population size respectively (Table 2). This result is quite coincident with the previous estimation (Table 1). #### 3. Immigration and emigration Number of immigration and emigration of elvers in the coastal waters off Shuang-chi River was estimated based on the mark-recapture data of elvers during the fishing periods of December 17-25, 1982, January 11-16 and February 13-18, 1983. The results obtained are listed in Table 3. The instantaneous rate of emigration on January 1983, was 0.0289, three-fold larger than that on December and February, which were 0.0092 and 0.0093 respectively. Number of emigrants in these three investigations was 7,490.1, 2,792.9 and 3,655.7 elvers respectively. Emigrants constituted 31.5%, 35.0% and 22.2% of their corresponding estimated initial population size. The instantaneous rate of immigration on December 1982, January and February 1983 was 0.0179, 0.0254 and 0.0432 respectively. Table 2 Estimation of initial population size (N_0) , catchability (q) and rate of exploitation (E) of elvers based on mark-recapture data of elvers released in the coastal waters off Shuang-chi River | N_0 q exploits N_0 q exploits 1. Dec. 17, 1982 1275 Dec. 17–20 161 378 864.1 0.0286 43.89 | | Data of release | Number | Observed period | ΣX_t | Daganturas | Estimated | Rate of | | |---|----|-----------------|----------|-----------------|--------------|------------|-----------|---------|--------------| | 2. Jan. 12, 1983 1076 Jan. 12-16 75 88 117.6 0.0325 74.9 | | Date of release | released | | | Recaptures | N_0 | q | exploitation | | | 1. | Dec. 17, 1982 | 1275 | Dec. 17-20 | 161 | 378 | 864.1 | 0.0286 | 43.8% | | 3. Feb. 12 1100 Feb. 12-15 107 527 893.8 0.0496 61.6 | 2. | Jan. 12, 1983 | 1076 | Jan. 12-16 | 75 | 88 | 117.6 | 0.0325 | 74.9 | | · · · · · · · · · · · · · · · · · · · | 3. | Feb. 12 | 1100 | Feb. 12-15 | 107 | 527 | 893.8 | 0.0496 | 61.6 | | | TABLE 3 | | | | | | |------------------------------------|------------|------------|-----|-------------|----|--------| | Estimation of instantaneous rates, | numbers of | emigration | and | immigration | of | elvers | | | Observe | ed period | Insta | ntaneous ra | ate of | Initial | Catch | Number of | | | |----|---------------------|---------------------|-------------------|-----------------|------------------|--------------------|--------------|----------------|-----------------|--| | | Natural
group | Marked
group | Catch-
ability | Emigra-
tion | Immi-
gration | population
size | in
number | Emi-
grants | Immi-
grants | | | 1. | Dec. 17-25,
1982 | Dec. 17-20,
1982 | 0.0194 | 0.0092 | 0.0179 | 23,780.9 | 15,817 | 7,490.1 | 14,540.0 | | | 2. | Jan. 11-16,
1983 | Jan. 12-16,
1983 | 0.0036 | 0.0289 | 0.0254 | 7,973.4 | 3,516 | 2,792.9 | 2,454.0 | | | 3. | Feb. 13-18 | Feb. 12-15 | 0.0403 | 0.0093 | 0.0432 | 16,492.1 | 9,118 | 3,655.7 | 3,950.2 | | Number of immigrants was 14,540.0, 2,454.0 and 3,950.2 elvers and constituted 61.1%, 30.8% and 24.0% of their estimated initial population size respectively. It is clear that the number of emigrants and immigrants shared high percentages of the initial population size. Therefore, it seems that the catch of elvers not only depended on their initial population size but was also affected by emigrants and immigrants. #### DISCUSSION It was estimated that there were seven shoals of elvers immigrated into the coastal waters off Shuang-chi River during December 1982 through March 1983. A shoal was considered to be a group of elvers congregated in the coastal waters before upstreaming. Because of the calculated immigrants and emigrants constituted a high percentage of their estimated initial population size. It is possible that the member of a shoal may consist of heterogeneous cohorts. heterogeneity was also proved by the diversed pigmentation of the elvers caught in the coastal waters at the same day 1982). In addition, the occurrence of elver could also be related to tidal periodicity and other environmental factors (Tzeng, 1982; Higashi and Sakurai, 1974). Therefore, the number of shoals immigrated into the coastal waters and the magnitude of each shoal at various periods were also affected. detailed mechanism of fluctuation of the shoals will be further studied in the future. The exploitation rate of the elvers in the coastal waters off Shuang-chi River was estimated as 44.1-75.4%. These rates could be higher if the catches in the river were included. Besides, according to the mark-recapture data of elvers released in the said area on December 17, 1982, January 12 and February 12, 1983, the recapture rates were 46.1%, 59.6% and 57.4% respectively (Table 4). Therefore, the estimated rates of exploitation are considered to be rather reasonable. In the last three years, annual production of elvers was about $10\text{--}30\times10^6$ pieces in Taiwan, while the demand for elvers was estimated as $200\text{--}300\times10^6$ pieces (Tzeng, 1983a). In other words, the elver catch in Taiwan supplied only 10% of the total demand. Therefore, deficiency of elvers was very serious. As mentioned above the rate of exploitation has reached 44.1--75.4%, indicated that the elver resources have been highly exploited. It is evident that self-sufficiency of elvers is quite impossible in Taiwan, even fishing effort is increased. Acknowledgements: This research supported by a grant from the National Science Council of Republic of China (NSC 72-0201-B001a-47). The author is grateful to Mr. S. G. Yue and Mr. C. I. Lin for collecting the catch data, and A. L. Chai for preparing the manuscript. Thanks also extend to Dr. Y.S. and Dr. H.K. Mok for reviewing manuscript. Table 4 Mark-recapture data of Anguillid elvers released in the coastal waters off Shuang-chi River (after Tzeng, 1984) | | | | | | Number and percentage of recapture | | | | | | | | | |----|------------------|-----------------|--------------------|---------------------|------------------------------------|----------|-------|-------|-------|-------|------|-------|--| | | Release
date | Release
time | Number
released | Observed period | Coasta | l waters | River | mouth | Inner | river | To | otal | | | | 1311110 | time | 10100300 | portos | Nos. | % | Nos. | % | Nos. | % | Nos. | % | | | 1. | Dec. 17,
1982 | 12:30 AM | 1275 | Dec. 17-
Jan. 11 | 497 | 38.98 | 16 | 1.25 | 75 | 5.83 | 588 | 46.12 | | | 2. | Jan. 12,
1983 | 12:40 AM | 1076 | Jan. 12-
Feb. 11 | 95 | 8.83 | 312 | 29.00 | 234 | 21.75 | 641 | 59.57 | | | 3. | Feb. 12 | 12:00 AM | 1100 | Feb. 12-
Mar. 18 | 605 | 55.00 | 15 | 1.36 | 11 | 1.00 | 631 | 57.36 | | #### REFERENCES - Bertin, L. (1956) Eels--a biological study. Cleaver-Hume Press, London. 192p. - Delury, D.B. (1947) On the estimation of biological populations. *Biometrics*, 3: 145-167. - DELURY, D. B. (1951) On the planning of experiments for the estimation of fish populations. J. Fish. Res. Bd. Canada, 8: 281-307. - Delury, D. B. (1954) On the assumptions underlying estimates of mobile populations, p287-293. in Kempthorne et al, ed., Statistics and Mathematics in Biology. - HIGASHI, T. and N. SAKURAI (1975) Catches and ecology of glass-eels in the water near the seashore in the vicinity of the Hikiji river mouth (Fujisawa-shi). *Bull. Coll. Agr. & Vet. Med.*, *Nihon Univ.*, 32: 252-261. - KETCHEN, K.S. (1953) The use of catch effort and tagging data in estimation a flatfish population. J. Fish. Res. Bd. Canada, 10: 459-485. - RICKER, W. E, (1958) Handbook of computation - for biological statistics of fish populations. J. Fish. Res. Bd. Canada, 119: 1-300. - SHANG, Y. C. (1973) An economic study of eel farming in Taiwan. *China Fisheries Monthly*, **251**: 3-8. - TESCH, F.-W. (1977) The eel-biology and management of anguillid eels, Chapman and Hall Press, London. 343p. - TZENG, W. N. (1982) The availability of elvers in relation to tidal periodicity. *Chinese Bioscience*, **20**: 15-31. - Tzeng, W. N. (1983a) Species identification and commercial catch of anguillid elvers from Taiwan. *China Fisheries Monthly*, **366**: 16-23. - TZENG, W. N. (1983b) Seasonal and long-term changes of the catch of anguillid elvers in Taiwan. J. Fish. Soc. Taiwan, 10(1), 1-7. - Tzeng, W. N. (1984) Dispersal and upstream migration of marked anguillid eel, *Anguilla japonica*, elvers in the estuary of the Shuang River, Taiwan. *Bull. Japan. Soc. Fish. Oceanogr.*, 45: 8-17. ## 雙溪河口域鰻線來游羣的漁獲率之試算 ### 曾 萬 年 根據 1982 年 12 月至 1983 年 3 月,臺灣東北部雙溪沿岸海域,鰻線的每日漁獲量資料及部分標識放流資料。判斷漁期中鰻線來遊羣數, 同時估算每一來遊羣的初期資源量及其漁獲率。 藉此分析鰻線資源的利用狀態。 在調查期間的 12~3 月之四個月中,雙溪河口沿岸海域鰻線漁場,有7個明顯的來遊羣加入。每一羣被持續漁獲的日數,長短不一。 最長的有9天,最短的為4天, 平均為6天左右。來遊羣的平均資源量為9,342.3 尾 (916.4~23,781.9 尾)。來遊羣被漁獲的比率平均為62.9% (44.1~75.4%),顯示鰻線靠岸之後,被漁獲的比率相當高。另外, 由標識放流實驗的囘收資料, 也顯示再捕率很高,平均54.4%(46.1~59.6%)。