電路學講義 Circuits Notes

瞿大雄教授國立臺灣大學電機工程學系中華民國95年9月

General Information

1. class: Friday 9:10-12:10, Room 225
2. textbook: Circuits, A. B. Carlson, Brooks/Cole, 2000
3. scopes: basic concepts and analysis methods of linear DC and AC circuits in frequency and time domains
4. contents:

Ch. 1 Circuit variables and laws 1.4, 1.5
Ch. 2 Properties of resistive circuits, 2.3-2.5
Ch. 3 Applications of resistive circuits, 3.2, 3.3
Ch. 4 Systematic analysis methods, 4.1-4.4
Ch. 5 Energy storage and dynamic circuits, 5.3
Ch.6 AC circuits, 6.1-6.3
Ch. 7 AC power and three-phase circuits, 7.1, 7.2
Ch. 8 Transformers and mutual inductance (skip)
Ch. 9 Transient response, 9.1-9.4
linear equations
linear differential equations
(time domain)

Ch． 10 Network functions and s－domain analysis（skip） Ch． 11 Frequency response and filters，11．1，11．2， 11.4 Ch． 12 Fourier series analysis（skip） Ch． 13 Laplace transform analysis，13．1－13．3
 Ch． 14 Two－port networks，14．1－14．3
 Ch． 15 Stae－variable analysis（skip）
 linear
 equations
 （frequency domain）

5．total class hour： 51 hours
6．grades： 5 Quiz（Ch．3，5，7，9，11）60\％，Final exam．40\％
7．office：room 541，or thc＠ew．ee．ntu．edu．tw
8．Notes are available at http：／／cc．ee．ntu．edu．tw／\％7Ethc／or comm．ntu．edu．tw／faculty．htm

Chapter 1 Circuit variables and laws

1．1－1．3（optional）
definitions and units of current，voltage，and electrical power， Ohm＇s law
1．4 Kirchhoff＇s laws
node，supenode，loop，KVL and KCL，series and parallel connections
1．5 Elementary circuits analysis voltage source and current source connections，branch variable analysis

1．1－1．3 Optional

1．Definitions
（1）current：equivalent positive charge transfer rate unit：amp（A）$i(t) \equiv \frac{d q(t)}{d t}$ average current over $t_{o} \leq t \leq t_{o}+T$ ：

$$
i_{a v}(t) \equiv \frac{q_{T}}{T}=\frac{1}{T} \int_{t_{0}}^{t_{0}+T} i(t) d t
$$

（2）voltage（potential difference）：energy change per charge between two points unit：J／C，volt（V）

$$
v \equiv \frac{d w}{d q}
$$

＋：higher potential，－：lower potential

（3）electric power：energy transfer rate $p \equiv \frac{d w(t)}{d t}=\frac{d w}{d q} \frac{d q}{d t}=v i$ unit：watt（W）
＋：consume power，－：supply power
（a）total energy： unit： $1 \mathrm{~Wh}=3.6 \times 10^{3} \mathrm{~J}$

$$
w_{T}=\int_{t_{0}}^{t_{0}+T} p(t) d t
$$

（b）battery capacity： unit： $1 \mathrm{Ah}=1 \mathrm{C} / \mathrm{s} \times 3600 \mathrm{~s}=3600 \mathrm{C} \quad q_{T}=\frac{w_{T}}{v}=i T$
2．Sources
（1）ideal voltage source：a two－terminal element to supply specified voltage
（2）ideal current source：a two－terminal element to supply specified current

Nonlinear elements

1－7

電路學講義第1章

3．Ideal linear resistor：a two－terminal energy－consuming linear element described by Ohm＇s law $v=R i$ unit：ohm（ Ω ）
（1）$i-v$ curve in I and III quadrants：passive element
（2）conductance：$\quad G \equiv R^{-1}$
unit：siemens（S）
（3）power dissipation（ohmic loss）：$\quad p=v i=i^{2} R=\frac{v^{2}}{R}$
（4）resistivity $\rho: \quad R=\rho \frac{l}{A} \quad$ conductivity：σ

$$
\sigma=\frac{1}{\rho}
$$

（5）lumped－parameter model：no dimension or $l \ll \lambda$

（a）Symbol

（b）$i-v$ curve

（a）Resistance distributed between two terminals

（b）Lumped－parameter model

1.4 Kirchhoff's laws

Basics

1. node: a connection point of two or more circuit element
2. KCL: the algebraic sum of all currents into any node equals zero

$$
\sum_{\text {node }} i=i_{1}+i_{2}+\left(-i_{3}\right)=0
$$

3. loop: any path that goes from node to node and returns to the starting node, passing only once through each node (CW direction)
4. KVL: the algebraic sum of all voltage drops around any loop equals zero

$$
\sum_{\text {loopABEA }} v=v_{1}+v_{2}+\left(-v_{x}\right)=0
$$

$\sum v=v_{1}+v_{3}+\left(-v_{4}\right)+v_{5}+\left(-v_{x}\right)=0$
loopABDEA

$$
\sum_{\text {loopBCEB }} v=v_{3}+v_{y}+\left(-v_{2}\right)=0
$$

Discussion

1．KVL and KCL are circuit relations（linear equations），irrespective to the element type．
2．$i-v$ is the relation（linear or nonlinear equation）of circuit element
3．circuit analysis：to solve v and i based on equations of KVL， KCL and element i－v relations
4．supernode：a closed region that contains two or more nodes and whose boundary intersects some connecting wires，each wire being intersected only once

$$
\sum_{\text {supernode }} i=i_{1}+i_{2}+\left(-i_{3}\right)+\left(-i_{4}\right)=0
$$

Supernodes save effort when i_{x} is no need to solve．
5．series connection：same current through each element parallel connection：same voltage across each element

6．Ex．1．7 to solve unknown values in the circuit
$\sum i=i_{B}+10-10.5=0 \rightarrow i_{B}=0.5 \mathrm{~mA}$ supernodeB
$\sum_{\text {nodeC }} i=i_{4}-10=0 \rightarrow i_{4}=10 \mathrm{~mA}$
$\sum i=2-i_{3}-i_{B}=0 \rightarrow i_{3}=1.5 \mathrm{~mA}$
nodeA
$\sum_{\text {nodeD }} i=i_{1}-2-i_{4}=0 \rightarrow i_{1}=12 \mathrm{~mA}$
$\sum v=v_{C E}-1-6=0 \rightarrow v_{C E}=7 V$
loopCEBC
$\sum_{\text {loopAEFA }} v=1-v_{3}=0 \rightarrow v_{3}=1 V$
$\sum_{\text {loopDAFD }} v=-v_{2}+v_{3}-9=0 \rightarrow v_{2}=-8 V$
$\sum_{\text {loopDCBD }} v=v_{4}+6+v_{2}=0 \rightarrow v_{4}=2 V$

1．5 Elementary circuit analysis

Basics

1．Series circuit：voltage source with series－connected elements（voltage divider），analyze with KVL and Ohm’s law （voltage source with parallel－connected elements：same voltage）

（a）

（b）

（c）

2．Parallel circuit：current source with parallel－connected elements （current divider），analyze with KCL and Ohm＇s law （current source in series with element：same current）

（b）

（c）

Discussion

1．Ex． 1.8 a passive element operated with $v_{x}=10 \mathrm{~V}$ and $i_{x}=2.5 \mathrm{~A}$ ，design the circuit with a 12 V voltage source or a 3 Acurrent source

（a）Electronic device with series voltage source and resistor

$$
\begin{aligned}
& \sum_{\text {loop }} v=-12+2.5 R_{\text {ser }}+10=0 \\
& \rightarrow R_{\text {ser }}=0.8 \Omega
\end{aligned}
$$

（b）Electronic device with parallel current source and resistor

$$
\begin{aligned}
& \sum_{\text {node }} i=3-10 R_{p a r}+2.5=0 \\
& \rightarrow R_{p a r}=20 \Omega
\end{aligned}
$$

Note：one cannot exchange the voltage and current sources．（ex．1．16）
2．Branch variable analysis
（1）suitable for circuits with partial information
（2）branch variables：current or voltage to be solved
（3）procedures
（a）step 1：properly label the unknown branch variables
（b）step 2：incorporate the partial information in the labels
（c）step 3：apply KVL to loops and KCL to nodes involved with only one unknown
（d）step 4：verify the results
3．Ex．1．9 given $v_{4}=24 V$ ，find i_{s} and power values from two sources

（a） step 1：label i_{1} and v_{2} as branch variables step 2：$\quad v_{4}=24 \rightarrow i_{4}=3, v_{3}=21$ step 3：$\sum_{\text {loop1 }} v=-v_{2}+21+24=0 \rightarrow v_{2}=45$

$$
\begin{aligned}
& \sum_{\text {loop } 2} v=-25-10 i_{1}+45=0 \rightarrow i_{1}=-2 \\
& \sum_{\text {nodeA }} i=-2-\frac{45}{9}+i_{s}-\frac{21}{7}=0 \rightarrow i_{s}=10
\end{aligned}
$$

$$
\text { voltagesourcesupplies } p_{v}=25 \times-2=-50 \mathrm{~W}
$$

$$
\text { current sourcesupplies } p_{i}=45 \times 10=450 \mathrm{~W}
$$

（c）
電路學講義第1章

4．Ex． 1.10 passive device A operated at $4 \mathrm{~V}, 20 \mathrm{~mA}$ ，and passive device B operated at $5 \mathrm{~V}, 16 \mathrm{~mA}$ ，design a biasing circuit

