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Abstract

In this paper, we describe a new paradigm for
information retrieval in which the retrieval target is based
on a model. Three types of models – linear, finite state,
and knowledge models are discussed. These information
retrieval scenarios often arise from applications such as
environmental epidemiology, oil/gas production and
exploration, and precision agriculture/forestry.
Traditional model-based data and information processing
usually requires the processing of each and every data
points. The proposed new framework, in contrast, will
process the data progressively using a set of progressive
models and utilize indexing techniques specialized for the
model to facilitate retrieval, thus achieving a dramatic
speedup.

1. Introduction

Most existing information retrieval applications are
based on similarity retrieval of templates or examples,
such as similarity retrieval of text and image documents.
In such retrievals, the query usually consists of a number
of keywords or phrase (for text retrieval), or features of an
image (for image retrieval) [4-10]. Each of the
documents (text or image) in the database is usually
represented as one or more vector(s) in a multi-
dimensional feature space. The query processing of such
similarity retrieval usually involves identifying in the
feature space those vectors that have the smallest
Euclidean distance to the vector that corresponds to the
query target.

This similarity retrieval paradigm, however, is not
entirely suitable for many scientific and business decision
support applications, which are mostly based on models.
For examples:
• Environmental epidemiology: Many environmental

epidemic diseases such as Denge fever, Hantavirus
Pulmonary Syndrome (HPS), malaria, and Lyme
disease are usually carried by insects or rodents.
There already exist various disease outbreak models
that incorporate remotely sensed images, weather
information, GIS (geographic information system)
and demographic information to predict the location
of the outbreak. The results of these models can then

be used to assess the risk of various regions to a
major disease outbreak.

• Fire ants: Fire ants can cause severe damages to
crops and livestock. So it is important to be able to
predict when and where these fire ants will fly.
Model already exists for predicting this information
based on a combination of ground moisture (can be
extrapolated from remotely sensed images), and
temperature (which is monitored by the weather
stations).

• Oil/gas production and exploration: Oil and gas
explorations frequently require the integration (or
fusing) of information from seismic data and various
instruments. The integration and fusing of
information is frequently performed based on various
knowledge models. As an example, a geologist may
be looking for a strata region consisting of shale, on
top of sandstone, on top of siltstone. Additional
specifications such as the Gamma Ray response has
to be higher than a certain number can also be
included in the specifications.

• Precision agriculture and forestry: These applications
usually provide site-specific crop or forest
management. Area of interests may include
monitoring the growth condition, determining the
optimal time for harvesting, monitoring the watershed
condition, etc. Many of these applications may
involve the integration (or fusion) of multi-modal
information to produce the final interpretation.

The main challenge of applying models to large
archives is scalability. Although most of the applications
only require the retrieval of a very small subset of the
results that maximize or minimize the model, almost all
existing methods require applying the modelsequentially
over the entire region of the data. In this paper, we
propose a model-based information retrieval framework to
address this challenge. The main components of this
framework include
• Decompose the model into a progressively

represented model,
• Decompose the data in the archive into a progressive

data representation which consists of multiple
abstraction levels (raw data, features, semantics and
metadata) and multiple resolutions, and



• Apply model-specific indexing techniques on the data
in the archive.

By using this framework, we have demonstrated that
several order-of-magnitude speedups can be achieved for
those applications described above.

The organization of this paper is as follows: Section 2
describes the preliminary of models that frequently arise
in scientific and business decision support applications.
The proposed model-based information retrieval
framework is described in Section 3. The performance
metric is defined in Section 4. Section 5 briefly
summarizes this paper.

2. Preliminary

In this section, we will describe three types of model
that are commonly encountered in model-based multi-
modal information retrieval: linear model, finite state
model, and knowledge model.

2.1 Linear Time-Invariant Model

A linear time-invariant model refers to a linear
regression model and its variations. The model is time
invariant as none of the coefficients of the model are time
varying. In general, the model has the following form:

Y = a1X1 + a2X2 + …. + anXn ,

where eachXi represents the data itself or derived
attributes/features from the multi-modal information
sources, while the coefficientai represents the weights
(relative contribution) of the attribute derived from the
data. Well known techniques exist in deriving the
“optimal” weights based on collections of data. As an
example, in the Hantavirus Pulmonary Syndrome (HPS)
example, the risk assessment model for the risk associated
with a location (x,y) is:

R(x,y) = 0.443X1 + 0.222X2 + 0.153X3 + 0.183 X4,

whereX1, X2, andX3 correspond to the pixel value of band
4, 5 and 7 of Landsat Thematic Mapper image at location
(x,y), while X4 corresponds to the elevation (in meters)
from the corresponding DEM (digital elevation map). In
general, the weights of this model can be “trained” by
using historical data (previous disease incident reports
compiled by those public health officials) in conjunction
with the corresponding images and other data. Methods
such as linear regression techniques have been widely
used to derive the optimal coefficients for the model.

A second example of the linear model is the credit
risk modeling, such as the one used by FICO (Fair, Isaac
& Co.) for evaluating the credit scores of individuals for

loan approval. The complete FICO credit score, which
ranges from 300 to 900, has severalhundred parameters
with a model similar to the one below:

FICO = 900 – a1X1 - …..- aN XN

where the attribute Xi’s include

• Late payments
• The amount of time credit that has been established
• The amount of credit used versus the amount of credit

available
• Length of time at present residence
• Employment history
• Negative credit information such as bankruptcies,

charge-offs, collections, etc.
The parameters have been chosen such that this

model can accurately predict the probability of
foreclosures. It has been shown that the probability of
foreclosures is less than 2% when the score is higher than
680, while the probability of foreclosures increases to 8%
if the score is less than 620.

2.2 Finite State Model

A finite state model usually involves the description
of system states through the usage of finite state machines.
Finite state machines have been used intensively for
compiler design, natural language understanding, and
sequential logic synthesis.

Finite state model is also a sophisticated modeling
framework for many environmental, ecological, and
economical phenomena. An example is the fire ants
scenario, as shown in Fig. 1, in which the fire ants of a
region will fly if the region has some rain fall, and then
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Figure 1. Finite state model of the fire ants
scenario.



remain dry for at least three days. In addition, the
temperature needs to reach 25 degrees Celsius or higher
for that region. In general, finite state model is widely
used to describe models with complex behavior.

2.3 Bayesian Network and Knowledge Model

A Bayesian network is a graphical model for
probabilistic relationships among a set of variables. It is
also known as belief networks, causal networks,
probabilistic networks, influence diagrams and knowledge
maps. Bayesian networks can readily handle incomplete
data sets, allow one to learn about causal relationships,
and can be used in conjunction with Bayesian statistical
techniques to facilitate combing domain knowledge and

data. Consequently, Bayesian network has become a
popular representation for encoding expert knowledge in
expert systems. Recently, methods have been developed
to learn Bayesian networks from data.

As an example, the high risk houses that are
vulnerable to Hantavirus Pulmonary Syndrome can consist
of the following rules:
• Area of houses, which are
• surrounded by bushes, and has
• weather pattern of raining season followed by a dry

season.

Figure 2 shows an example of such a region based on a
high-resolution satellite image. The Bayesian network
representation of this model is shown in Fig. 3. Note that
this model is multi-modal, as it consists of data from
images and weather pattern.

Another example, as shown in Fig. 3, shows the
riverbed consisting of:
• shale, on top of
• sandstones, on top of
• siltstones, and
• the Gamma ray of these region is higher than 45.
Note that this model is also multi-modal, as it consists of
data from both images and well log traces (1D series).

3. Model-Based Information Retrieval

Model-based information retrieval emphasizes
locating data series or subsets which not only satisfy the
query model criterion but also best represent the class of
selected data. Similar to other types of information
retrieval, the top-K choices based on the ranking
evaluated by the model is usually desired. Using the
models described in the previous section as examples,

• The linear model is used to locate top-K sets of tuples
(X1, X2,….,Xn) where the model described by the
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linear regression equation a1X1 + a2X2 +…+ anXn is
maximized or minimized.

• The finite state model is used to locate the top-K data
patterns that satisfy a model that can be described by
a finite state machine. When the finite state machine
extracted from the data is slightly different from the
target finite state machine, it is also possible to define
a distance between these two finite state machines
based on their similarities.

• The Bayesian network and knowledge models are
used to locate the top-K data patterns that satisfy the
fuzzy and/or probabilistic rules specified within the
model.

These models are usually tightly coupled with various
decision support applications, as described in Section 1.

This problem is related to, though different from, the
system identification problem. For single-input single-
output systems, we denote the input to the system asX(t),
and the output from the system asY(t). The system,
which is usually characterized by the system transfer
function H(s), can be computed from the inputX(s) and
the output Y(s) of the system by using the following
relationship:

H(s) =Y(s)/X(s)

whereX(s), Y(s), andH(s) are the Laplace transformation
of X(t), Y(t), and H(t), respectively. Once the system
transfer function is identified, a system representation that
has the identical system transfer function can then be
constructed.

Similar to system identification problem, most of the
existing approaches for model-based information

processing usually involve the following process (as
shown in Fig. 5):

1. Develop a hypothetical decision model (linear model,
finite state model, or knowledge model),

2. Using the available multi-modal data to fit the model
and determine the model coefficients,

3. Use the model to identify and retrieve subset of the
data that satisfy the model constraints

4. Use the retrieved data to revise the model.
5. Apply the revised model to a much bigger data set.
6. Repeat steps 3 and 4 as many times as necessary.

The first two steps calibrate the model based on a training
set, while the remaining steps involve applying the model
for information retrieval, potentially on a very large
archive. There have been intensive studies elsewhere for
developing models based on small training set. Most
existing methods will then require sequentially applying
the model on the data in the data archive. Substantial re-
computation on the entire data set is required even when
there is a small revision of the model. There are very little
investigations on speeding up model executions for large
archives (required at step 5 in the workflow described
above). Consequently, it is extremely difficult to make
small revisions on the model based on the data archive.

In this paper, we propose the following framework to
facilitate a substantial speedup on model-based
information retrieval: (1)progressive model execution
using progressive data representationand, (2) high-
dimensionalindexing supportfor the decision models.

3.1 Progressive Model and Data Representation

Execution of the model progressively allows
incremental generation of model predictions. This will
enable the execution of the more complete version of
the model on those regions that have been predicted to
be high risk, thus resulting in more accurate predictions
for those regions with high interests sooner.

Progressive models usually involve the generation
of increasingly coarse representations of the same
model. In the linear model case, the risk model for the
disease at location (x,y) and time t is

R (x,y,t) = a1 X1(x,y,t) + a2 X2 (x,y,t)+
a3 X3 (x,y,t) + a4 R (x, y, t-1)

If |a1,a2| >> |a3, a4| then, a coarser representation of the
model forRisk (x,y,t)will be

R *(x,y,t) ~ a1 X1(x,y,t) + a2 X2 (x,y,t)
Consequently,R(x,y,t)andR*(x,y,t)represent two levels of
progressive models.

In general, the generation of progressively coarser
representation of a model can be accomplished by
analyzing the relative contribution of each parameter to
the overall model. This is related to query planning
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issues in query optimization for object-relational
databases. However, query planning usually rearranges
the execution order so that operations resulting in
maximal filtering will be executed earlier. In contrast,
progressive model generation will select those operations
that are most relevant to the final results to be executed
first.

A complementary dimension that further enhances the
incremental model execution is the use of progressive data
representations. Two orthogonal dimensions exist for
generating progressive data representations.Multi-
resolution representations, such as wavelets can be used
to provide rough approximations of information at low
resolutions (low data volumes), with more detailed views
at higher resolutions [1-3]. In contrast,multiple
abstraction level representationsrely on the fact that raw
information can be processed into alternate formulations
such as features (texture, color, shape, etc.) and semantics
that require lower data volumes at the expense of fidelity.
For example, contours can be computed from a data array,
allowing for very rapid identification of areas with low or
high parameter values, but with a loss of accuracy.

Previously, we have shown in [13] that a 30-times
speedup can be achieved through applying progressive
classification on progressively represented data. This type
of classification of satellite images can be viewed as a
special case of applying Bayesian network. We have also
shown in [12] that a 4-8 times speedup can be
accomplished through applying feature extraction
progressively on progressively represented data. By
applying progressive model execution on progressively
represented data, a substantial speedup compared to using
either progressive models or progressive data
representation can usually be achieved.

3.2 High-Dimensional Model-Based Indexing Support

Most of the high-dimensional indexing techniques
such as R*-tree are optimized for spatial range queries.
These techniques have also been utilized for processing
similarity-based queries by pruning the search space
through range queries [14]. However these techniques are
sub-optimal for model-based queries, as these indices do
not indicate where to find data points that will maximize
the model.

An indexing technique, Onion, based on convex hull
was proposed in [11] to address the issue of locating
tuples that optimize (either maximize or minimize) a
linear model. Experimental results have shown, with
three-parameter Gaussian distributed data sets, a speed-up
of 13,000 fold is achieved for retrieving the top-one
choice while a speed-up of 1,400 fold is achieved for
retrieving the top-ten choices, both measured against
sequential scan of the unindexed data set.

For finite state and Bayesian-network-based models,
indexing techniques may not be suitable. A dynamic
programming based search space pruning technique,
SPROC (Sequential Processing of Fuzzy Cartesian
Queries) was proposed in [15] to reduce the
computational complexity fromO(LM ) to O(MKL2),
whereL is the size of the database ,M is the number of
rules, andK is the number of retrievals. This complexity
is further reduced toO(ML log L + sqrt(LK) + K2 log K)
in [16].

4. Model Performance

4.1 Model accuracy

The model accuracy for predicting the risk is captured
by two types of errors made at eachlocation: (1) High
risks regions which are considered to be low risk (misses),
(2) Low risks regions which are considered to be high risk
(false alarms). These two types of errors may carry
different implications, and thus tradeoffs can be made for
minimizing one type of the errors at the expense of the
other, or for minimizing the combined errors. We
assumed that the risk model is used to predict the number
of occurrences of an event,O(x,y). In the formulation
below, low risk is associated with zero occurrence of an
event, while high risk is associated with more than zero
occurrence of this event. The cost associated with an error
at a particular location,C(x,y), is defined as

C(x,y) = cm Pm (x,y)P[O(x,y)=0] +
cf Pf (x,y)P[O(x,y)>0]

wherecm and cf are the cost of making misses and false
alarms, respectively. The probability of making the miss
error,Pm(x,y), is defined as

Pm (x,y) = Prob[ R(x,y) > T | O(x,y) = 0 ]
whereR(x,y)is the risk predicted by the model outlined in
the previous sections, whileT is the decision threshold for
high risk. Similarly, the probability of making the false
alarm error, is defined as

Pf (x,y)=Prob[ R(x,y) < T | O(x,y) > 0 ]
The overall model performance,CT, for the entire region
is defined as

CT= ÿþÿþw(x,y)C(x,y)
The weight at each locationw(x,y) is determined by the
relative importance of the risk at that location, such as the
population of the location. These factors are not captured
by C(x,y).

Another measure of the model accuracy is related to
the usage of the model prediction. In many applications,
the objective is to utilize the model for decision support in
order to identify locations with the highest risk, as
described in the previous section. Consequently, the
measure of accuracy for the top-K retrieval can be defined
in terms of precision and recall. Theprecisionis defined



as the percentage of retrieved results that are correct,
while the recall is defined as the percentage of correct
results that are retrieved. The correct results are defined
as those locations within a region whereO(x,y) > 0.
Since the risk model is used to predict the occurrence of
events, the top-K retrieval is really based on the ordering
of R(x,y).

4.2 Model Efficiency

The efficiency of the model-based information
retrieval is related to both the complexity of the model as
well as the size of the data.

Using the environmental epidemiology as an
example, we are only interested in retrieving K locations
that have the highest risk to a certain disease. Assuming
that a linear model is used in assessing the risk, it is
necessary to process the linear model on all of the data in
order to produce the top K choices that have either the
maximum or minimum values when computing the model.
Consequently, it would requireO(nN) computations,
where n is the computational complexity of the linear
model and is directly related to the number of additions
and multiplications used in computing the model value of
each location, andN is the total number of locations that
are under considerations. Additional computations are
required in order to sort the results and produce the topK
output. If this model only needs to be used once, there is
probably no alternative other than compute every location
before generating the maximum and/or minimum
locations.

In contrast, progressive model execution allows the
reduction of the total complexity of the model fromO(nN)
to O(nN/(pmpd)) where pm and pd are the effective
complexity reduction ratiodue to progressive execution
of the models and data representations, respectively.

5. Summary

In this paper, we describe a new framework for
information retrieval, in which the retrieval is based on a
model instead of a simple template as the search target.
Three types of models – linear model, finite state model,
and Bayesian networked-based model are discussed.
Traditional model-based processing techniques usually
require the processing of each and every data points by
the complete model. The new framework, in contrast, will
execute the model progressively on progressively
represented data, with the help from model-specific
indices.

By using this framework, we have demonstrated that
several order-of-magnitude speedups can be achieved for
a number of scientific and business applications such as

environmental epidemilogy, oil/gas exploration, and
precision agriculture/forestry.
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