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Signal: characterization, enhancement, noise suppression
examples: image restoration, speech enhancement

System: characterization, synthesis
examples: chemical processing plants

Analysis tool: Fourier analysis, Fourier series, Fourier transform
Signal type:

continuous: voltage in a circuit, temperature,...

discrete: closing stock market average, ...

» Quantization of continuous signals into discrete signals.

» DSP ( digital signal process) is possible due to advance in
computer and digital signal processing power.
— Audio (CD, MP3), Video (VCD, DVD, DVB), ...

» Continuous and discrete formulations are presented is
parallel in this book. They are similar but not identical.




What Is a signal?
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Other Signal Types: photos

Other Signal Types
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Continuous Time vs. Discrete Time

Figure 1.7 Graphical representations of (a) continuous-time and (b) discrete-
time signals.

Signal Energy & Power

» For a resistor with voltage v(t) and current of i(t), the

ower is 1
P p@0) = v(D)i(t) = ZV*(®)

with total energy of J " @ dt = J ? lez(r) it
I n
553 5] 1
and power of 1 J () dt = - 1 J L 2@yar
t — Iy f Ih — 1 1y
 Our definition is
Energy: f S
W Jz x(1)Pdt > xnlf?
I n=n
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Signal Energy & Power (cont.)

e For —o <t <+« theenergy is

T o
E. 2 lim J X dt = J x(1)|* dt
—o T o

+N +o0
A g 2 _ 112
E. = ;\lrlin% n;N |x[n]]| n;m\x[n]I
* Power is | (T
8 jim — 2
P, = lim 5T J_T|x(r)| dt
P. £ lim : +ZN |x[n]|?
T N-=2N+1 <=,
11
E:SEZIOS f Ec P Examples
First Finite Zero Fm't‘.a duration
signals
Second Infinite Finite X[n]=4
. Infinite Infinite
Third X(t)=t
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Transformations of Signal (Time shift)

x[n]

x[n—ng]

Figure 1.8 Discrete-time signais
In related by a time shift. In this figure
? %fﬂ no > 0, so that x[n — no] is a delayed
0 $ ‘llull‘ n verson of x[n] (i.e., each point in x{n]
occurs later in x[n — m]).

Transformations of NS k

Signal (Time shift) |

Figure 1.9 Continuous-time signals related
by a time shift. In this figure t, < 0, so that
x(t — &) is an advanced version of x(f) (i.e.,
each point in x(t) occurs at an earlier time in
x(t = b)).




Transformations I
of Signal i, f’l 0
(Reflection) 1 o n
x[—n]

®

lﬁhr,1 umn

0
(b)

Figure 1.10 (a) A discrete-time signal x[n]; (b) its reflec-
tion x[—n] about n = 0.

x(t)
Transformations
of Signal '/0 /
(Reflection) @ \

(b)

Figure 1.11 (a) A continuous-time signal x(t); (b) its
reflection x(—t) about t = 0.




Transformations
of Signal (Scaling)

t

x(2t)
t

x(t/2)
t

Figure 1.12 Continuous-time signals
related by time scaling.

Transformations

of Signal

(Examples)

Figure 1.13 {a) The continuous-time signal x{f) used in Examples 1.1-1.3
to illustrate transformalions of the independent variable; (b) the time-shifted
signal x(t + 1); {c} the signal x(—! + 1) abtained by a time shift and a time
reversal; (d) the time-scaled signal x(21); and (e} the signal x{27 + 1) obtained
by time-shifting and scaling.
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Periodic Signals

x(t)=x@t+T)
x(¢) 1s periodic with period T

x(®)
o7 -~ 0 T = igure 1.14 A continuous-time

t  periodic signal.

19

Periodic Signals

x[n] = x[n + N]

x[n]

] ” ] ” ‘ Figure 1.15 A discrete-time pe-
[ L1

n  riodic signal with fundamental period
Ny = 3.
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Even and Odd Signals

x(t)
x(=1) = x(2);
x[—n] = x[n]
e t
(@)
x(t)
x(—t) = —x(1),
x[—n] = —x[n].
t Figure 1.17 (a) An even con-
(b) tinuous-time signal; (b) an odd

continuous-time signal.
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Even and Odd Decomposition

|
|

xin] = 1,n=0

gv{xinl} = K 1
1Ln>0 &v{x(n)} = ilx(r) + x(—1)]
1
1l
-3-2-1 01 2 3 n
n<0 l
e Od{x(0} = 5 [x(®) = x(—1)]

n Figure 1.18 Example of the even-
odd decomposition of a discrete-time

o h )
2 signal. .




Real Exponential Signals

x(t)
X(t) = Ceat
C
/
t

@
x(t)

C

\t Figure 1.19 Continuous-time real

exponential x(t) = Ce™: (a) a>(; 23

(b) (bya<ao.

Periodic Sinusoidal Signals
(Imaginary Exponential)

x(t) = e/
ejw()(I+T) — e_](z)()lejw()T: e.}wot if ej(x)()T — 1
21
T() = T
|wo
x(t) = A cos (wgt + b)

Ty= 2T

AT AW
VAVAR

Figure 1.20 Continuous-time sinu-
soidal signal.




X4{t) = cos ®,

A /\ /\ /\ /\ /\ Relationship between
/ \/ V \/T\/ \/ \/ Frequency and period
(@
Xof) = cos wyt
(b)
X3(t) = cos wst
ANAN
\/ \/ Figure 1.21 Relationship between
the fundamental frequency and period
for continuous-time sinusoidal signals;

here, wy > w; > w;, Which implies
© that 7, < T, < T o5,

x@®l

5 By & &n o= i
Wi122 G152 FSROKEEWN
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Periodic Sinusoidal Signals (cont.)

e Euler’s relation
e’?" = coswot + jsin wot
 \We obtain

A ., . A _. .
Acos(wot + ¢) = 42—3»’9”3-!“’0‘ + Ee_ﬁf)e—.}wuf

A cos(wot + ) = ARefe/ @0t )}
Asin(wot + @) = Agmfe/ @0}
» Energy per period

[ T(] 1

o 12
Eperiud = |engt| dt P period — T—Eperiod =1
Jo 0
T
[ To = 1i L jwot |2 —
= 1-dt =T, Py J‘ll—IEoZTLTle |"dt =1
JO
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Harmonically Related Complex Exponentials

» All complex exponentials with period of T,

e/t = 1
or
wTy = 27k, k=0 *1 %2, ....
» Define 2 .
wo = T_();
w = kwy
o Sets of

bi(t) = e/, k=0 +1+2 .. ..

with period of
2 T()

|klwo - |4
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General Complex Exponential Signals

-s./.--\//...\\/,}\_[\/\/ \/ t X(t)=Ceat'

.~ x(t) Ceat — lCIéjH e(r-?—ng)t — ICiertej(wgtJrﬁ)
A = |Cle™ cos(wot + 0) + j|Cle™ sin(wot + 6)

/\ /\ f\‘“'/\---—

- Figure 1.23 (a) Growing sinusoidal
L signal x(t) = Ce" cos (axt + ),
N r > 0; (b) decaying sinusoid x(t) =
i () Ce cos (awpt + 6), r < 0.

P

29

Discrete-Time Complex Exponential

» Complex exponential signal or sequence
x[n] = Ca"
x[n] = Ce/ a= es

» Real complex exponential:
C and a are real
 Sinusoidal Signal

xn] = e/ Of  x[n] = Acos(won + ¢)

e/ = coswoh + jsinwon

A g o 4 A gmibgivn
Acos(won + @) = -Z—e-’ e/ + 26 e
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signal x[n] = Ca™
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General Complex Exnonential Signals
x()=Cet (¢ =|Cle?® a = |ale/®

Ca" = |C||la|" cos(won + 0) + j|C||a|" sin(won + )

Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying
discrete-time sinusoid.

Periodicity of Discrete-Time Complex Exponentials

 Continuous time
x(1) = e/
— Rate of oscillation increases with o,
— Periodic for any value of o,

» Discrete-time
ej(w0+217)n — ej21mejw0n — ejwon

Meaningful in the interval 0 < wo < 27 or the interval —m = @wo <7
» For o, = m, the highest oscillation is

ej'n'n — (ejﬂ')" — (_1)"
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Periodicity of Complex Exponentials (cont.)

» For aperiod of N
eng(n+N) — ej(dg?l
we need
el@oN = 1
or

o
woN - 2'n'm E;T_

2|3

» Fundamental period

&
N = m|—
wo
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TABLE 1.1 Comparison of the signals e/« and /<"

eloo’ elwon

Distinct signals for distinct values of w,  Identical signals for values of w,
separated by multiples of 27

Periodic for any choice of wy Periodic only if wy = 27rm/N for some integers N > 0 and m.
Fundamental frequency w, Fundamental frequency” wo/m
Fundamental period Fundamental period"

wy = 0: undefined wy = 0: undefined

w, #= 0 ‘20-; wy #= O m(i—:)

“Assumes that 7 and N do not have any factors in common.
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Harmonically Related Periodic Exponentials
(A common period of N)

* Frequencies are multiple of 2z/N
diln] = /KN k=0*1,....
* N distinct periodic exponentials
(I)O[n] - 1’ (I)l[n] — ejzﬂﬂ/N ’ (I)z[n] ] ej47zﬂ/N, o (I)N—l[n] - ej27Z(N—1)n/N

because

¢R+NI”I

F.;‘ti— + N)N2mw/N)n

I

: 1
- P_;ﬁl,?nf.-‘wnf,_;_':rn - d)k[”]
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Unit Impulse Function

0 n#0
olnl= 1 n=0
3[n]
]
oo o o-0-00-o oo Figure 1.28 Discrete-time unit im-

N pulse (sample).
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Unit Step Function
R
1 un]

sequence.

o[n]=u[n]—u[n-1]
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Unit Step Function (cont.)

dnl= 3 s[m]

Interval of summation M=—co
: a[m]
1
i
i
|l |
n 0 m
@

S[m]) \
. L M Figure 1.30 Running sum of
() eq. (1.66): (@) n < 0; (b) n> 0.

Unit Step Function (cont.)

Interval of summation m to k = n-m
8in—k 7777 0
f un]= > oln—K]
: k=00
n 0 K -
. = Y 5[n-K]
Interval of summation k=0
T ek
M

Figure 1.31 Relationship given in
() eq. (1.67): (a) n< 0; (b) n> 0.

X[n]é[n] = x[0]o[n]

Some properties:
x[n]o[n —ng] = x[ngJo[n —ng]
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Continuous-Time Unit Step Function

u(t):{o t<0

1 t>0 Discontinuous att =0

uft)

1#

0

132 SRR R M2 3 R ol
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Unit Impulse Function

~duy ()
510 = 20 a0 = 22

5(t) = lim 65(1)

u,(t)

8,(0

22
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Relation between unit step and impulse functions

Interval of integration

_____________

ut) =[ s()de

o
PV
-

(b)

Figure 1.37  Running integral given in eq. (1.71):
(@) t<0; (b) t>0.

Relation between unit step and impulse functions

u(t) = jfoo S(r)dr T
- [0 s(t-o)d(-0) I
u(t) = [ 6(r-o)do @

Figure 1.38 Relationship given in eq. (1.75):
() t < 0; (b) t > 0. 46




Scaled Unit Impulse Function

Bit) k(Y
k
1
0 t 0 t
B 1.35 EARAT MM (AR T 136 EEWE - K

kut) = [ ké(r)dz
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Some Properties of Impulse Functions

8,(t)

X(1)54 (1) ~ X(0)S (1 '@ ~
(a)

X(t)o(t) = x(0)o(t)
X(t)o(t—tp) = x(tg)o(t —tp)

LAY

x(0)

0 A t
)

W139 (0)3a() MM: @MMBARENAN; bIRMIELE 0K
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Continuous- and discrete-time systems

Continuous-time

<0 system — y(t) X(t) RN y(t)
(@)
X[N] | Discrete-time e x[n] N y[n]
system —>
(b) Figure 1.41 (a) Continuous-time

system; (b) discrete-time system.
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Interconnection of Systems

Input =——=3~{ System 1 > System 2 fem——p Qutput

Series (cascade)
(a)

Systemn 1
Input =g é— Output paral Iel

1 System 2 —j

(b)

Y

Input =———>—p

Y

| System 1 System 2

Series-parallel

System 4 = Output

- Sy stem 3 ———1
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Feedback Connections

Input ——*@—» System 1 > Output

System 2

A

Figure 1.43 Feedback interconnec-
tion.
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Example of Feedback Systems

Otio e

ip (1) 1
3R vit)

™ v = 16 [l

Capacitor
> V(t)

i (t)

Resistor

v(t)

A

i2(t) = ﬁ
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Systems without Memory

* Memoryless, depends on input at the same time
yin] = @x[n) — x*[n])*

y(t) = Rx(1)

* ldentity system

y(t) = x(1)

y[n] = x[n]
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Systems with Memory

o Examples

yln] = }: x[k], y[n] = x[n—1]

k: — 0o

t

y(t) = %Lm x(T)drt

* The system must remember or store something
n—I1

y[nl = > x[k] + x[n]

k:—ac

y[n] = y[n — 1] + x[n]

55
Invertibility and Inverse Systems
x[n]——~| System yinl 's’;,":t’;srﬁ S x[n]
@
y®) 1
X(t) =——>1 y(t) = 2x(t) > w(t) = Zy(t) = wl[t] = x(t)
(b)
n y[n]
X[n]=——>-  y[n] = }_m x[K] > wW[n] = y[n] — y[n — 1] prm—— win] = x|n]
)
Figure 1.45 Concept of an inverse system for: (a) a general invertible sys-
tem; (b) the invertible system described by eq. (1.97); (c) the invertible system 56

defined in eq. (1.92).




Noninvertible Systems

o Examples
y[n]=0
y(t) = x4(t)

yin] = @x[n) — x*[n])*

y(t) = x(1) |
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Causality

» A system is causal if the output at any time depends on
values of the input at present and past times.

» Causal system is nonanticipative
» Examples of causal system
yin] = > xlkl yln] = xin = 1]

k=-—w 1

» Examples of noncausal system

y[n]= x[n]- x[n+1] y(t) = x(t+1)
y[n] = 2M1+1 % x[n — k.

k=—M
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System Stability

Stable Systems

— Small perturbation does not give large I ///'_

divergence.

Examples of unstable systems
— Inverted pendulum

— Population growth??

— Bank account with interest??

— Accumulator

Examples of stable systems

— Normal pendulum

— Population growth with limited resources.
— RC circuits

— Practical integrator

x(t)

Time Invariance Systems

The characteristic of the system are fixed over time.
Mathematically,

X(t) = y(v)
x(t—ty) > y(t—tp)
X[n]— y[n]
x[n —ng] — y[n—ng]
Example: Time-invariance () = sin[x(t)]

Time-variance y[n] = nx[n]

60




"1{“ . Tt
1 1
-2 2 t -1 b | t
) o)
%lt) = x4(t—2} ¥olt)
1 15
0 4 t 4] 2 t
{© (o
y1{t—-2)
1
1 3 t

®
W 1.47 ()OI 1.16 RMATMA x1(0): (b)x (1) AIETIREGH v, (0); (CHIBAIOIMA x2(c) =
2t — 2); (@ n() ERMAME r:(): EBAMWRy@~2). FE: Enl) #
vyt~ 2) IR R R B ,

System Linearity

* Linear system
it x ()= y(t) X (t) > yo(t)

then xy (t) + X (t) = y1(t) + yo (1)

axq (t) — ay(t)
Called additive and homogeneity properties

Combined conditions: Superposition properties

axq (t) +bxo (t) — ayy (t) + by (t)
axg[n]+ bxo[t] — ayp[t] + by, [t]
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Examples

* Linear systems
y(t) =tx(t)
y[n]=2x[n]+3

* Nonlinear systems

y(t) = x2(1)
y[n]= Re{x[n]}
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Incrementally Linear System

Yo (t)

X(t) =i gg | y®

W 148 MEMERROZE, Rk ERRNTRAES

Homework #1, due: Oct. 12
0:1.21, 22, 37,54
B: 1.3(a),(b), 1.7(a),(b),(c)
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