PHOSPHOLIPASES A2 OF ASIAN SNAKE VENOMS

Inn-Ho Tsai

Institute of Biological Chemistry, Academia Sinica, Institute of Biochemical Sciences, National Taiwan University P. O. Box 23-106, Taipei, Taiwan

ABSTRACT

This review up-dated the structural and functional information of various phospholipase A_2 (PLA₂) isoforms purified from Asian snake venoms. A phylogenic tree of group I PLA₂s was constructed herein based on many recently resolved amino acid sequences of the venom enzymes. It was found that PLA₂s of Asian elapid venoms are structurally different from those of seasnake/Australian elapid venoms, and are usually associated with cardiovascular effect, although exceptions such as β -bungarotoxins do exist. Two types of venom PLA₂s appear to be present in the venom of Asiatic viperinae such as *Daboia* and *Echis*, one has a N-terminal residue Asn and the other has the residue Ser. In the venom of Asiatic crotalinae, up to four subgroups of PLA₂ isoforms are present and each of them is characterized by a distinct substitution at residue 6 (Glu, Asn or Arg) or residue 49 (Asp or Lys) in their sequences. The venom PLA₂s in each of the subgroup show more or less functional similarity specific for the subgroup: the Glu6-PLA₂s are usually antiplatelet, the Asn6-PLA₂s are neurotoxic and/or myotoxic and many Arg6-PLA₂s are anticoagulating, while the Lys49-PLA₂s are myotoxic and edema-inducing. Mechanisms for the pharmacological actions of venom PLA₂s have been discussed, including neurotoxicity, myotoxicity, antiplatelet activity, anticoagulating activity, heparin-binding, protein-acylation and deacylation. Conclusions derived from many recent studies on pancreatic PLA₂ by method of protein engineering render valuable information about the structure-activity relationship of the secretory PLA₂ superfamily. Site-directed-mutagenesis methods coupled with relevant and dissecting functional assays are essential for understanding the structure-activity relationship of snake venom PLA₂s with special function or toxicity.

1. INTRODUCTION

Asia is the habitat of various species of venomous snakes including Elapidae, Hydrophilidae and Viperidae. According to statistics, the rate of snake bite and envenomation in Asia has been the highest among the world [1]. The characterization of snake venom components is important because a suitable medical treatment depends on a better understanding of the site and mode of action of the venom components. Phospholipases A₂ (PLA₂s, EC 3.1.1.4) are a group of enzymes that catalyze the Ca²⁺-dependent hydrolysis of the 2-acyl ester bond in 3-*sn*-phospholipid. Secreted forms of the enzyme are abundant in the mammalian pancreas and in snake and bee venoms. Amino acid sequences of many PLA₂s have been determined, with most being about 120 amino acids long and having 14 Cys residues forming seven disulfide bonds. Overall these proteins are closely related (>45% identity), with key residues that are required for catalysis and structure to be conserved (for review, see references [2-8]). PLA₂s are classified into two groups based on their Cys positions. PLA₂s in group I are found in venom of the elapid and hydrophid snake families and in the mammalian pancreas, and group II are from the viperid snake venoms and mammalian nonpancreatic sources. Interestingly, PLA₂ isoforms of diverse physiological functions exist in the same venom source and they usually synergize with other venom components to display special pharmacological effects. This mini-review would update the recent progress in purification, structural analysis, toxicology and reaction mechanism of venom PLA₂s from important species of Asia snakes. Since the 14 kDa PLA₂ family has been the subject of many comprehensive reviews [2, 5], I will focus on recent findings about molecular and mechanistic analysis related with the PLA₂s from Asian snake venom, and examine roles of the PLA₂ isoforms in the context of toxinology of the whole venom and the phylogenic relationship between the PLA₂s.

2. STRUCTURE OF PLA₂ ISOFORMS FROM SNAKE VENOM

a. Elapidae and Hydrophiidae

Highly homologous $PLA_{2}s$ from Asian elapid venoms were purified and characterized. More than 15 PLA_{2} sequences from cobra and ringhal venoms were known [35]. Recently, the cDNAs encoding three PLA_{2} isoforms in *Naja naja sputatix* [9] and two PLA_{2} isoforms in *Naja naja atra* [10, 11] were cloned and sequenced.

Two acidic PLA₂s with pI of 3.8 and 3.9 [12] and one with pI of 5.2 [13] were purified from King cobra (*Ophiophagus hannah*) venom. The amino acid sequence of the latter PLA₂ was completed [13, 27] and found to be similar to that of PLA₂ III of *Bungarus fasciatus* venom and those of cobra PLA₂s.

It was found that as many as eight PLA₂ isoforms exist in the venom of southeast-Asia golden krait *Bungarus fasciatus*, including four catalytically active PLA₂s (III, Vb-1, X-1, X-2), three less active Pro30 PLA₂s (Va, Vb-2 and VI), and one inactive Ala49 PLA₂ (i.e. fraction I). Interestingly, fractions V

and VI together count for about 70% of the total mass of the crude venom. The complete amino acid sequences of these PLA_2 were all solved [14, 15].

Highly neurotoxic venom of *Bungarus multicinctus* contains the unique pre-synaptic neurotoxin, β -bungarotoxin, in addition to α -bungarotoxin, the post-synaptic neurotoxins whose homologous toxins are commonly present in all the Elapidae and Hydrophiidae venoms. There are more than 10 isoforms of β -bungarotoxin present in the venom and each is a covalent heterodimer of PLA₂ (A chain, 14 kDa) and a homolog of Kunitz-type protease inhibitor (B chain, 7 kDa) [16]. Six variants of the A chain of β -bungarotoxin have been identified and at least four of their cDNA sequences were analyzed [17-20].

Therefore, PLA₂s in the venom of Bungarus species are much diversified as compared with cobra venom PLA₂s. Interestingly, the venom PLA₂s of B. fasciatus are not presynaptically neurotoxic but cardiotoxic [21] and structurally very different from those of B. multicinctus. This is in accord with the finding that their venom components other than PLA₂ are also different: for example, procoagulating factor X activator was found in venoms of B. fasciatus [22] and king cobra [23] but not in that of B. multicinctus. The acidic PLA₂ from king cobra venom was found to damage both heart and skeletal muscle^[24] and also inhibit platelet aggregation ^[27]. Venom of sea-snakes usually contains strong post-synaptic neurotoxins and myotoxic PLA₂s. The primary structures of PLA2s from hydrophiid snake venom were solved for the following species: Enhydrina schistosa [25], Laticauda colubrina [26], Laticauda laticaudata [28], Laticauda semifasciatus [29] and Aipysurus laevis [30]. Some of the myotoxic sea-snake PLA₂s are also neurotoxic [25, 26]. Results of phylogenic analysis of representative PLA₂s from elapid and hydrophilid venoms (Fig. 1) suggest that sea-snake PLA₂s are structurally more related with those of Australian snake venoms than with those from venoms of cobra, ringhal or krait, i.e. Asian and African Elapidae. Similar conclusions could also be drawn from the phylogenic tree contructed previously from

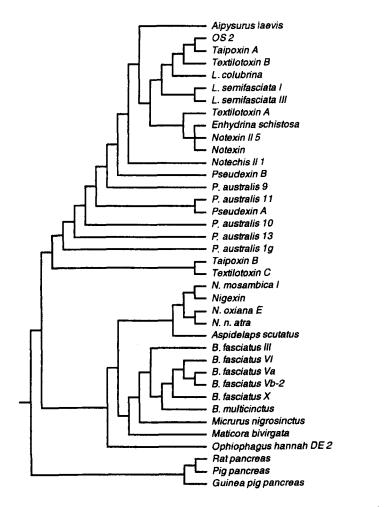


Fig. 1. Phylogenic tree of selected group I venom PLA₂s based on the amino acid sequences. The sequences were extracted from the Swiss-Port data bank. The tree was constructed using program PAUP [156], and using pancreatic PLA₂ as the outgroup.

another set of sequences [102]. β -Bungarotoxins are highly specialized and phylogenically branch-off from other elapid PLA₂s [102].

Although the best known feature of envenoming by elapid and hydrophilid snakes is neurotoxicity, the cobra venom PLA₂s are non-

neurotoxic in clinical symptoms. Having a conserved structure with sequence identity of about 85%, they show cardiovascular effects either alone or in synergy with the cytotoxin (cardiotoxin) in the same venom both *in vivo* and *in vitro* [31-35]. The acidic and neutral cobra PLA₂s are more active than the basic cobra PLA₂s in causing cardiac stimulation and transient hypotension [36]. The highly active cobra PLA₂s also cause hyperkaliemia in the blood of victims due to membrane leakage and cell lysis [37]. It has been speculated that the non-neurotoxic and monomeric PLA₂ in *B. multicinctus* venom may cause a sharp fall in arterial blood pressure [37].

The three-dimensional structures of a single-chained PLA₂ from Taiwan cobra venom [38] and of notexin, an Australian elapid PLA₂ neurotoxin [39, 40] were solved by X-ray crystallography at 2 Å. The crystal structure of β_{2^-} bungarotoxin was also solved, showing a occluded substrate-binding surface and reduced hydrophobicity of the PLA₂ subunit [41].

b. Subfamily Viperinae

The medically important viperinae snakes in Asia are *Daboia russelli* (Russell's viper), *Echis carinatus* [42], and *Cerastes*. The primary structures of PLA₂ isoforms from these venoms were not characterized until recently. *Daboia russelli* has been classified into at least four subspecies: *Daboia russelli formosensis* (Taiwan), *Daboia russelli pulchella* (Sri Lanka and southern India), *Daboia russelli russelli* (northern India and Pakistan), and *Daboia russelli siamensis* (China and south-east Asia). The geographic variations of their bite-symptoms are remarkable and their antivenins usually show poor cross-neutralization. Venoms of four Russell's viper subspecies were compared in terms of their HPLC profiles and partial amino acid sequences of their PLA₂s. A potent, heterodimeric PLA₂ neurotoxin (designated as Russtoxin) was found in all the viper venoms analyzed except that of *D. r. pulchella* [43]. The PLA₂s of *D. russelli* (southern India)

previously studied by Gowda et al. [44, 45] appear to be structurally the same as those of D. r. pulchella (Sri Lanka), while the Russtoxins from D. r. russelli (Pakistan) and D. r. siamensis (Thailand) resemble that from D. r. formosensis [43]. Moreover, the published N-terminal amino acid sequences of the venom PLA₂s of D. r. siamensis from Fujian (China) [46] and from Burma [47] are also similar to that of D. r. formosensis. However, PLA2s of D. r. siamensis from these three regions show some variations in their N-terminal sequences (Table 1). The structural and functional data of the venom PLA₂s provide evidence for the presence of two major types of Russell's vipers. The species D. r. formosensis, D. r siamensis (Fujian, Thailand, and Burma) and D. r. russelli (Pakistan) represent one type whose venom contains hypotensive and neurotoxic PLA₂s having an Asn residue at the N-terminus [43, 48], while D. r. pulchella (southern India and Sri Lanka) represents the other type whose venom contains myonecrotic PLA₂s [49] with a N-terminal Ser residue. This finding is consistent with the reported antivenom differences between the Sri Lankan and the northern or western Indian subspecies [50] and also in accord with the report that two distinct groups of Daboia russelli population was found by means of multivariate morphometrics [51].

The complete sequences for heterodimeric neurotoxic PLA₂ (F4-F7) from the venom of *D. r. formosensis* were deduced from the cDNA sequences of both subunits. They are 92% identical to the vipoxin/inhibitor pair from the venom of Bulgarian *Vipera ammodytes* [48]. Structures of both subunits of the heterodimeric PLA₂ toxin from *Pseudocerastes fildi* (false horned viper, Israel) were found to be over 90% identical to those of the F4-F7 and the vipoxin/ inhibitor pairs [52]. Moreover, similar heterodimer PLA₂ toxins were found in the venoms of western-Asian species including *Vipera aspis* [53] and *Vipera palaestinae* [54]. The acidic subunit or charperon of the toxins plays the role of protecting the basic subunit against non-specific binding and thereby increases the probability of basic subunit reaching the neuromuscular junction or the The N-terminal amino acid sequences of PLA2s from the venom of D. russelli Table 1.

[43] with R stands for *D. r. russelli*, F for *D. r. formosensis*, S for *D. r. siamensis* (Thai), and P for *D. r. pulchella* (Sri Lanka), DRS (Fujian) for *D. r. siamensis* from Fujian, China [46]. DbTx for daboiatoxin from *D. r. siamensis* (Burma) [47]. different from those of the first are shown. Abbreviations of PLA2s are the same as For PLA₂ in each subgroups (separated by dashed lines), only the sequence of the first PLA2 and residues Asterisks denote numbering by each 10 residues.

PHOSPHOLIPASES A2

endothelium membrane causing neurotoxicity or hypotension (Tsai *et al.* to be published). Recently, synaptosomal binding of ¹²⁵I-labelled daboiatoxin from Burmese *Daboia r. siamensis* was studied [55]. The toxin binding could not be antagonized by the myotoxic PLA₂s from south Indian *D. russelli* (i.e. *D. r. Pulchella*) venom. However, it remains to be checked whether Burmese daboiatoxin present in the venom as a monomer or heterodimer.

Besides the heterodimeric toxic PLA₂s, monomeric PLA₂s of low lethal potency were identified and sequenced for the venoms of Pakistan *Cerastes cerastes* [56], west-Pakistan *Eristocophis macmahoni* [57], and those of *D. r. siamensis* and *D. r. russelli* (e.g. R1, S1-1, S1-2 in Table 1) [43, 58]. These homologous PLA₂s appear to play a hypotensive or antiplatelet role in rats.

Venom of *Echis carinatus sochureki* (north India and Pakistan) contains a Ser49 PLA₂ which was recently sequenced and characterized [59]. The substitution of Ca²⁺-binding Asp49 with a Ser49 in this enzyme does not abolish its enzymatic activity and this basic PLA₂ could induce platelet aggregation. Previously, partial sequences of two PLA₂ from the venom of Kenyan *Echis pyramidum leakeyi* (formerly *E. c. leakeyi*) were reported [60] and one of the sequence is very similar to that of the *E. c. sochureki* Ser49 PLA₂, while the other is similar to that of the Asp49 PLA₂ from Pakistan vipers [56, 57]. The Croatia/ Slovenija *Vipera ammodytes* venom also contain Ser49 myotoxic PLA₂ (i.e. Ammodytin L) but without detectable enzyme activity [61]. A weakly basic PLA₂ was purified from Indian *E. carinatus* venom but the sequence was not reported [62].

c. Subfamily Crotalinae

The generic name of some of the Asiatic Agkistrodon species has been changed or remains controversial [42] e.g. the monotypic Calloselasma rhodostoma and Deinagkistrodon acutus have been renamed. Agkistrodon halys Pallas is designated as A. blomhoffii brevicaudus now. The green species

of *Trimeresurus* have given rise to considerable confusion because of the great similarity between different forms. *T. gramineus* has been mistakenly used to name *Trimeresurus stejnegeri* (Taiwan) by toxinologists in reporting PLA₂ and other components of this venom [42, 70, 71].

The venom PLA₂ isoforms from the following species of Asian pit vipers have been characterized and sequenced: T. flavoviridis [63-65], T. okinavensis [63], T. mucrosquamatus [66-69], T. stejnegeri (T. gramineus) [70, 71], A. b. brevicaudus [72-74], A. h. blomhoffii [75-77], Deinagkistrodon acutus [78-80]. My classification of these PLA₂ according to similarities in their structures and pharmacological properties resulted in four subgroups of the crotalid venom PLA₂ (Fig. 2-5). Each subgroup has a distinct residue 6 or 49. Sequence identities within a subgroup are usually >70% while between the subgroups are usually <55%. PLA₂s in the Glu6 subgroup (Fig. 2) are inhibitors of platelet aggregation [78, 81], those in the Arg6 subgroup (Fig. 3) are strong anticoagulant [82], direct-hemolytic [77] and bactericidal when associated with mammalian bactericidal/ permeability-increasing protein [75, 83-85]. PLA₂s in the Asn6 subgroup(Fig. 4) are neurotoxic or/and myotoxic [67, 86-89], and those in the Lys49 subgroup (Fig. 5) possess myotoxic [65, 71, 91], edemainducing [68] and membrane depolarizing activities [65, 92]. The enzymatic activities of Lys-49 PLA₂s are usually hardly detectable or lower than those of the Asp-49 enzymes [89, 93]; however, the hydrolytic activity of the Lys49 PLA₂s of *T. flavoviridis* [94] and of other venoms [91] could be demonstrated.

Three dimensional structures of crotalid PLA₂s have been investigated by X-ray diffraction on the crystals derived from the acidic dimeric PLA₂ of *T*. *flavoviridis* [95], the acidic monomeric PLA₂ of *A*. *h. blomhoffi* venom [96], the acidic PLA₂ of *A*. *b. brevicaudus* venom [97], and the Lys49 PLA₂ from *A*. *p. piscivorus* venom [98] whose sequence is highly similar to those of the Lys49 PLA₂s of other Asian pit-vipers (Fig. 5). X-ray crystallographic structures of the recombinant wild-type and mutants of a cationic Asp49 PLA₂

% identity \mathbf{D} , \mathbf{M} , \dots , \mathbf{I} , $-\mathbf{R}\mathbf{D}$, \dots , \mathbf{A} , \dots , \mathbf{H} , \mathbf{L} , \dots , \dots , \dots , \dots , \dots , \dots , ---H.M.....I.G-R..VW..GS.....A.....BS......BS..... N.L...NM.RN..G-R..IW...D.....K..H...S....S....S... 76 75 73 80 73 73 79 100 85 ··M······I·G-R··IW·GS·····A·····S·····S······ H.M. ... NM.K. ..TG-R. . IW. .GS. K. .E. PS. row 81 SLIQFETLIMKVAK-KSGMFWYSNYGCYCGWGGQGRPQDATDRCCFVHDCCYGKVT---GC--60 --DPKMDVYSFSEENGDIVCGG-DDPCKKEICECDRAAAICFRDNLTLYNDKKYWAFGAKNCPQEESEPC $- \cdots \cdot \mathbf{D} \cdot \mathbf{F} \cdot \mathbf{IY} \cdot \mathbf{S} \cdot \cdots \cdot \mathbf{D} - \cdots \mathbf{L} \cdot \cdots \cdot \mathbf{V} \cdot \cdots \cdot \mathbf{K} \cdot \cdots \cdot \mathbf{MDT} \cdot - \mathbf{Q} \cdot \cdots \cdot \mathbf{FYP} \cdot \mathbf{S} \cdot \cdots \mathbf{K} \cdot \cdots \cdot \mathbf{N}$ $--\cdots$, \mathbf{L} , \cdots , \mathbf{T} , \cdots , \mathbf{A} , \cdots , $-\cdots$, \mathbf{O} , \cdots , \mathbf{KD} , \cdots , \cdots , \mathbf{IDT} , $-\mathbf{N}$, \cdots , \mathbf{F} , \mathbf{P} , \cdots , $-\cdots$, \cdots , \cdots , \mathbf{DT} --N. TVS .TYE.....E.....GTQK......IPSIPSE.PP.D. --RQ .P... $--NT \cdot DE \cdot \cdot TYT \cdot E \cdot A \cdot S \cdot \cdot -N \cdot \cdot \cdot L \cdot \cdot V \cdot \cdot \cdot L \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot NT \cdot DS \cdot \cdot \cdot M \cdot P \cdot \cdot \cdot -L \cdot SE \cdot \cdot \cdot$ 130 50 120 40 110 30 100 20 + 90 10 80 + T. okinavensis C. adamanteus Abb acidic DAV acidic App-dimer TFV-PL Ia 70 TFV-PL Ib 11. TGV-PL II TMV-PL I TGV-PL I Ahb II

10. 9.

98.76.51 98.76.51

. 8

. .

brevicaudus, Agkistrodon halys blomhoffi, Agkistrodon piscivorus piscivorus system follows that of Renetseder et al. [90]. Residue identical to that in Abbreviations and references: Abb, Abb, App, DAV are Agkistrodon blomhoffii and Deinagkistrodon acutus [79], respectively; TMV, TFV, TGV are venom of Trimeresurus flavoviridis [64], Trimeresurus mucrosquamatus [66], and Comparison of amino acid sequences of Crotalinae phospholipases \mathbb{A}_2 with Glu 6 substitution. Single-letter codes of amino acids were used. The numbering a dot; gaps are marked with hyphens. Trimeresurus gramineus or stejnegeri [70], respectively. the top line is denoted with . N Fig.

73

10. 11.

PHOSPHOLIPASES A₂

20 30 40 50 60	+ + + +	HILLQFRKMIKKMTG-KEPIVSYAFYGCYCGKGGRGKPKDATDRCCFVHDCCYEKVTGC		SSν.ν.ν	··IA···-··	SGGSKNAV	$N\cdot W\cdots E\cdots EA\cdots -\cdots LTT\cdot L\cdots A\cdots E\cdots E\cdots T\cdots T\cdots \cdots \cdots C\cdot L\cdot C\cdot L\cdotA\cdot$	7. Rabbit ascite fluidDRYTATTGAHVx.(xxxxxxxxxxxxxxxxxxxxxxxxxx
1 10	• +	HLLQFRKMIKKMTG-KEPIV		Sv	$\Lambda \cdots - \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots$	\dots N \dots N \dots \dots N \dots \dots N	N·W···E··EA··-L	··· D···· RYT··-· AT
		1. TFV PL-X	2. TFV PL-X'	3. Abb-basic	4. Ahb-basic	5. TSV PL II	6. TMV PL III	Rabbit ascite fluid

130 % identity +	100	54	84	84	79	76	
130 +	FCT-DPTEGC		L·S-SKS·K·	$L \cdot - SKS \cdot K \cdot$			R • S-GRPPS •
120 +	IN-RYMTFPDI	•••••••	KY	$K-\cdots AY\cdots$			cx)K ∙QFY •AN
110+	CFRDNLKTYK	· · · ·	· · ·	•			××××××××
100 +	KCECDKAAAI	۰۰Δ۰۰۰۰۰Δ	ν	I R			хх) А
06 +	3G-DPYCTRVI	NPE	DP-K-E	Q-X-du			
80+	SLENGDIVCC	· · · · · · · · · · · · · · · · · · ·	· · WK · · T · · ·	• • WK • • • • • •	• · M • •		? • MK (xxxxxx
70+	DPKWSYYTYSLENGDIVCGG-DPYCTKVKCECDKAAAICFRDNLKTYKN-RYMTFPDIFCT-DPTEGC	SSNPEVV	$\cdots\cdot DD\cdots\cdot WK\cdot\cdot T\cdots\cdot D\cdots DD\cdots\cdot WK\cdot\cdot T\cdot V\cdot \cdots$	$K\cdots DD\cdots W \cdots W \cdots \cdots DP \cdot K \cdot Q I \cdots \cdot R \cdots \cdots P \cdot V \cdot Q I \cdots \cdot R \cdots \cdots P \cdot V \cdots \cdot N \cdot V \cdots \cdot V \cdot V \cdots + V \cdot V$		S	$\mathbf{x})\cdot \mathtt{FLS}\cdot \mathtt{KF}\cdot \mathtt{MK} \left(xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx$
	н.	2.	з.	4.	5.	.9	7.

letter codes of amino acids were used. The numbering system follows that of Renetseder et al. [90]. Residue identical to that in the top line was denoted with a dot, gaps are marked with hyphens, "x" denotes unknown residue. Abbreviations are as those in Fig. 2. References for sequences: 1 and 2 [63, 64], 3-5 [74-76], 6 [69] and 7 [85]. Comparison of amino acid sequences of Crotalinae PLA2 with an Arg 6. Single-Fig. 3.

PHOSPHOLIPASES A2

		1	10	20	30	40	50	60
		+	+	+	+	+	+	+
,	1. DAV toxin	HLLQFNKM	[KIMTR-KNA]	PFYTSYGCY	HLLQFNKMIKIMTR-KNAFPFYTSYGCYCGWGGRGWPKDATDSCCFVHDCCYGKLTGC	ATDSCCFVH	DCCYGKLT	
ي. ا	2. Trimucrotoxin	· · · · · · · N	· · · · · K - · · · ·	····S····]	N······R·····R····I···S·····D·D·	R	• • • • • • • • • • • • • • • • • • • •	-D
т. т	3. Crotoxin B1		· · FE · · - · · · ·	AF	·······FE··-··I···AF·····K·····R·······················	я		· X-
4.	4. Crotoxin B2	S	· · FE · · - · · · ·	/ · · · AF · · · ·	$S \cdots FE \cdots FE \cdots V \cdots AF \cdots Q F \cdots Q P \cdots R \cdots R \cdots P P$	• • • R • • • • •		K •
ы. С	5. Agkistrodotoxin	N N	· · EE · G- · · ·]	AF	$N\cdots\cdots EE\cdot G-\cdots I\cdots AF\cdots\cdots Q\cdot K\cdots Q\cdot K\cdots G\cdot R\cdots R\cdot V-\cdots R\cdot V-\cdots N$	G R	R-V	·N-
9.	6. B. jararaca-TxII	D·W··GQ··	·LKE · G - · LP	· · Y · · T · · ·	$D \cdot W \cdot \cdot G Q \cdot \cdot L K E \cdot G - \cdot L P \cdot \cdot Y \cdot \cdot T \cdot \cdot \cdot \cdot Q \cdot Q \cdot Q \cdot Q \cdot \cdot \cdot R \cdot \cdot \cdot \cdot \cdot$	••••R•••••	• • • • • • • •	·N-
7.	7. B. asper PLA III	S.IE.A.	·LEE · K-RLP	· · Y · · T · · ·	$S \cdot IE \cdot A \cdots \cdot LEE \cdot K - RLP \cdots Y \cdot \cdot T \cdots \cdots \cdot Q \cdot Q \cdot Q \cdots \cdot R \cdots \cdot R \cdots \cdots \cdot S N \cdot$	····R····	S	· N-
α	8. C. v. viridis toxin		$\dots\dots\dots \dots $					

<pre>% identity</pre>	100	84	75	72	67	74	73
130 +	LC-KKPSKQC	\cdots -TD \cdots EK \cdot	$R \cdot - RG \cdot \cdot ET \cdot$	$R \cdot - RE \cdot \cdot ET \cdot$	$K \cdot -TET \cdot EE \cdot$	$\cdots - \cdots AEK$	•••••AEK•
120 +	1SPKWDIYPYSWKTGVIICGE-GTPCEKEICECDRAAAVCLGENLRTYKTK-YMFYPDFLC-KKPSKQC	2S·SrS·IIEEK	3NTL.S.Y.T.KW.EQV.E.	$4, -\text{NT}\cdots \cdot \text{R}\cdots \text{L}\cdot\text{S}\cdot\text{Y}\cdot\text{T}\cdot\text{K}-\cdot\text{W}\cdot\text{KEQ}\cdots \cdot \text{V}\cdot\text{E}\cdot\cdot\text{RRS}\cdot\text{S}\cdots \text{NE}-\cdots \cdot \text{SR}\cdot\text{-RE}\cdot\cdot\text{ET}\cdot$	5NT'S'T'S''L'E'Y'T''K'-'N''EQ''''''''''''''''''''''''''''''''	6K. T. R. S. REN	7K··T·R·S··R·S·····-
110 +	VCLGENLRTYK	· · · · · H · · · ·	E · · RRS · S · · ·	E RRS - S	E · FRR · · D · · N	• • FR • • • • • •	• • FR • • • • • •
100+	EICECDRAAA	КК	Q V J	QV.	۵γ	QK	QK
06 +	CGE-GTPCEK	•••••	KWE	···K-··W·KE	$\dots K - \dots N \dots E$	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •
80 +	Y PY SWKTGVII	··I····S·	$\Gamma \cdot Y \cdot S \cdot I \cdot \cdot \cdot$	-RL.S.Y.J	-S.·L.E.Y.J	·S··REN····	·S··R·S····
70 +	SPKWDI	· · · · · · · · · · · ·	Tu	···· LN '	T·S·TN	K··T·R	K··T·R
		2	m	4	ഹ	9	2

neutral residue 6 (or Asn 6). Single-letter codes of amino acids were used. The numbering system follows that of Renetseder *et al.* [90]. Residue identical to that in the top line is denoted with a dot; gaps are marked with hyphens. References for the sequences are 1-5 [79, 86], 6, 7 Comparison of amino acid sequences of Crotalinae phospholipases A2 with a [88] and 8 [89]. Fig. 4.

1 10 20 30 40 50 2 T. mucrosquamtus K49 SLIELGKMIFQETG-KNPVKNGLYGCNGRGKPVDTRCCFVHKCCYKKVT 3 T. flavoviridis Bp1 $\cdot V_0 \cdot W_1 + \frac{1}{4} + $			KVT		 	Л.	J.	Ţ.	7.	1.	identity		100	100	81	78	78	78	74	77
1 10 20 30 40 1. D. acutus K49 SLIELGKMIFQETG-KNPVKNYGLYGCNGGRRERPVATDRCEVHH 2. T. mucrosquamatus K49 SLIELGKMIFQETG-KNPVKNYGLYGCNGGRRERPVATDRCEVHH 3. T. flavoviridis BPI VQ.WATS RRR	50	+	CCYK	:	:	:	:	:	÷		id		ر ې							
1 10 20 30 40 4 + + + + + + 5 T mucrosquamatus K49 SLIELGKMIFQETG-KNPVKNYGLYGCNCGVGNRGKPVDAM 3 T flavoviridis BPI ·VQ·W			DRCCFVHK	•	• S • • Y • • •	· · · X · · · ·	· · · X · · · ·	· · · Ā · · · ·	•••••	•	130	+	LC-KAPES(• • • • • • • • • • • • • • • • • • • •	F · - · KADT	Q.ST.Y.F	F · - · KADP	· · - · KADA	X·-·K·DT	$\mathbf{X} \cdot - \cdot \mathbf{K} \cdot \cdot \mathbf{T}$
1 10 20 30 4 + + + 4 + + + 5 T. mucrosquamatus K49 SLIELGKMIFQETG-KNPVKNYGLYGCNCGVGN 3 T. flavoviridis BPI ··VQ·W 4 T. flavoviridis BPI ··VQ·W 5 B. jararacusu-I ··F 7 A. p. piscivorus K49 ··L 8 A. c. laticinctus MTX ··L 9 A. c. laticinctus MTX ··L 1 Ge 70 80 90 110 4 + + + + + 1 Ge 70 80 90 100 110 1 Ge 70 80 90 100 110 2 DPFKKDRYSYSMENKAIVCGEKNPPCLKQVCECDKAVAICLRENLGTYDKK + + + 3 N + + + + 4 D N N N N 3 N N N N N	40	+	IRGKPVDA1	•	· · · · K · · ·	J.R K	K	· · · · K · · ·	Q - K	۰۰.Q۰.K	120	+	-HRVTVKF)	• • • • • • •	IA · AYITY-	-KKINL·L)	-Y·YRL·P	$\mathbf{I} \cdot \mathbf{I} \mathbf{X} \mathbf{I} \cdot \mathbf{F}$	-YKAYF • LJ	- YKAYF - •]
1 10 20 1 D. acutus K49 SLIELGKMIFQETG-KNPVKNYGL 2 T. mucrosquamatus K49 SLIELGKMIFQETG-KNPVKNYGL 3 T. flavoviridis BPI VQ.WRAA 4 T. gramineus FLA-V VQ.WASS.A 5 B. jaratussu-I FFLASS.A 6 B. jaratussu-I FFLASS.A 7 A. D. pisciussu-I FASS.A 8 A. C. laticinctus MTX LLATS.S 9 A. C. laticinctus MTX LLATS.S 1 Ge 90 100 4 + + + 5 DPFKKDRYSYSWENKAIVCGEKNPPCLKQVCECDKAVAICLRE 3 NNS 4 D NS 5 NNS NS 6 NNS NS 7 B NS 6 NS NS 7 NS NS 8 <t< td=""><td>30</td><td>+</td><td>YGCNCGVGN</td><td>• • • • • • •</td><td>f</td><td>0-d</td><td>07</td><td>97</td><td>H • M • • • • • •</td><td>H · M · · · · · ·</td><td>110</td><td>+</td><td>NLGTYDKK</td><td>• • • • • •</td><td>$\cdots N \cdots \cdots$</td><td>· · D · · ·</td><td>· · · N · · · · ·</td><td>$\cdots N \cdots N \cdots$</td><td>$\cdot \cdot \mathbf{D} \cdot \cdot \mathbf{N} \cdot \cdot \mathbf{N}$</td><td>· • D • • N • • 1</td></t<>	30	+	YGCNCGVGN	• • • • • • •	f	0-d	07	97	H • M • • • • • •	H · M · · · · · ·	110	+	NLGTYDKK	• • • • • •	$\cdots N \cdots \cdots$	· · D · · ·	· · · N · · · · ·	$\cdots N \cdots N \cdots$	$\cdot \cdot \mathbf{D} \cdot \cdot \mathbf{N} \cdot \cdot \mathbf{N}$	· • D • • N • • 1
1. D. acutus K49 1. 1. 2. T. mucrosquamatus K49 SLIELGKMIFQETG-KNF 3. T. flavoviridis BPI VQ.W	20	+	VKNYGL	•••••	A	ATS···	A.S.A	A.S.A	ITS.STI	ITS S			<i>I</i> AICLRE	• • • • • •		•••Е				•
1. D. acutus K49 1. 1. 2. T. mucrosquamatus K49 SLIELGKMIFQ 3. T. flavoviridis BPI VQ.W 4. T. gramineus PLA-V VQ.W 5. B. asper-I Fr 6. B. jararacussu-I Fr 7. A. p. piscivorus K49 L 8. A. c. laticinctus MTX L 1. GCDpFKKDRYSYSWENKAIVCGEKNPPCLKQV 2. + + 4. + + 5. NS N 60 70 80 90 4 + + + 6 + + + 7. DNN N N 3. NN N N.SNM			ETG-KNP	••••••	• • • - • EA	•••••	•••••••	••••••	Y A	¥•••••	100	+	CECDKAV	•••••	•••••••••••••••••••••••••••••••••••••••		•			
1. D. acutus K49 \$11E1 2. T. mucrosquamatus K49 \$11E1 3. T. flavoviridis BP1 vQ. 4. T. gramineus PLA-V vQ. 5. B. asper-II vQ. 6. B. jararacussu-I eF. 7. A. p. piscivorus K49 .vL. 8. A. c. laticinctus MTX L. 1. GC 70 80 4. D. piscivorus K49 .vL. 5. A. p. piscivorus K49 .vL. 60 70 80 + 7. A. c. laticinctus MTX L. 8. DNFKKDRYSYSWENKAIVCGEKN 7. DNH.T. 8. DNH.T.	10	+	GKMIFQ	•••••••••••••••••••••••••••••••••••••••	M	•	·	• · · · · I	$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot$. · · · Г	90	+	PPCLKQV	••••••	•••••	· · · EM	1 <u></u>	S-···EL	· · EM	··EM
 D. acutus K49 T. flavoviridis BPI T. flavoviridis BPI T. flavoviridis BPI T. gramineus PLA-V B. asper-II B. jararacussu-I A. p. piscivorus K49 A. c. laticinctus MTX A. c. laticinctus MTX CDPKKDRYSYSWENKAI CDPKKDRYSYSWENKAI CNFKKDRYSYSWENKAI CNFKKDRYSYSWENKAI CNFKKDRYSYSWENKAI DNH-T DNH-T N. KD-T 	٦	+	SLIEI	:	٠ðv · ·	$\cdots \Lambda \cdot$	ц	н	ЛЛ ·	· · T · ·			VCGEKN	•	•••••	·0···	$\cdot N \cdot \cdot \cdot N$	• N • • • •	I · E · · ·	I · E · ·
 D. acutus K49 T. mucrosquamatu T. flavoviridis S. B. asper-II B. jararacussu-I A. p. piscivorus A. c. laticinctu CpFKKDRYSY CNKKDRYSY SN SN SN SNH-T DNH-T 				<i>s</i> K49	BPI	Λ-			K49	XTM 2	80	+	SWENKAI	• • • • • •	• • K • • • •	$\cdots \Lambda \cdots$	· T.O.Y	··KD·T·	• • · K • • • •	• • K • • • •
1. D. acu 3. T. fla 5. B. acu 6. B. Jary 8. A. C. J. 8. A. C. J. 8. A. C. J. 8. D			tus K49	rosquamatu	voviridis	nineus PLA	er-II	aracussu-I	piscivorus	laticinctu	70	+	-DPKKDRYSY	• • • • • • • • •	W-S	· · · I · · ·	- · · · · · · · · · · ·	N-	$-NH \cdot T \cdot \cdot \cdot \cdot$	- NH - T
			1. D. acu	2. T. muc.	3. T. fla	4. T. grau	5. B. asp	6. B. jar	7. A. P. I	8. A. C	60	+	1. GC	2	3	4. D	5	6	7. D	8. D

49	Lng	lat	ls.	
Lys	umber	to th	lypher	
with	The n	cical	rith ŀ	
PLA_2	ed.	iden	ked w	
nae	ere us	sidue	e mar	
ali	E We	Re	are	
Crot	acid	90].	gaps	1J.
s of	amino	al. [dot;	80, 9
nce	of	et	ർ	71,
segue	codes	seder	with	are ['
acid	letter	Renet	enoted	lences
ou	le.	с С	s D	seg
ami	Sing	that	nei	the
οf	ц.	OWS.		for
ison	cutio	foll	top	lces
Fig. 5. Comparison of amino acid sequences of <i>Crotalinae</i> PLA2 with Lys 49	substitution. Single-letter codes of amino acids were used. The numbering	system follows that of Renetseder et al. [90]. Residue identical to that	in the top line is denoted with a dot; gaps are marked with hyphens.	References for the sequences are [71, 80, 91].
2				
Fig.				

from *A. p. piscivorus* venom were investigated and the crucial roles of its residues 7 and 10 in interfacial binding were shown [99]. These crystallographic studies confirmed the conservation of core area conformation of the PLA₂ molecules and variations in surface residues and loops. Notebly, results from recent NMR studies [100, 101] on the pancreatic PLA₂ have demonstrated that the N-terminal residues 1-3 of the secretory 14 kDa PLA₂ in solution are not ordered and the enzyme is activated upon binding to the aggregated substrate. The molecular dynamics were not revealed by previous crystallographic data.

3. EVOLUTION OF VENOM PLA₂

Study on the evolution and the phylogeny of venom PLA₂ at the molecular level started several years ago [102]. The group I and group II PLA₂s are known to have evolved separately. Five cDNA and six genes encoding the venom gland PLA₂s of *T. flavoviridis* were sequenced [64], so were the PLA₂ genes from T. gramineus [103], those of Mojave toxin (C. s. scutulatus) [104], and those from Vipera a. ammodytes [105]. The data confirmed a positive Darwinian evolution of these genes. Interestingly, four and five exons were found in Crotalinae and Viperinae PLA₂ genes, respectively. The first intron was retained in the mRNA of Crotalinae PLA2 in contrast to that of Viperinae PLA₂, possibly due to change in secondary structure of the first exon of Crotalinae PLA₂ gene [105]. The protein-coding regions are much more diversified than the 5' and 3' untranslated regions (UTRs) and the introns except for the signal peptide domain. The numbers of nucleotide substitutions per site for the UTRs and the introns were approximately one-quarter of the numbers of nucleotide substitutions per synonymous site for the protein-coding regions. However, the UTRs and the introns of venom PLA₂ genes have evolved at similar rates to those of non-venomous genes. Apparently, gene

duplication and accelerated evolution in the protein coding regions is universal in PLA_2 genes of *Crotalinae* and *Viperinae* venom. The venom genes have been evolving under adaptive pressure to acquire new physiological activities [64, 88, 103, 106].

It has been shown that possibly four group II PLA_2 genes which map to the same chromosome are present in mammalian genome [107], and it is likely that snakes also have several group II PLA_2 genes expressed in non-venomous tissues, and venom PLA_2 isoforms may be derived from more than one nonvenomous PLA_2 gene.

Examination of nucleotide sequences for five group I PLA₂ cDNAs from four genera of elapids [108] also revealed high similarity of the non-coding region and more variability in the coding regions; but the conserved sequences from the elapids have no nucleotide sequence similarity to corresponding regions in viperid PLA₂ genes. Furthermore, when nucleotide sequences for cDNA clones of two metalloproteases from *Agkistrodon contortrix laticinctus* [109] and those from *Echis pyramidum leakeyi* [110] were compared, there appears to be high conservation of noncoding DNA sequences for the metalloprotease genes. Thus, most of the venom protein genes probably undergo a coordinated and fast evolution to ensure the production of an effective venom to meet the requirment of snakes for food and defense.

4. BINDING PROTEIN AND ACTION MECHANISM

It has been difficult to define the pharmacological effect of a venom PLA₂ *in vivo* and *in vitro*. Endeavours in mechanistic studies of venom PLA₂s have been fruitful but many questions remain to be answered.

a. M-type receptor

This 180 kDa membrane protein, identified to be present in mammlian tissues, binds tightly to some non-neurotoxic venom PLA₂s, pancreatic PLA₂

and the group II inflammatory-type PLA_2 [111-113]. The receptor gene has been cloned and expressed [111, 114] and was found to have endocytic property [115]. Significance of the receptor in the regulation of PLA_2 action remains to be elucidated.

b. Neurotoxic PLA₂s and binding proteins

High affinity and specific receptor for presynaptically toxic β bungarotoxin has been identified to be a voltage dependent K^+ -channel [116-118]. The binding proteins (or its subunit) on synaptic membrane for crotoxin and taipoxin have been found to be the norepinephrine transporter [119]. The receptors for ammodytoxin A and C on the bovine brain were identified, too. However, ammodytoxins could not inhibit all the high affinity binding of crotoxin, suggesting that receptors for crotoxin and ammodytoxin are not identical [120, 121]. The hypotensive PLA₂s from Indian Daboia r. russelli venom bind receptors rather differently from the receptors mentioned above [122-124]. Recently, synaptic binding protein of daboiatoxin, the myotoxic and neurotoxic PLA2 from Burmese Daboia russelli venom, has been identified to be a 100 kDa protein with two subunits of 25 kDa and 75 kDa [55]. There was no competition by ammodytoxin or crotoxin for the receptor. It remains to be clarified whether the heterodimeric PLA₂ toxins from various D. russelli venoms [43,52] have similar binding sites as daboiatoxin or not. The diversified binding sites for presynaptic PLA₂ toxins have been reviewed recently by Tzeng [125].

We and others have shown that the N-terminal region and regions 76-81 and 119-125 of PLA_2 neutrotoxins are involved in their receptor binding or neurotoxicity [48, 67, 126, 127]. The cellular effects of the PLA toxins on the nerve-terminal have been reviewed in a recent paper [128]. The detailed mechanism after receptor binding and the role of phospholipid hydrolysis in the blockade of neurotransmitter release by the toxins are not clear.

c. Anticoagulating activity

Basic motif with four or five Arg/Lys in strongly anticoagulant PLA₂ from *Naja nigricollis* venom [82] is involved in its inhibition of prothrombin complex [129]. The anticoagulating human group II PLA₂ inhibited coagulation factor Xa or its interaction with factor Va also by a basic region at residuses 51-62 [130]. However, specific sites in other anticoagulating PLA₂s from viperid venoms, which are involved in a possibly similar mechanism, remains to be identified.

d. Antiplatelet activity

Venom PLA₂ interferes with hemostasis by either anticoagulant or antiplatelet effects. The inhibition of platelet aggregation by PLA₂s may be mediated by the generation of lysophospholipid [131, 132] and by resultant change in cytoskeleton and hence the loss of release reaction of platelets [27]. However, the specificity for platelet membrane appears to be a prerequisite of the antiplatelet activity of venom PLA₂. Recently, a structural feature responsible for this activity was proposed based on the 3-dimensional structure of the antiplatelet PLA₂ from *A. b. brevicaudus* (ie. *A. h.* Pallas) venom. A unique aromatic patch (residues 20, 21, 113 and 119) surrounded by two acidic residues (Glu 6 and Asp 115) on one face of the PLA₂ molecule was postulated to be implied in the recognition of platelet membrane [97].

e. Myonecrotic action and myotoxicity

In accord with their phylogeny relation (Fig. 1) hydrophiid and Australian elapid venom $PLA_{2}s$ cause systemic myotoxicity and myoglobinuria in common while viperid basic $PLA_{2}s$ with or without neurotoxicity and the Lys49 $PLA_{2}s$ produce local myonecrosis [24]. The damaged muscle showed dilatation of sarcoplasmic reticulum, vascuolation, then disruption and hypercontraction of the fibres, and inflammatory reaction. Influx of Ca^{2+} into sarcoplasma and activation of proteases appear to play a vital role after

PHOSPHOLIPASES A2

membrane damaging by PLA₂s [24, 133]. PLA₂ myotoxins showed differential specificity for different types of skeletal muscle [134]. The Lys49 PLA₂s are cytotoxic, edema-inducing and disrupt membrane by poorly understood Ca^{2+} independent mechanism. Their edema-inducing activity involves degranuation of mast cell and PMN [68].

f. Binding to sulfated proteoglycans

A cluster of three or more basic residues is a potential motif in protein for its binding to heparin or other sulfated proteoglycans [135]. This motif is present in some Lys49 PLA₂ sequences and possibly also exists in the folded conformation of some Asp49 PLA₂s. It was well documented that some venom PLA₂s bind heparin [136-138], and so does the human group II PLA₂ [138, 139]. The binding not only serves for anchoring or concentrating the PLA₂ to specific cells but also modulates its enzyme activity.

g. Protein deacylation and autocatalytic acylation of PLA₂

It has been shown that PLA₂ may hydrolyze thioester bond of long chain acyl-CoA and show protein-deacylase activity for acyl-carrier protein [140]. It is likely that venom PLA₂ may hydrolyse some acyl-protein anchored on cell membranes although no such case has been reported. A PLA₂ may undergo autocatalyzed acylation of specific Lys residues to certain extend in the presence of phospholipid substrate [141]. On the other hand, Lys 49 and Ser 49 PLA₂s are able to undergo acylation spontaneously with free fatty acids [142]. The acylated PLA₂s usually became more hydrophobic and tightly bound to membrane or catalytically more active.

5. CONCLUSION AND PERSPECTIVES

Due to their abundance in snake venoms, thermal and acid stability, and relative ease of purification, $PLA_{2}s$ are among the best studied enzymes.

Advances in technology including HPLC, mass spectrometry, polymerase chain reaction and nucleotide sequencing have facilitated the determination of amino acid sequences of more venom PLA₂s. Secondary and tertiary structures of PLA₂s were elucidated by X-ray crystallography, NMR and other methods [3, 143]. Although previous works, mainly chemical modification studies [144], have accumulated rich data, the structure-activity relationship of venom PLA₂ remain to be reinvestigated for conclusion by incorporating new methods such as *in vitro* mutagenesis.

The enzymatic activity of PLA₂ found in vitro may not well reflect that in vivo; and bilayer, monomeric substractes need to be tested in addition to micellar substrates with different electrostatic properties or phospholipid substrates with different head-groups. For functional studies, relevant and diversified assays are usually needed to study the pharmacological effects of a venom PLA₂. It may be essential to dissect the PLA₂ action into steps including receptor targeting and binding, interfacial binding and activation, active site catalysis, kinetic specificity, etc. Independent analysis of each step is necessary to make a conclusion about the structure-activity relationship of the PLA₂ action. Besides, species specificity [23] and tissue specificity [134] in toxin assays are important considerations. These are challenges for the researchers of venom PLA₂ toxins. It would not be surprising to find that conformational change occurs upon binding of a venom PLA₂ to its binding protein or specific target, since conformational dynamics of group I PLA₂s at the N-terminal and 53-72 regions upon interfacial binding [98, 145] or ligand binding [39] have been well documented.

In the past few years, site-directed-mutagenesis studies of pancreatic PLA₂s have shed considerable light on the role of its active-site residues [93, 146, 147], the N-terminal [145, 148] and the C-terminal regions [149], the disulfide bonds [150] and its interficial residues [97, 145, 148, 151, 153]. The results are important and fundamental for understanding the structure-activity

relationship of the 14 kDa PLA₂ family. However, venom PLA₂s have evolved from nontoxic enzymes to those with special toxicity or tissue specificity. More protein-engineering studies on their functional domains are apparently required. Interfacial-binding mutants of a cationic PLA₂ from the venom of *A. p. piscivorus* have recently been studied and the results showed that the critical charged groups involved in interfacial adsorption for this groups II PLA₂s is very different from those for pancreatic PLA₂ [99, 154]. It is likely that interfacial residues of each subgroup of venom PLA₂s are characteristic. The interfacial binding surface of the bee venom PLA₂ was shown to be part of its neuronal receptor-recognition domain by site-directed-mutagenesis [155]. There is clearly much scope for future research on the structure-activity relationship of venom PLA₂ isoforms with such complexicity and functional diversity.

Acknowledgement: I thank the National Science Council of Taiwan and Academia Sinica for grant supports, and Dr. T. Y. Chiang at Department of Biology, Cheng-Kung University for preparing phylogenic tree of PLA₂. The secretarial helps of Dr. Yuh-Ling Chen and Miss S. H. Rao are greatly appreciated.

REFERENCES

- 1. Warrell, D. A. Clinical features of envenoming from snake bites. In: Envenoming and their treatment, edited by C. Bon and M. Goyffon, Foundation Marcel Merieux, France, p. 63, 1996.
- 2. Rosenberg, P. Phospholipases. In: *Handbook of Toxinology*, edited by W. T. Shier and D. Mebs, Marcel Dekker, Inc. New York, p. 67, 1990.
- 3. Scott, D. and Sigler, P. B. Structure and catalytic mechanism of secretory phospholipase A₂. Adv. Prot. Chem. 45: 53, 1994.

TSAI

- Danse, J. M., Gasparini, S and Menez, A. Molecular biology of snake venom phospholipase A₂. In: Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, edited by R. M. Kini, John Wiley & Sons, UK, p. 29, 1997.
- Davidson, F. F. and Dennis, E. A. Structure, function, and mode of action of snake venom and other phospholipase A₂ In: *Handbook of Natural Toxins*, edited by A. T. Tu, Marcel Dekker, Inc., New York, Vol. 5, p. 107, 1991.
- Hawgood, B. and Bon, C. Snake venom presynaptic toxins. In: Handbook of Natural Toxins, edited by A. T. Tu, Marcel Dekker, Inc., New York, Vol. 5, p. 3, 1991.
- Harris, J. B. Phospholipases in snake venom and their effects on never and muscle. In: *Snake Toxins*, edited by A. L. Harvey Pergamon Press, Inc. New York, p. 91, 1991.
- 8. Kudo, I., Murakami, M., Hara, S. and Inoue, K. Mammalian non-pancreatic phospholipase A₂. *Biochim. Biophys. Acta* **117**: 217, 1993.
- Armugam, A., Earnest, L., Chung, M. C. M., Gopalakrishnakone, P., Tan, C. H., Tan, N. H. and Jeyaseelan, K. Cloning and characterization of cDNAs encoding three isoforms of phospholipase A₂ in Malayan spitting cobra (*Naja naja sputatrix*) venom. *Toxicon* 35: 27, 1997.
- Pan, F. M., Yeh, M. S., Chang, W. C., Hung, C. C. and Chiou, S. H. Sequence analysis and expression of phospholipase A₂ from Taiwan cobra. *Biochem. biophys. Res. Commun.* 91: 95, 1994.
- Pan, F. M., Chang, W. C. and Chiou, S. H. cDNA and protein sequences coding for the precursor of phospholipase A₂ from Taiwan cobra Naja naja atra. Biochem. mol. Biol. Int. 33: 187, 1994.
- Tan, N. H. and Saifuddin, M. N. Purification and characterization of two acidic phospholipase A₂ enzymes from king cobra (*Ophiophagus hannah*) snake venom. *Int. J. Biochem.* 22: 481, 1990.
- Chiou, J. Y., Chang, L. S., Chen, L. N. and Chang, C. C. Purification and characterization of a novel phospholipase A₂ from king cobra (*Ophiophagus* hannah) venom. J. Protein Chem. 14: 451, 1995.
- 14. Liu, C. S., Kuo, P. Y, Chen, J. M., Chen, S. W., Chang, C. H., Tseng, C. C., Tzeng, M. C. and Lo, T. B. Primary structure of an inactive mutant of phospholipase A₂ in the venom of *Bungarus fasciatus (Banded Krait)*. J. Biochem. 112: 707, 1992.

- 15. Liu, C. S., Chen, J. M., Chang, C. H., Chen, S. W., Tsai, I. H., Lu, H. S. and Lo, T. B. Revised amino acid sequences of the three major phospholipase A₂ from *Bungarus fasciatus* (banded krait) venom. *Toxicon* 28: 1457, 1990.
- Kondo, K., Toda, H., Narita, K. and Lee, C. Y. Amino acid sequence of three β-bungarotoxins (β3-, β4-, and β5-bungarotoxins) from Bungarus multicinctus venom. Amino acid substitutions in the A chains. J. Biochem. 91:1519, 1982.
- 17. Chu, C. C., Li, S. H. and Chen, Y. H. Resolution of isotoxins in the βbungarotoxin family. J. Chromatogr. A 694: 492, 1995.
- Danse, J. M., Toussaint, J. L. and Kempf, J. Nucleotide sequence encoding β-bungarotoxin A₂-chain from the venom of *Bungarus multicinctus*. *Nucleic Acids Res.* 18: 4609, 1990.
- Danse, J. M., Garnier, J. M. and Kempf, J. cDNA deduced amino acid sequence of a new phospholipase from the venom of *Bungarus multicinctus*. *Nucleic Acids Res.* 18: 4610, 1990.
- Chang, L. S., Wu, P. F and Chang, C. C. cDNA sequence analysis and expression of the A chain of β-bungarotoxin from *Bungarus multicinctus* (Taiwan banded krait). *Biochem. Biophys. Res. Commun.* 221: 328, 1996.
- Lin-Shiau, S. Y., Huang, M. C. and Lee, C. Y. A study of cardiotoxic principles from the venom of *Bungarus fasciatus* (Schneider). *Toxicon* 13: 189, 1975.
- 22. Zhang, Y., Xiong, Y. L. and Bon, C. An activator of blood coagulation factor X from the venom of *Bungarus fasciatus*. *Toxicon* 33: 1277, 1995.
- 23. Lee, W. H., Zhang, Y., Wang, W. Y., Xiong, Y. L. and Gao, R. Isolation and properties of a blood coagulation factor X activator from the venom of king cobra (*Ophiophagus hannah*). *Toxicon* 33: 1263, 1995.
- 24. Huang, M. Z. and Gopalakrishnakone, P. Pathological changes induced by an acidic phospholipase A₂ from *Ophiophagus hannah* venom on heart and skeletal muscle of mice after systemic injection. Toxicon 34: 201, 1996.
- 25. Lind, P. and Eaker, D. Amino acid sequence of a lethal myotoxic phospholipase A₂ from the venom of the common sea snake (*Enhydrina schistosa*). *Toxicon* **19**: 11, 1981.
- 26. Takasaki, C., Kimurs, S., Kokubun, Y. and Tamiya, N. Isolation, properties and amino acid sequences of a phospholipase A₂ and its homologue without activity from the venom of a sea snake, *Laticauda colubrina*, from the solomon islands. *Biochem. J.* 253: 869, 1988.

- 27. Huang, M. Z., Gopalakrishnakone, P., Chung, M. C. M. and Kini, R. M. Complete amino acid sequence of an acidic, cardiotoxic phospholipase A₂ from the venom of *Ophiophagus hannah* (king cobra): a novel cobra venom enzyme with "pancreatic loop". Arch. Biochem. Biophys. 338: 150, 1997.
- Guignery-Frelat, G., Ducancel, F., Menez, A. and Boulain, J. C. Sequence of a cDNA encoding a snake venom phospholipase A₂. Nucleic Acids Res. 15: 5892, 1987.
- Takasaki, C., Kuramochi, H., Shimazu, T. and Tamiya, N. Correction of amino acid sequence of phospholipase A₂ I from the venom of *Laticauda* semifasciata (erabu sea snake). Toxicon 26: 474, 1988.
- Ducancel, F. Guignery-Frelat, G. Bouchier, C. Menez, A. and Boulain, J. C. Sequence analysis of a cDNA encoding a PLA₂ from the sea-snake *Aipysurus laevis*. *Nucleic Acids Res.* 16: 9048, 1988.
- Teng, C. M., Kuo, Y. P., Lee, L. G. and Ouyang, C. Characterization of the anticoagulants from Taiwan cobra (*Naja n. atra*) snake venom. *Toxicon* 25: 201, 1987.
- Fletcher, J. E. and Jiang, M. S. Possible mechanism of action of cobra snake venom cardiotoxins and bee venom mellitin. *Toxicon* 31: 669, 1993.
- 33. Chen, Y. H., Lai, M. Z. and Kao, L. S. Destruction of liposome vesicles by Taiwan cobra cardiotoxin. *Biochem. Int.* 3: 385, 1981.
- Bougis, P. E., Marchot, P. and Rochat, H. In vivo synergy of cardiotoxin and phospholipase A₂ from the elapid snake Naja mossambica mossambica. Toxicon 25: 427, 1987.
- Davidson F. F. and Dennis, E. A. Amino acid sequence and circular dichroism of Indian cobra (*Naja naja naja*) venom acidic phospholipase A₂. *Biochim. Biophy. Acta* 1037: 7, 1990.
- Ho, C. L. and Lee, C. Y. Cardiovascular effects of phospholipase A₂ purified from various snake venoms. *Proc. Natl. Sci. Counc. B, ROC* 5: 181, 1981.
- Lee, C. Y. and Lee, S. Y. Cardiovascular effect of snake venoms. In: Snake venoms. Handbook of experimental pharmacology, edited by C. Y. Lee, Springer-Verlag, Berlin, 52: 546, 1979.
- 38. White, S. P., Scott, D. L., Otwinowski, Z., Gelb, M. H. and Sigler, P. B. Crystal structure of cobra-venom phospholipase A_2 in a complex with a transition-state analogue. *Science* **250**: 1560, 1990.

- Westerlund, B., Saarinen, M., Person, B., Ramaswamy, S., Eaker, D. and Eklund, H. Crystallographic investigation of the dependence of calcium and phosphate ions for notexin. *FEBS Lett* **403**: 51, 1997.
- Westerlund, B., Nordlund, P., Uhlin, U., Eaker, D. and Eklund, H. The 3-D structure of notexin, a presynaptic neurotoxic phospholipase A₂ at 2.0 A resolution. *FEBS Lett* 301: 159, 1992.
- Kwong, P. D., McDonald, N. Q., Sigler, P. B. and Hendrickson, W. A. Structure of β₂-bungarotoxin: potassium channel binding by Kunitz modules and targeted phospholipase action. *Structure* 3: 1109, 1995.
- Wuster, W., Golay, P. and Warrell. D. A. Synopsis of recent developments in venomous snake systematics. *Toxicon* 35: 319, 1997.
- Tsai, I. H., Lu, P. L. and Su, J. C. Two types of Russell's viper revealed by variation in phospholipase A₂ from venom of the subspecies. *Toxicon* 34: 99, 1996.
- Kasturi, S. and Gowda, T. V. Purification and characterization of a major phospholipase A₂ from Russell's viper (*Vipera russelli*) venom. *Toxicon* 27: 229, 1989.
- 45. Gowda, V. T., Schmidt, J. and Middlebrook, J. L. Primary sequence determination of the most basic myonecrotic phospholipase A₂ from the venom of *Vipera russelli*. *Toxicon* 32: 665, 1994.
- Li, Y. S., Liu K. F., Wang, Q. C., Ran, Y. L. and Tu, G. C. Studies on a basic phospholipase A₂ of *Vipera russelli siamensis* Smith venom from Fujian. *Acta Biochim. Biophy. Sinica (PRC)* 17: 607, 1985.
- Maung-Maung-Thwin, Gopalakrishnakone, P., Yuen, R. and Tan, C. H. A major lethal factor of the venom of Burmese Russell's viper (*Daboia russelli* siamensis): isolation, N-terminal sequencing and biological activities of daboiatoxin. *Toxicon* 33: 63, 1995.
- Wang, Y. M., Lu, P. J., Ho, C. L. and Tsai. I. H. Characterization and molecular cloning of neurotoxic phospholipase A₂ from Taiwan viper (*Vipera russelli formosensis*). Eur. J. Biochem. 209: 635, 1992.
- 49. Gowda, T. V. and Middlebrook, J. L. effects of myonecrotic snake venom phospholipase A₂ toxins on cultured muscle cells. *Toxicon* **31**: 1267, 1993.
- 50. Philips, R. E., Theakston, R. D. G., Warrell, D. A., Galigedara, Y., Abeysekera, D. T. D. J., Dissanayaka, P., Hutton, R. A. and Aloysius, D. J. Paralysis, rhabdomyolysis and haemolysis caused by bites of Russell's viper

(Vipera russelli pulchella) in Sri Lanka: failure of Indian (Haffkine) antivenom. Q. J. Med. 68: 691, 1988.

- Wuster, W., Otsuka, S., Malhotra, A. and Thorpe, R. S. Population systematics of Russell's viper: a multivariate study. *Biol. J. Linn. Soc.* 47: 97, 1992.
- 52. Francis, B., Bdolah, A. and Kaiser, I. I. Amino acid sequences of a heterodimeric neurotoxin from the venom of the false horned viper (*Pseudocerastes fieldi*). *Toxicon* 33: 863, 1995.
- Komori, Y., Nikai, T. and Sugihara, H. Comparative study of three phospholipases A₂ from the venom of *Vipera aspis*. *Comp. Biochem. Physiol.* 97B: 507, 1990.
- Simon, T., Bdolah, A. and Kochva, E. The two component toxin of Vipera palaestinae: contribution of phospholipase A₂ to its activity. *Toxicon* 18: 249,1980.
- 55. Maung-Maung-Thwin, Gopalakrishnakone, P., Yuen, R. and Tan C. H. Synaptosomal binding of ¹²⁵I-lablled daboiatoxin, a new PLA₂ neurotoxin from the venom of *Daboia russelli siamensis*. *Toxicon* **34**: 183, 1996.
- 56. Siddiqi, A. R., Shafqat, J., Zaidi, Z. H. and Jornvall, H. Characterization of phospholipase A₂ from the venom of horned viper (*Cerastes cerastes*). FEBS Lett. 278: 14, 1991.
- 57. Siddiqi, A. R., Zaidi, Z. H. and Jornvall, H. Purification and characterization of two highly different group II phospholipase A₂ isozymes from a single viperid (*Eristocophis macmahoni*). Eur. J. Biochem. 201: 675, 1991.
- 58. Tsai, I. H., Lu, P. J. and Su, Y. C. Russtoxin: a new family of twocomponent phospholipase A₂ toxins from Russell's vipers. In: *Peptides: Chemistry and Biology, Proc. 13th Amer. Peptide Symp.*, edited by R. S. Hodges and J. A. Smith. Escom Sci., The Netherland, p. 465, 1994.
- 59. Polgar, J., Mabnenat, E. M., Peitsch, M. C., Well, T. N. C. and Clemetson, J. C. Asp-49 is not an absolute prerequisite for the enzymic activity of low-M_r phospholipase A₂: purification, characterization and computer modelling of an enzymically active Ser-49 phospholipase A₂, ecarpholin S, from the venom of *Echis carinatus sochureki* (saw-scaled viper). *Biochem. J.* **319**: 961, 1996.
- 60. Desmono, H. P., Crampton, J. M. and Theakston, R. D. G. Rapid isolation and partial characterization of two phospholipases from Kenyan *Echis carinatus leakeyi* (Leakeyi's saw-scaled viper) venom. *Toxicon* 29: 536, 1991.

- Krizaj, I., Bieber, A., Ritonja, A. and Gubensek, F. The primary structure of ammodytin L. a myotoxic phospholipase A₂ homologue from *Vipera* ammodytes venom. Eur. J. Biochem. 202: 1165, 1991.
- 62. Kemparaju, K., Prasad, B. N. and Gowda, V. T. Purification of a basic phospholipase A₂ from Indian saw-scaled viper (*Echis carinatus*) venom: characterization of antigenic, catalytic and pharmacological properties. *Toxicon* **32**: 1187, 1994.
- 63. Kini, R. M., Kawabata, S. -I. and Iwanaga, S. Comparison of amino terminal region of three isoenzymes of phospholipase A₂ (TFV PL-Ia, TFA PL-Ib, TFV PL-X) from *Trimeresurus flavoviridis* (Habu snake) venom and the complete amino acid sequence of the basic phospholipase, TFB PL-X, *Toxicon* 24: 1117, 1986.
- 64. Nakashima, K., Ogawa, T., Oda, N., Hattori, M., Sakaki, Y., Kihara, H. and Ohno, M. Accelerated evolution of *Trimeresurus flavoviridis* venom gland phospholipase A₂ isozymes. *Proc. Natl. Acad. Sci. USA* **90:** 5964, 1993.
- 65. Kihara, H., Uchikawa, R., Hattori, S. and Ohno, M. Myotoxicity and physiological effects of three *Trimeresurus flavoviridis* phospholipase A₂. *Biochem. Int.* 28: 895, 1992.
- Wang, Y. M. and Tsai, I. H. Cloning and sequencing of an acidic phospholipase A₂ from Taiwan habu (*T. mucrosquamatus*). J. Chinese. Biochem. Soc. (R.O.C.) 23: 53, 1994.
- 67. Tsai, I. H., Lu, P. J., Wang, Y. M., Ho, C. L. and Liaw, L. L. Molecular cloning and characterization of a neurotoxic phospholipase A₂ from the venom of Taiwan habu (*T. mucrosquamatus*). Biochem. J. (London) 311: 895, 1995.
- 68. Liu, C. S., Chen, J. M., Chang, C. H., Chen S. W., Teng, C. M. and Tsai, I. H. The amino acid sequence and properties of an edema-inducing Lys-49 phospholipase A₂ homolog from the venom of *Trimeresurus mucrosquamatus*. *Biochim. Biophys. Acta* 1077: 362, 1991.
- 69. Tsai, I. H., Lu, P. J., Wang, Y. M., Ho, C. L. and Hwang, L. L. Molecular cloning and characterization of snake venom phospholipases A₂ from Taiwan vipers: *Trimeresurus mucrosquamatus* and *Vipera russelli formosensis*. In: *Recent Advances in Molecular and Biochemical Research on Proteins, Proc. IUBMB Symposium on Protein Structure and Function*, edited by Y. H. Wei, C. S. Chen and J. C. Su, World Scientific, Singapore, p. 129, 1993.
- 70. Fukagawa, T., Nose, T., Shimohigashi, Y., Ogawa, T., Oda, N., Nakashima, K., Chang, C. C. and Ohno, M. Purification and characterization of single

amino acid-substituted phospholipase A_2 isozymes from *Trimeresurus* gramineus (green habu snake) venom. *Toxicon* **31**: 957, 1993.

- Nakai, M., Fukagawa, T., Ogawa, T., Shimohigashi, Y., Hattori, S., Chang, C. C. and Ohno, M. Purification and primary strucuture of a myotoxic Lysine-49 phospholipase A₂ with low lipolytic activity from *Trimeresurus* gramineus venom. *Toxicon* 33: 1469, 1995.
- Kondo, K., Zhang, J., Xu, K. and Kagamiyama, H. Amino acid sequence of a presynaptic neurotoxin, agkistrodotoxin, from the venom of *Agkistrodon halys* Pallas. J. Biochem. 105: 196, 1989.
- 73. Chen, Y. C., Maraganore, J. M., Reardon, I. and Heinrikson, R. L. Characterization of the structure and function of three phospholipase A₂ from the venom of *Agkistrodon halys* Pallas. *Toxicon* **25**: 401, 1987.
- 74. Pan, H., Ou-Yang, L. L., Yang, G. Z., Zhou, Y. C. and Wu, X. F. Cloning of the BPLA₂ gene from Agkistrodon halys Pallas. Acta Biochim. Biophys. Sinica (PRC) 28: 579, 1996.
- Forst, S., Weiss, J., Blackburn, P., Frangione, B., Goni, F. and Elsbach, P. Amino acid sequence of a basic *Agkistrodon halys blomhoffii* phospholipase A₂. Possible role of NH₂-terminal lysines in action on phospholipids of *Escherichia coli*. *Biochemistry* 25: 4309, 1986.
- Lee, S. Y., Wang, W. Y. and Xiong, Y. L. Purification, partial sequencing and characterization of five phospholipases A₂ from *Trimeresurus stejnegeri* venom. *Toxicon* 35: 495, 1997.
- 77. Shukla, S. D. and Hanahan, D. J. Differences in the pattern of attack of acidic, neutral, and basic phospholipase A₂ of *Agkistrodon halys blomhoffii* on human erythrocyte membranes: Problems in interpretation of phospholipid location. *Arch. Biochem. Biophys.* **209**: 668, 1981.
- Chen, R. H. and Chen, Y. C. Isolation of an acidic phospholipase A₂ from the venom *Agkistrodon acutus* (five pace snake) and its effect on platelet aggregation. *Toxicon* 27: 675, 1989.
- Wang, Y. M., Wang, J. H. and Tsai, I. H. Molecular cloning and deduced primary structures of acidic and basic phospholipases A₂ from the venom of *Deinagkistrodon acutus. Toxicon* 34: 491, 1996.
- Wang, Y. M., Wang, J. H. Pan, F. M. and Tsai, I. H. Lys-49 phospholipase homologs from venoms of *Deinagkistrodon acutus* and *Trimeresurus mucrosquamatus* have an identical protein sequence. *Toxicon* 34: 491, 1996.

- 81. Huang, T. F., Yeh, H. I. and Ouyang, C. Mechanism of action of the platelet aggregation inhibitor purified from *Agkistrondon halys* (mamushi) snake venom. *Toxicon* 22: 243, 1984.
- Kini, R. M. and Evans, H. J. Structure-function relationships of phospholipases, the anticoagulant region of phospholipase A₂. J. Biol. Chem. 262: 14402, 1987.
- 83. Weiss, J., Wright, G. W., Bekkers, A. C. A. P. A., van den Bergh, C. J. and Verheij, H. M. Conversion of pig pancreas phospholipase A₂ by protein engineering into enzyme active against *Escherichia coli* treated with the bactericidal/permeability-increasing protein. J. Biol. Chem. 266: 4162, 1991.
- Forst, S., Weiss, J. and Elsbach, P. Structural and functional properties of a phospholipase A₂ purified from inflammatory exudate. *Biochemistry* 25: 8381, 1986.
- Mizushima, H., Kudo, I., Horigome, K., Murakami, M., Hayakawa, M., Kim, D. K., Kondo, E., Tomita, M. and Inoue, K. Purification of rabbit platelet secretory phospholipase A₂ and its characteristics. *J. Biochem.* **105**: 520, 1989.
- 86. Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J. L., Monegier, B., Vuilhorge, M. and Bon, C. The origin of the diversity of crotoxin isoforms in the venom of *Crotalus durissus terrificus*. *Eur. J. Biochem.* 223:161, 1994.
- Kaiser, I. I., Gutierrez, J. M., Plummer, D., Arid, S. D. and Odell, G. V. The amino acid sequence of a myotoxic phospholipase from the venom of *Bothrops asper. Arch. Biochem. Biophys.* 278: 319, 1990.
- Moura-da-Silva, A. M., Paine, M. J. I., Diniz, M. R., Theakston, R. D. G. and Crampton J. M. The molecular cloning of a phospholipase A₂ from *Bothrops jararaca* snake venom: evolution of venom group II phospholipases A₂ may imply gene duplications. J. Mol. Evol. 41: 174, 1995.
- Ownby, C. L., Collerg, T. R. and White, S. P. Isolation, characterization and crystallization of a phospholipase A₂ myotoxin from the venom of the prairie rattlesnake (*Crotalus viridis viridis*). *Toxicon* 35: 111, 1997.
- 90. Renetseder, R., Brunie, S., Dijkstra, B. W., Drenth, J. and Sigler, P. B. A comparison of the crystal structures of phospholipase A₂ from bovine pancreas and *Crotalus atrox* venom. *J. Biol. Chem.* **260**: 11627, 1985.
- 91. Selistre de Araujo, H. S., White, S. P. and Ownby, C. L. Sequence analysis of Lys49 phospholipase A₂ myotoxins: a highly conserved class of proteins.

Toxicon 34: 1237, 1996.

- Pedersen, J. Z., Arcuri, B. F., Morero, R. D. and Rufini, S. Phospholipaselike myotoxins induce rapid membrane leakage of non-hydrolyzable etherlipid liposomes. *Biochem. Biophys. Acta* 1190: 177, 1994.
- 93. Li, Y., Yu, B. Z., Zhu, H., Jain, M. K. and Tsai, M. D. Phospholipase A₂ engineering: structural and functional roles of the highly conserved active site residue aspartate-49. *Biochemistry* 33: 12724, 1993.
- Shimohigashi, Y., Tani, A., Matsumoto, H., Kishino, J., Arita, H. and Ohno, M. Lysine-49 phospholipase A₂ from *Trimeresurus flavoviridis* venom are membrane-acting enzyme. J. Biochem. 118: 1037, 1995.
- 95. Suzuki, A., Matsueda, E., Yamane, T., Ashida, T., Kihara, H. and Ohno, M. Crystal structure analysis of phospholipase A₂ from *Trimeresurus flavoviridis* (habu snake) venom at 1.5 A resolution. J. Biochem. 117: 730, 1995.
- 96. Tomoo, K., Ohishi, H., Doi, M., Ishida, T., Inoue, M., Ikeda, K., Hata, Y. and Semejima, Y. Structure of acidic phospholipase A₂ form the venom of Agkistrodon halys blomhoffii at 2.8 A resolution. Biochem. Biophys. Res. Commun. 184: 137, 1992.
- 97. Wang, X. Q., Yang, J., Gui, L. L., Lin, Z. J., Chen, Y. C. and Zhou, Y. C. Crystal structure of an acidic phospholipase A₂ form the venom of Agkistrodon halys Pallas at 2.0 A resolution. J. Mole. Biol. 5: 669, 1996.
- Scott, D. L., Achari, A., Vidal, J. C. and Sigler, P. B. Crystallographic and biochemical studies of the (inactive) Lys-49 phospholipase A₂ from the venom of Agkistrodon piscivorus piscivorus. J. Biol. Chem. 267: 22645, 1992.
- 99. Han, S. K., Yoon, E. T., Scott, D. L., Sigler, P. B. and Cho, W. Structural aspects of interfacial adsorption, a crystallographic and site-driected mutagenesis study of the phospholipase A₂ from the venom of Agkistrodon piscivorus piscivorus. J. Biol. Chem. 272: 3573, 1997.
- 100.Kilby, P. M., Primrose, W. U. and Roberts, G. C. Changes in the structure of bovine phospholipase A₂ upon micelle binding. *Biochemistry* **35**: 935, 1995.
- 101.Berg, B. V. D., Terrair, M., Boelens, R., Dijkman, R., de Hass, G. H., Kaptein, R. and Verheij, H. M. NMR structures of phospholipase A₂ reveal conformational changes during interfacial activation. *Nature Struct. Biol.* 2: 402, 1995.

- 102. Davison, F. F. and Dennis, E. A. Evolutionary relationships and implications for the regulation of phospholipase A₂ from snake venom to human secreted forms. J. Mol. Evol. **31**: 228, 1990.
- 103. Ogawa, T., Nakashima, K. L., Nobuhisa, I., Deshimaru, M., Shimohigashi, Y., Fukumaki, Y., Sakaki, Y., Hattori, S. and Ohno, M. Accelerated evolution of snake venom phospholipase A₂ isozymes for acquisition of diverse physiological functions. *Toxicon* 34: 1229, 1996.
- 104. John, T. R., Smith, L. A. and Kaiser, I. I. Genomic sequences encoding the acidic and basic subunits of Mojave toxin: unusually high sequence identity of non-coding regions. *Gene* 139: 229, 1994.
- 105. Gubensek, F. and Kordis, D. Venom phospholipase A₂ genes and their molecular evolution. In: *Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism*, edited by R. M. Kini, John Wiley & Sons, UK, p. 73, 1997.
- 106. Ogawa, T., Kitajima, M., Nakashima, K. I., Sakaki, Y., Ohno, M. Molecular evolution of group II phospholipase A₂. J. Mol. Evol. **41**: 867, 1995.
- 107. Johnson, L. K., Frank, S., Vades, P., Pruzanski, W., Lusis, A. J. and Seilhamer, J. J. Localization and evolution of two human phospholipase A₂ genes and two related genetic elements. In: *Phospholipase A*₂, edited by P. Y. K. Wong and E. A. Dennis, Plenum Press, New York, p.17, 1990.
- 108. Ducancel, F., Bouchier, C., Tamiya, T., Boulain, J. C. and Menez, A. Cloning and expression a cDNAs encoding snake toxins In: *Snake Toxins*, edited by A. L. Harvey, Pergamon Press, New York, NY, p. 385, 1991.
- 109. Seliatre De Araujo, H. S. and Ownby, C. L. Molecular cloning and sequence analysis of cDNAs for metalloproteinases from broad-banded copperhead, *Agkistrodon contortrix laticinctus. Arch Biochem. Biophys.* 320: 141, 1995.
- 110. Paine, M. J. I., Moura-da-Silva, A. M., Theakston, R. D. G. and Crampton, J. M. Cloning of metalloprotease genes in the carpet viper (*Echis pyramidum leakeyi*), further members of the metallopretease/disintegrin gene family. *Eur. J. Biochem.* 224: 483, 1994.
- 111. Ishizaki, J., Hanasaki, K., Higashino, K. I., Kishino, J., Kikuchi, N., Ohara, O. and Arita, H. Molecular cloning of pancreatic group I phospholipase A₂ receptor. J. Biol. Chem. 269: 5897, 1994.
- 112. Ancian, P., Lambeau, G. and Lazdunski, M. Multifunctional activity of the extracellular domain of the M-type (180 kDa) membrane receptor for secretory phospholipase A₂. *Biochemistry* 34: 13146, 1995.

- 113. Lambeau, G., Ancian, P., Nicolas, J. P., Beiboer, S. H. W., Moinier, D., Verheij, H. and Lazdunski, M. Structural elements of secretory phospholipase A₂ involved in the binding to M-type receptors. *J. Biol. Chem.* 270: 5534, 1995.
- 114. Lambeau, G., Ancian, P., Barhanin, J. and Lazdunski, M. Cloning and expression of a membrane receptor for secretory phospholipase A₂. J. Biol. Chem. 269: 1575, 1994.
- 115. Zvartch, E., Lambeau, G. and Lazdunski, M. Endocytic properties of the Mtype 180 kDa receptor for secretory phospholipase A₂. J. Biol. Chem. 271: 250, 1996.
- 116. Rowan, E. G., Pemberton, K. E. and Harvey, A. L. On the blockade of acetylcholine-release at mouse motor-never terminals by β-bungarotoxin and crotoxin. Br. J. Pharmacol. 100: 301, 1990.
- 117. Schmidt, R. R. and Betz, H. Cross-linking of β-gungarotoxin to chick brain membranes. Identification of subunits of a putative voltage-gated K⁺ channel. *Biochemistry* 28: 8346, 1989.
- 118. Benishin, C. G. Potassium channel blockade by the B subunit of βbungarotoxin. J. Pharmacol. Exp. Ther. **38:** 164, 1990.
- 119. Tzeng, M. C., Yen, C. H., Hseu, M. J., Tseng, C. C., Tsai, M. D. and Dupureur, C. M. Binding proteins on synaptic membranes for crotoxin and taipoxin, two phospholipase A₂ with neurotoxicity. *Toxicon* 33: 451, 1995.
- 120. Krizaj, I., Rowan, E. G. and Gubensek, F. Ammodytoxin A acceptor in bovine brain synaptic membranes. *Toxicon* **33**: 437, 1995.
- 121. Krizaj, I., Faure, G., Gubensek, F. and Bon, C. Re-examination of crotoxinmembrane interactions. *Toxicon* 34: 1003, 1996.
- 122. Bevan, P. and Hiestand, P. b-RTX. A receptor-active protein from Russell's Viper (Vipera russelli russeli) venom. J. Biol. Chem. 258: 5319, 1983.
- 123. Slater, N. T., Freedman, J. E. and Larson-Prior, L. J. Russell's viper venom proteins: molecular probes for neurotransmitter receptors: a review. *Comp. Biochem. Physiol.* **91C:** 51, 1988.
- 124. Freedman, J. E. and Snyder, S. H. Vipoxin. A protein from Russell's viper venom with high affinity for biogenic amine receptors. J. Biol. Chem. 256: 172, 1981.
- 125. Tzeng, M. C. Interaction of presynaptically toxic phospholipase A₂ with membrane receptors and other binding sites. J. Toxic.-Toxin Rev. 12:1, 1993.

- 126. Tsai, I. H., Liu, H. C. and Chang, T. Toxicity domain in presynaptically toxic phospholipase A₂ of snake venom. *Biochim. Biophy. Acta* 916: 94, 1987.
- 127. Tsai, I. H. and Tzeng, M. C. N-terminal region of snake venom neurotoxic phospholipase A₂ is involved in its binding to presynaptic receptors. In: *Peptides: Chemistry and Biology, Proc. 12th Amer. Peptide Symp.* edited by J. A. Smith and J. E. Rivier, Escom Sci., The Netherlands, p. 460, 1992.
- 128. Fletcher, J. E. and Rosenberg, P.The cellular effects and mechanisms of action of presynaptically acting phospholipase A₂ toxins. In: *Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism*, edited by R. M. Kini, John Wiley & Sons, UK, p. 413, 1997.
- 129. Evans, H. J. and Kini, R. M. The anticoagulant effects of snake venom phospholipase A₂. In: *Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism*, edited by R. M. Kini, John Wiley & Sons, UK, p. 353, 1997.
- 130. Mounier, C. Franken, P. A., Verheij, H. M. and Bon, C. The anticoagulant effect of the human secretory phospholipase A₂ on blood plasma and on a cell-free system is due to a phospholipid-independent mechanism of action involving the inhibition of factor Va. *Eur. J. Biochem.* 237: 778, 1996.
- 131. Yuan, Y., Jackson, S. P., Newnham, H. H., Mitchell, C. A. and Salem, H. H. An essential role for lysophosphatidylcholine in the inhibition of platelet aggregation by secretory phospholipase A₂. Blood 86: 4166, 1995.
- 132. Kini, R. M. and Evans, H. J. Effects of phospholipase A₂ enzymes on platelet aggregation. In: Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, edited by R. M. Kini, John Wiley & Sons, UK, p. 369, 1997.
- 133. Mebs, D. and Ownby, C. L. Myotoxic components of snake venoms: their biochemical and biological activities. *Pharmac. Ther.* **48**: 223, 1990.
- 134. Melo, P. A. and Ownby, C. L. Different sensitivity of fast and slow-twitch muscle to some snake venoms and myotoxins. *Toxicon* **34**: 653, 1996.
- 135. Berryman, D. E. and Bensadoun, A. Site-directed mutagenesis of a putative heparin binding domain of avian lipoprotein lipase. J. Biol. Chem. 268: 3372, 1993.
- 136. Lomonte, B., Moreno, E., Tarkowski, A., Hanson, L. A. and Maccarana, M. Neutralizing interaction between heparins and myotoxin II, a Lysine 49 phospholipase A₂ from *Bothrops asper* snake venom. J. Biol. Chem. 269: 29867, 1994.

- 137. Diccianni, M. B., Lilly-Stauderman, M. McLean, L. R., Balasubramaniam, A. and Harmony, J. A. K. Heparin prevents the binding of phospholipase A₂ to phospholipid micelles: importance of the amino-terminus. *Biochemistry* 30: 9090, 1991.
- 138. Dua, R. and Cho, W. Inhibition of human secretory class II phospholipase A₂ by heparin. *Eur. J. Biochem.* **221:** 481, 1994.
- 139. Sartipy, P., Johansen, B., Camejo, G., Rosengren, B., Bondjers, G. and Hurt-Camejo, E. Binding of human phospholipase A₂ type II to proteoglycan. J. Biol. Chem. 271: 26307, 1996.
- 140. Nocito, M., Roy, G., Villar, L. M., Palacios, C., Serrano, A., Alvarez-Cermeno, J. C. and Gonzalez-Porque, P. Thioesterase and protein deacylase activities of porcine pancreatic phospholipase A₂. *Biochim. Biophys. Acta* **1299:** 17, 1996.
- 141. Cho, W., Tomasselli, A. G., Heinrikson, R. L. and Kezdy, F. J. The chemical basis for interfacial activation of monomeric phospholipase A₂, autocatalytic derivatization of the enzyme by acyl transfer from substrate. J. Biol. Chem. 263: 11237, 1988.
- 142. Pedersen, J. Z., Lomonte, B., Massoud, R., Gubensek, F., Gutierrez, J. M. and Rufini, S. Autocatalytic acylation of phospholipase-like myotoxins. *Biochemistry* 34: 4670, 1995.
- 143. Arni, R. K. and Ward, R. J. Phospholipase A₂-a structural review. *Toxicon* 34: 827, 1996.
- 144. Yang, C. C. Chemical modification and functional sites of phospholipase A₂. In: Venom Phospholipase A₂ Enzymes: Structure, Function and Mechanism, edited by R. M. Kini, John Wiley & Sons, UK, p. 185, 1997.
- 145. Mailwal, B. P., Yu, B. Z., Szmacinski, H., Squier, T., Binsbergen, J. v., Slotboom, A. J. and Jain, M. K. Functional significance of the comformational dynamics of the N-terminal segment of secreted phospholipase A₂ at the interface. *Biochemistry* 33: 4509, 1994.
- 146. Li, Y. and Tsai, M. D. Phospholipase A₂ engineering: the Asparate-Histidine catalytic diad also plays an important structural role. J. Am. Chem. Soc. 115: 8523, 1993.
- 147. Bekkers, A. C.A.P.A., Franken, P. A., Toxopeus, E., Verheij, H. M. and de Haas, G. H. The importance of glycine-30 for enzymatic activity of phospholipase A₂. *Biochim. Biophy. Acta* **1076**: 374, 1991.

- 148. Liu, X., Zhu, H., Huang, B., Rogers, J., Yu, B. Z., Kumar, A., Jain, M. K., Sundaralingam, M. and Tsai, M. D. Phospholipase A₂ engineering. Probing the structural and functional roles of N-terminal residues with site-directed mutagenesis, X-ray, and NMR. *Biochemistry* 34: 7322, 1995.
- 149. Huang, B., Yu, B. Z., Rogers, J., Byeon, I. -J. L., Sekar, K., Chen, X., Sundaralingam, M., Tsai, M. D. and Jain, M. K. Phospholipase A₂ engineering. Deletion of the C-terminal segment changes substrate specificity and uncouples calcium and substrate binding at the zwitterionic interface. *Biochemistry* 35: 12164, 1996.
- 150. Zhu, H., Dupureur, C. M., Zhang, X. and Tsai, M. D. Phospholipase A₂ engineering. The roles of disulfide bonds in structure, conformational stability, and catalytic function. *Biochemistry* **34**: 15307, 1995.
- 151.Lee, B. -I. L., Yoon, E. T. and Cho, W. Roles of surface hydrophobic residues in the interfacial catalysis of bovine pancreatic phospholipase A₂. *Biochemistry* 35: 4231, 1996.
- 152. Kuipers, O. P. Kerver, J., van Meersbergen, J., Vis, R., Dijkman, R., Verheij, H. M. and de Haas, G. H. Influence of size and polarity of residue 31 in porcine pancreatic phospholipase A₂ on catalytic properties. *Protein Engng.* 3: 599, 1990.
- 153. Noel, J. P., Deng, T., Hamilton, K. J. and Tsai, M. D. Phospholipase A₂ engineering. 3. Replacement of lysine-56 by neutral residues improves catalytic potency significantly, alters substrate specificity, and clarifies the mechanism of interfacial recognition. J. Am. Chem. Soc. **112**: 3704, 1990.
- 154. Scott, D. L., Mandel, A. M., Sigler, P. B. and Honig, B. The electrostatic basis for the interfacial binding of secretory phospholipase A₂. *Biophy. J.* 67: 493, 1994.
- 155. Nicolas, J. P., Lin, Y., Lambeau, G., Ghomashchi, F., Lazdunski, M. and Gelb, M. H. Localization of structural elements of bee venom phospholipase A₂ involved in N-type receptor binding and neurotoxicity. J. Biol. Chem. 272: 7173, 1997.
- 156. Swofford, D. L. PAUP: Phylogenetic analysis using parsimony, version 3.1. Computer program distributed by the Illinois Natural History Survey, Champaign, IL. 1993.