課號:50345100

微波工程講義 Microwave Engineering Notes

http://cc.ee.ntu.edu.tw/~thc

瞿大雄 教授 國立臺灣大學電機工程學系 中華民國92年2月

General Introduction

- 1.Class: Fri. 9:10-12:00 am, Room 225
- 2.Textbook: Radio-frequency and microwave communication circuits-analysis and design, D.K. Misra, John Wiley, 2001, 全華代理
- 3.Scopes: microwave basics, principles of passive and active microwave components, microwave communication applications from electronic circuits point of view
- 4.Contents:
 - Ch.1 Introduction
 - Ch.2 Communication systems
 - Ch.3 Transmission lines
 - Ch.4 Resonant circuits
 - Ch.5 Impedance matching networks
 - Ch.6 Impedance transformers
 - Ch.7 Two-port networks
 - Ch.8 Filter design

Ch.9 Signal-flow graphs and applications

Ch.10 Transistor amplifier design

Ch.11 Oscillator design

Ch.12 Detectors and mixers

5. Total class hours: 51 hours

6.Grades: homework 20%, midterm exam. (Ch.1-Ch.7) 40%, final exam. (Ch.8-Ch.12) 40%

7.Office hour: Mon. 2:00-3:00, room 541

8. Reference books

Collin, R.E., Foundations for Microwave Engineering, McGraw Hill, 1992

Chapter 1 Introduction

- General description of microwaves related history, frequency bands, factors favor for RF and microwaves, propagation, passive and active devices, applications
- 1.1 Microwave transmission lines types and general description of RF and microwave transmission lines

- ► General description of microwaves
- 1. Related history
- 19th century
 - 1846 earliest talk on EM wave, "Thoughts on ray vibrations," Michael Faraday (1791-1867)
 - 1864 "Maxwell's equations," James Clark Maxwell (1831-1879)
 - 1887 first microwave-like experiment, "electric spark at λ ~10cm induces at a distant wire loop," Heinrich Rudolf Hertz (1857-1894)
 - 1895 wireless telegraphic communication and 1900 trans-Atlantic Ocean telegraph, Guglielmo Marconi (1874-1937)
- 20th century
 - 1921 magnetron, A. W. Hull
 - 1930 wave propagation in waveguide, George C. Southworth
 - 1937 klystron, Russell Varian, Sigurd Varian and William Hansen
 - World War II radar, MIT Radiation Laboratory
 - ~1950 coaxial cables for radio communication
 - ~1960 satellite communication

- ~1980 remote sensing satellite, DBS (direct broadcast satellite)
- ~1990 PCN/PCS (personal communications network/personal communication services), GPS (global positioning system), VSAT (very small aperture terminals)
- ~2000 Digital DBS, WLL (wireless local loop), GII (global information initiative) using mobile satellite network, fibers, cables and wireless
- *IEEE Transactions on Microwave Theory and Techniques*, vol.32, no.9, Sept. 1984

2. Frequency bands

• Commercial broadcasting

	channels	frequency (Hz)	wavelength
AM	107	535~1605k	186.92~560.75m
TV(VHF)	2-4	54~72M	4.7~5.56m
	5-6	76~88M	3.41~3.95m
FM	100	88~100M	2.78~3.41m
TV(UHF)	7-13	174~216M	1.39~1.72m
	14-83	470~890M	33.7~63.83cm

• RF band

band	frequency (Hz)	wavelength
VLF	3~30k	10~100km
LF	30~300k	1~10km
MF	300k~3M	100m~1km
HF	3~30M	10~100m
VHF	30~300M	1~10m
UHF	300M~3G	10cm~1m
SHF	3~30G	1cm~10cm
EHF	30~300G	0.1cm~1cm

microwaves

微波工程講義

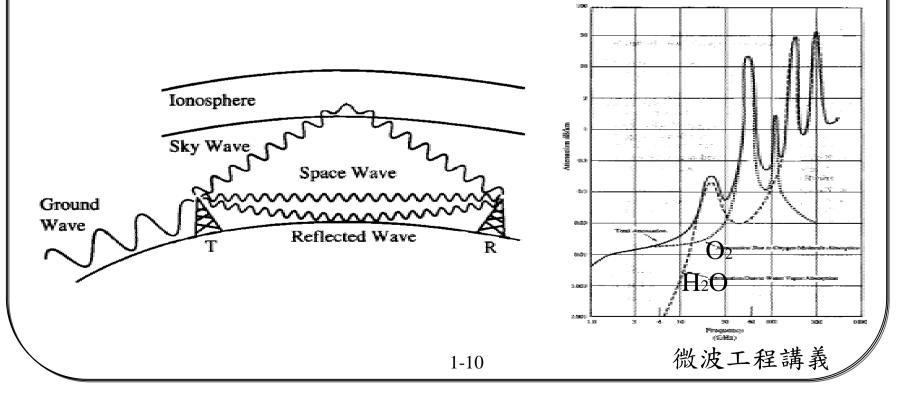
• Microwave band

hand	frequency	waveguide dimension *	cutoff frequency
band	(GHz) (1n)		(GHz)
		18×9, WR-1800, 0.41-0.62GHz	0.33
UHF	0.5~1	15×7.5, WR-1500, 0.49-0.75GHz	0.39
		11.5×5.75, WR-1150, 0.64-0.98GHz	0.51
		7.7×3.85, WR-770, 0.96-1.46GHz	0.77
L	1~2	6.5×3.25, WR-650, 1.74-1.73GHz	0.91
		5.1×2.55, WR-510, 1.45-2.2GHz	1.16
		4.3×2.15, WR-430, 1.72-2.61GHz	1.37
S	2~4	3.4×1.7, WR-340, 2.17-3.3GHz	1.74
		2.84×1.34, WR-284, 2.6-3.95	2.08
C 4~8	1.87×0.872, WR-187, 3.94-5.99GHz	3.15	
	4~8	1.372×0.622, WR-137, 5.38-8.17GHz	4.3
X	8~12.4	0.9×0.4, WR-90	6.57
Ku	12.4~18	0.622×0.311, WR-62	9.49
K	18~26.5	0.42×0.17, WR-42	14.08
Ka	26.5~40	0.28×0.14, WR-28	21.2

^{*} p562, table A3.3

- 3. Factors favor to microwaves
- antenna size as antenna size $\sim \lambda$, it radiates efficiently $\rightarrow f \uparrow$, $\lambda \downarrow$, size \downarrow , radiation efficiency \uparrow
- channel bandwidth
 as f ↑, available spectrum bandwidth ↑
 - \rightarrow f \uparrow for wider information bandwidth transmission, especially digital video transmission

e.g.,


- 1% BW of AM radio @1MHz gives 1channel of 10kHz audio bandwidth
- 0.1% BW of C-band satellite communication @6GHz gives 1 channel of 6MHz video bandwidth
- propagation through atmosphere ground wave (LF band, 30-300KHz) travels over and near the earth surface → ground absorption loss, especially for h-polarization → AM radio uses vertical polarization,

sky wave (HF band, 3-30MHz) performs refraction (signal bending) in ionosphere, plasma frequency ~ 9MHz → short-wave radio space wave (VHF, UHF and microwave, 30M-300GHz)

direct wave (line-of sight, LOS) and reflected wave \rightarrow interference or multipath phenomenon

low atmospheric attenuation and unaffected by rain and cloud

→ wireless, mobile, terrestrial and satellite communication

4. Microwave devices

- In general, input/output matching is inherently required for microwave components over the operating band.
- passive devices (without DC bias) diplexer, filter, coupler, power divider/combiner, isolator, circulator, attenuator, adapter, terminator, cable, transmission line, waveguide, resonator, detector, mixer, phase shifter, lumped R, L, C, antenna,...
- active devices (with DC bias) amplifier, oscillator, switch, mixer, frequency multiplier, active antenna,
- vacuum tube devices

line	cross-field type	
EM cavity type slow-wave circuit type		
klystron amplifier,	TWT (traveling wave tube)	magnatron
oscillator	amplifier	magnetron

• Solid-state devices

junction effect	field effect	transfer electron	avalanche effect	lasing effect
BJT HBT Tunnel diode Schottky- barrier diode PIN diode	JFET MESFET HEMT MOSFET NMOS, PMOS, CMOS	Gunn diode LSA diode InP diode CdTe diode	IMPATT diode TRAPATT diode BARITT diode parametric devices	laser mixing maser

HBT:hyterojuction bipolar transistor

MESFET: metal-semiconductor field-effect transistor

HEMT: high electron mobility transistor

MOSFET:metal-oxide-semiconductor field-effect transistor

CMOS:complementary metal-oxide-semiconductor transistor

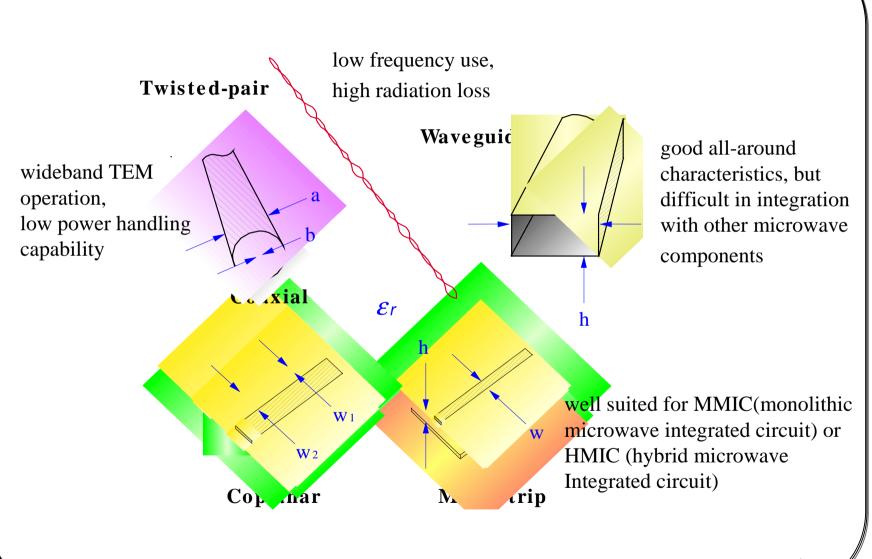
IMPATT diode: impact ionization avalanche transit-time diode

TRAPATT diode:trapped plasma avalanche triggered transit-time diode

BARITT diode: barrier injected transit-time diode

maser:<u>m</u>icrowave <u>a</u>mplification by <u>s</u>timulated <u>e</u>mission of <u>r</u>adiation

LSA diode: limited space-charge accumulation mode of the Gunn diode


- Vacuum tube technology finds its applications in high power (W-MW) and high frequency (200MHz-200GHz)
 - e.g., magnetron: kW CW source in microwave oven, MW pulsed source in radar,
 - traveling wave tube amplifier: >10 W power amplifier in satellite, klystron: local oscillator in receiver.
- Microwave solid-state devices are low cost, low power supply, low noise, small, light weight, easy cooling, reliable and long life time compared with microwave tubes.

5. Microwave applications

communication	radar		Industrial, scientific
	civilian	military	and biomedical
broadcasting WLAN cordless phone RFID cellular terrestrial Satellite GPS	air traffic control aircraft navigation ship safety law enforcement	surveillance navigation weapon guidance electronic warfare C ³	drying, curing heating cooking process control imaging hyperthermia patient monitoring remote sensing radio astronomy power transmission particle acceleration

• Growth and expansion of microwave technology move from military and satellite applications into information and entertainment applications.

1.1 Microwave transmission lines

微波工程講義

	coaxial line	waveguide	microstrip
mode: preferred	TEM	TE ₁₀	quasi-TEM
other	TM, TE	TM, TE	Hybrid TM, TE
dispersion	none	medium	low
bandwidth	high	low	high
loss	medium	low	high
power capacity	medium	high	low
physical size	large	large	small
easy of fabrication	medium	medium	easy
integration with other components	hard	hard	easy