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Analysis of Dielectric-Loaded Waveguide 

Abshrrct -In this paper, the calculation of eigenvalues including 
propagation constants and cutoff wavelengths of LSE,, and LSM,, 
modes in homogeneous and inhomogeneous lossless dielectric-slab- 
loaded rectangular waveguides using a modified variation-iteration 
method is presented. The initial eigenvalues used in the iteration are 
selected on the basis of a physical consideration. Numerical examples 
s h o w  are capable of efficiently calculating propagation constants and 
cutoff wavelengths of LSE,, and LSM,, modes given values of the 
free-space propagation constant and the lower bound of the cutoff 
wavelength, respectively. 

I. INTRODUCTION 
H O W  in Fig. 1 is the structure of a rectangular S waveguide loaded with lossless dielectric slab (homo- 

geneous or inhomogeneous). The propagation modes in 
the waveguide are the longitudinal section electric (LSE) 
and magnetic (LSM) modes, which can be derived from 
magnetic ( w h )  and electric (we) Hertzian potential func- 
tions [ 11. Theoretical analyses of the dielectric-loaded 
waveguide can be found in [2]-[SI, where eigenvalues are 
calculated by solving the characteristic equations contain- 
ing transcendental functions. The eigenvalues are then 
calculated numerically by using, for example, the variation 
method [ll, [91-[111, the finite element method [121, the 
mode-matching method [13], the variation-iteration 
method [141, and the method involving hypergeometric 
functions [15]. These numerical methods are efficient for 
calculating eigenvalues of the fundamental mode. The 
variation-iteration method, originally developed in atomic 
physics, has been shown to be able to calculate eigenval- 
ues of the higher order modes. But in the process exact 
field distributions of all the lower order modes have to be 
calculated so that they can be subtracted from the initial 
trial field for the higher order mode of interest. The 
resulting trial field is then used to calculate the higher 
order mode eigenvalues. However, errors of the resulting 
higher order mode eigenvalues are accumulated, and the 
computation is time consuming using this approach [16]. 

In this paper, a modified variation-iteration method is 
farmulated in Section I1 to solve the higher order mode 
eigenvalues efficiently without calculating the exact field 
distributions of all the lower order modes. In the iteration 
process, an adaptive update factor is introduced to stabi- 
lize the numerical behavior. In Section 111, formulations 
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Fig. 1. Dielectric-slab-loaded waveguide structure. 

of the propagation constant and cutoff wavelength of LSE 
and LSM modes of different orders (i.e., LSE,, and 
LSM,, modes) using this approach are developed. Nu- 
merical simulation results are given in Section IV. Initial 
values of propagation constants and cutoff wavelengths of 
LSE,, and LSM,, modes used in the iteration are also 
discussed on the basis of a physical consideration. Lastly, 
findings of this method are summarized in Section V. 

11. FORMULATION OF MODIFIED 
VARIATION -ITERATION METHOD 

In general the eigenvalue problem can be characterized 
as 

where F ( . )  is the variational formulation, 4i is an un- 
known eigenfunction, qi is the corresponding unknown 
eigenvalue, and the subscript i is the order of the mode of 
interest. 

can be 
found by substituting a trial eigenvalue q( , - l )  into the 
related wave equation with appropriate boundary condi- 
tions. Therefore, by substituting &'-') into (11, one can 
obtain 

In the ( n  - 11th iteration, the trial field 

where the prime indicates the resulting eigenvalue from 
(1). 

The new eigenvalue qi(,) in the (n)th iteration of the 
proposed modified variation-iteration approach is de- 
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fined as 

(3)  q,("' = @- 1) + "aq;" - 1) 

where 6q,'"-')= q;(")- q,(,-') and (Y is an adaptive up- 
date factor with value 0 < (Y < 1. The criterion for adap- 
tively assigning (Y its value is that when (6ql(n-1)) is small, 
a larger value of (Y is chosen and vice versa. During the 
iteration, the convergence of eigenvalue qz is reached as 
16q,("-')I becomes very small. The iteration is then termi- 
nated. 

In the next section, we will use the modified 
variation-iteration method described above to calculate 
the propagation constants and cutoff wavelengths of 
LSE,, and LSM,, modes of the waveguide structure 
given in Fig. 1. 

111. FORMULATION ON 
LOSSLESS-DIELECTRIC-SUB-LOADED WAVEGUIDE 

The permittivities of the air and dielectric regions in 
Fig. 1 are eo and E , ( X ) E ~ ,  and the permeabilities are both 
po.  The stationary formulas for the propagation constants 
and cutoff wavelengths of LSE,, and LSM,, modes are 
given [l] as follows. 

A. Stationary Formulas for LSE,, Modes 

loaded waveguide is 
The electric field distribution inside the dielectric- 

E = - j W w o V X ' t T h  ( 4) 
where the magnetic Hertzian potential is rh = 
ux&(x, y)cos(py)e-'pZ, and &(x, y) satisfies the differ- 
ential equation 

with the boundary conditions 4h = 0 at x = 0 and a, and 
4h continuous at x = x1 and x 2 .  In addition, k = w&, 
p is the propagation constant, p = m r / b  is the 
wavenumber in air and in dielectric regions in the y 
direction, with m = 1,2,. * a ,  and 

(6) h =,fk2 - p 2  - p2 

is the wavenumber in the air region in the x direction. 

is 
The stationary formula for the propagation constant, p, 

whereas the stationary formula for the cutoff wavelength, 
A,, is 

4 r 2  La€,( x)& dx 
' 0  A2 = - 
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B. Stationary Formulas for LSM,, Modes 

loaded waveguide is 
The magnetic field distribution inside the dielectric- 

H = j w € , ( x ) E o V X - r e  (9) 

where the electric Hertzian potential is we = 

U ~ ~ ~ ( X ,  y)sin(py)e-jP", and #,(x, y) satisfies the differen- 
tial equation 

with d4,/dx = 0 at x = 0 and a, and d4,/dx continu- 
ous at x = x1 and x2. 

The stationary formula for the propagation constant, p, 
is 

whereas the stationary formula for the cutoff wavelength, 
A,, is 

C. Iteration Algorithm 
The iteration algorithm used in the proposed modified 

iteration-variation method for calculating propagation 
constants and cutoff wavelengths involves the following 
three steps. Note in the following description that q is 
used to represent eigenvalue p or A, for convenience. 

1) Choose the initial value q ( O )  using the procedure to 
be described in subsection 111-D. 

2) Use the approach to be described in subsection 
111-E to find the corresponding trail field +io) or 
$Lo). Then q'(') is calculated using the stationary 
formulas given above in subsections 111-A and 111-B. 
This step can be generalized to the (n)th iteration. 

3) In the (n)th iteration q(") is calculated using (3). 

If the absolute value of a$') is within the specified 
value of accuracy, the convergence is reached. The itera- 
tion is then terminated. 

D. Initial Values of /Ic0) and A:') 
Since the dielectric-loaded waveguide can support an 

infinite number of modes, there are an infinite number of 
propagation constants and cutoff wavelengths correspond- 
ing to these modes. However, the number of propagation 
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constants becomes finite if the waveguide is under the 
excitement of a given value of free-space propagation 
constant. Similarly, the number of cutoff wavelengths 

results obtained in the next section, these initial values 
will be shown to converge to all the correct propagation 
constants and cutoff wavelengths of the selected modes. 

above a given lower bound value of the cutoff wavelength 
also becomes finite. The description for selecting initial 
propagation constants and cutoff wavelengths used in the 
iteration is given in the following. 

When the wavenumber h given in (6) is real, the 
transversal wave in the air region is a standing wave in the 
x direction. The energy propagated (for calculating 0) or 
stored (for calculating A,) in the air region then becomes 
noticeable. The propagation constants and cutoff wave- 
lengths of the dielectric-loaded waveguide can be treated 
as those of an empty waveguide with dimensions a and b 
perturbed by a dielectric slab. Therefore, the propagation 
constants and cutoff wavelengths of the empty waveguide 
are suitable as initial values for the LSE,, and LSM,, 
modes. Equations for these initial values are 

E. Approach to Calculate $(") ffom Given pen) and A t )  
Analytic expressions for the homogeneous-dielectric- 

slab-loaded waveguide can be found in [l]. Therefore 4p) 
and 4y) can be calculated for given pen) or A',"). For 
inhomogeneous-dielectric-slab-loaded waveguide, one can 
substitute pen) into (5) for the LSE mode or into (10) for 
the LSM mode and then use the finite element method to 
solve the differential equations with the appropriate 
boundary conditions to calculate 4p) and 4F). If A(,") is 
given, by setting p to zero in (5 )  and (10) one can also 
solve 4p) and &) using the finite element method. 

Numerical results obtained using the described modi- 
fied variation-iteration method of homogeneous- and in- 
homogeneous-dielectric-slab-loaded waveguides will be 
discussed in the next section. 

IV. SIMULATION RESULTS 
In all the following numerical examples, the waveguide 

dimension a is set at 2, and the adaptive update factor (Y 

in (3) is given as 
(14) 

[ 0.05, 1 .OO G I 6q'") I 
where n = 1,2,. . . for both LSE,, and LSM,, modes, 
m=0,1,2;*. for the LSE,, mode, and m = l , 2 , 3 , . . .  
for the LSM,, mode. 

When the wavenumber h in (6) is purely imaginary, the 
transversal wave in the air region becomes evanescent in 
the x direction. The energy propagated (for calculating 
p)  or stored (for calculating A,) in the dielectric region is 
then dominant. In this case, the propagation constants 
and cutoff wavelengths of the dielectric-loaded waveguide 
can be treated as those of a waveguide completely filled 
with the dielectric with dimensions t and b. Therefore, 
initial values of the propagation constants and cutoff 
wavelengths are selected as those of the waveguide com- 
pletely filled with homogeneous dielectric of dimensions t 
and b ,  and the dielectric constant is the maximum value 
E,,,,  of the dielectric slab considered. Initial values are 
given as 

mrr 
PC0)= { E , , , , , ,  k 2  - ( y)2-  (T) (15) 

where n = 1,2, . . . for both LSE,, and LSM,, modes, 
m = 0,1,2, 
for the LSM,, mode. 

In general, two sets of initial values for the propagation 
constants and cutoff wavelengths of LSE,, and LSM,, 
modes according to the approaches described above are 
selected for the iteration algorithm. From the simulation 

for the LSE,, mode, and m = 1,2,3, . . 

0.10, 0.10 < 16q'"'1< 1.00 

f f = /  0.50, 0.01 < 1 &$")I < 0.10 
(17) 

(1.00, . I6q'"'l< 0.01. 

The values of a and ranges of 16q(,)l given in (17) are 
chosen on the basis of the criterion given in Section I1 for 
adequate convergence speed in the calculation of eigen- 
values. However, their values are not critical. 

1) LSE,, Mode in a Waveguide Centrally Loaded with a 
Homogeneous Dielectric Slab with Dimensions b / a = 1 / 5 
x ,  = (a - t ) / 2 ,  x2 = (a + t ) /2 :  Fig. 2 shows the results of 
the propagation constants of the LSE,, mode for various 
dielectric thicknesses with E , ( x )  = 9. The cutoff wave- 
lengths of the LSE,, mode for various dielectric E ,  con- 
stants and dielectric thicknesses are shown in Fig. 3; these 
are in good agreement with the values obtained by 
Vartanian [31. 

2) LSE,, Mode in a Waveguide Centrally Loaded with 
an Inhomogeneous Dielectric Slab with Dimensions b / a  = 

1 / 2 ,  x I  = (a - t ) / 2 ,  x2 = (a + t ) / 5  and E,(x) = 1 + 
results of the propagation constants of the LSE,, mode 
for various dielectric thicknesses are shown in Fig. 4, 
which are in good agreement with the values given by 
Chen [ll]. The cutoff wavelengths of the LSE,, mode for 
various values of E,,  ,,,, and various dielectric thicknesses 
are shown in Fig. 5. 

3) LSE and LSM Modes in a Waveguide Centrally 
Loaded with a Homogeneous Dielectric with Dimensions 
b / a  = t / a  = 1 / 5  x I  = (a - t ) / 5  x2 =(a + t ) /2 ,  E,(x) = 
2.0: For the propagation constant calculation, the free- 

4 ( E , , , , ,  - 1)(x - X I ) ( X Z  - x)  / (x* - x d 2 :  For E, , , ,  = 9, 
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7 ,  I 

ka 
Fig. 2. Plot of propagation constant of LSE,, mode in a waveguide 

centrally loaded with homogeneous dielectric with b / a  = 1/2, 
x1 = ( a  - t)/2, x 2  = ( a  + t)/2, and E, (x )  = 9. 

Fig. 3. Plot of cutoff wavelength of LSE,,, mode in a waveguide 
centrally loaded with homogeneous dielectric with b / a  = 1/2, x1 = 
( a  - t)/2, and x 2  = ( a  + t ) / 2  (results of solid line obtained by the 
modified variation-iteration method and dotted line by Vartanian 
W). 

space propagation constant is selected as 4 a / a .  For the 
cutoff wavelength calculation, the lower bound of the 
cutoff wavelength is selected as a /2. Numerical results 
are tabulated in Table I. 

4) LSE and LSM Modes in a Waveguide Offset Loaded 
with a Homogeneous Dielectric with Dimensions b / a = t / a 
= 1/2,  x I  = t, x2 = a, EJX) = 2.0: For the calculation of 
the propagation constant and cutoff wavelength, the 

ka 
Fig. 4. Plot of propagation constant of LSE,, mode in a waveguide 

centrally loaded with inhomogeneous dielectric with b / a  = 1/2, x ,  = 
( a  - t)/2, x ,  = ( a  + t ) / 2 ,  E , ( x )  = 1 + 4 ( ~ , , , , ~ ~  - 1Xx - x,Xx2 - x ) /  
( x ,  - X , ) ~ ,  and = 9 (results of solid line obtained by the modi- 
fied variation-iteration method and dotted line by Chen [ll]). 

0.0 0.1 0.2 0.3 0.4 0.5 

t/a 
Fig. 5. Plot of cutoff wavelength of LSE,, mode in a waveguide 

centrally loaded with inhomogeneous dielectric with b / a  = 1/2, x1 = 
( a  - t ) / 2 ,  x 2  = ( a  + t ) /2 ,  and €,(XI = 1 + 4 ( ~ , , , , ~ ~  - 1)  
( x  - x,xx, - x ) / ( x ,  - x,Y. 

free-space propagation constant and the lower bound of 
the cutoff wavelength are both selected as in case 3. 
Numerical results are tabulated in Table 11. Note that, 
during the iteration, there may be more than one initial 
eigenvalue ( p  or A,) converging to the same correct final 
value. 

In order to verify the numerical results for the propaga- 
tion constants and cutoff wavelengths of the LSE,, and 
LSM,, modes obtained using the modified 
variation-iteration method, the numerical results given in 
Tables I and I1 are verified with the related characteristic 
equations, in which the positions of zero crossing corre- 
spond to the correct eigenvalues. For homogeneous- 
dielectric-slab-loaded waveguide, the characteristic equa- 
tions can be formulated using the transverse resonant 
method [l]. For inhomogeneous-dielectric-slab-loaded 
waveguide, the inhomogeneous dielectric slab can be ap- 
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LSELI 

LSEi z 

LSE22 

L W l l  

LWz1 

LSM3 1 

LW4 1 

1337 

5.441 0 . 5 3 5  

1 1 . 3 4 9  0 .654  

6 . 7 9 7  0 .546  

16 .368  1 .312 

14 .254  0 841 

9 . 6 4 4  0 . 6 6 8  

5.441 0 .536  

TABLE I 
RESULTS OF PROPAGATION CONSTANTS AND CUTOFF WAVELENGTHS OF 

LSE,, AND LSM,, MODES IN A HOMOGENEOUS DIELECTRIC CENTRALLY 
LOADED WAVEGUIDE WITH b / a  = t / a  = 1 / 2 ,  x1  = ( a  - t ) / 2 ,  

xp  = ( a  + t ) / 2 ,  AND E , ( X )  = 2 

LSEi z 11 .637  0 . 6 6 8  

15 .739  1 .215  

4 . 9 8 9  0 . 5 2 9  
LWlZ 

LW22 

12 .226  0 . 6 9 0  

9 . 2 0 5  0 . 5 9 0  

proximated as a stack of many thin homogeneous slabs. 
The characteristic equations can then be obtained by the 
matrix method proposed by Gardiol [6]. 

The numerical examples given above show that values 
of the propagation constants and cutoff wavelengths of 
the LSE,, and LSM,, modes calculated using the modi- 
fied variation-iteration method developed in this paper 
are in good agreement with the exact values calculated 
from the characteristic equations with errors less than 
lo-'. Moreover, the calculation results of the propagation 
constants and cutoff wavelengths of the LSE,, and 
LSM,, modes contain all the existing modes, which are 
also verified using the characteristic equations. 

In the following, a few observations are made on the 
convergence of the iteration algorithm. First, the initial 
eigenvalues ( p  and A,) obtained from (13)-(16) are gen- 
erally enough to cover all the correct eigenvalues; in other 
words, there may be a few selected initial eigenvalues that 
will converge to the same final eigenvalues after the 
computation. In the simulation, the value of m is given 
first; values of n can then be specified to determine the 
corresponding LSE,, and LSM,, modes as all the eigen- 
values are obtained. Second, in some cases, the initial 
eigenvalue may converge to the value satisfying the char- 
acteristic equation (or (5) and (lo)), but the resulting 
wavenumber h (in the air region) becomes zero. This 
resulting eigenvalue is then discarded because it corre- 
sponds to the null field, as can be seen from (4) and (9). 
For example, in Table I, if the initial propagation con- 
stant pcO) is assigned to be 10.419/u in evaluating the 
propagation constant of the LSM,, mode for the struc- 
ture given in subsection IV-C, the resulting propagation 

L W l  2 

LSMZZ 

TABLE I1 
RESULTS OF PROPAGATTON CONSTANTS AND CUTOFF WAVELENGTHS OF 
LSE,, AND LSM,, MODES IN A HOMOGENEOUS DIELECIXIC OFFSET 

LQADED WAVEGUIDE WITH b / a  = t / a  = 1 / 2 ,  x1 = t ,  x 2  = a,  AND E , ( x )  = 2 

mode I Pa I Ada 

1 1 . 3 6 9  0 .656  

7 . 4 7 6  0- 563 

r LSElo I 16 .932  I 2 . 4 8 2  I 

11 .193  0 . 8 2 0  

0 .674  

1.4 

1.3 

L/a 1.2 

1 . 1  

1 .o I I I I I I I I 
1 2 3 4 5 6 7 8  

Number of Iterations 
Fig. 6. Effect of adaptive update factor upon the cutoff wavelength 

calculation of the LSE,, mode in a waveguide that is offset loaded 
with homogeneous dielectric with b / a  = t / a  = 1 / 2 ,  x l  = t ,  x 2  = a ,  
and c , (x)  = 2. Curve ( a )  is obtained with adaptive update given in eq. 
(171, and curve ( b )  is obtained without adaptive update factor (i.e., 
a = 1) .  

constant will converge to 10.883/u, and h will become 
zero as calculated from (6). Third, the rate of convergence 
of the modified variation-iteration method developed in 
this paper is very efficient. The numbers of iterations for 
the results given in Tables I and I1 are all less than 15. 
Fourth, the adaptive update factor a is able to stabilize 
the numerical behavior of the iteration algorithm. This 
factor helps the initial eigenvalue used to converge to the 
nearest correct result, as illustrated in Fig. 6. In this 
figure, A$" is 0 . 6 8 6 ~  in evaluating the cutoff wavelength 
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of the LSE,, mode for the structure used in Table 11. For 
curve (a), the adaptive update factor a is given by (17). 
The convergence is shown to be very smooth, and effi- 
ciently reaches to the nearest mode with AC=0.654a. 
However, for curve ( b )  the adaptive update factor a is 
not used (i.e., (Y = l), and the resulting cutoff wavelength 
shown converges to the other mode with A, = 0.546~. In 
general, a is small when the absolute value of the incre- 
ment of eigenvalue is large and vice versa. However, a 
larger update factor a usually leads to faster convergence 
but may skip some eigenvalues that exist. Therefore, 
properly selecting the adaptive update factor for different 
ranges of eigenvalue increment is necessary. 

V. CONCLUSION 
The use of modified variation-iteration with an adap- 

tive update factor in the iteration algorithm permits us to 
evaluate the eigenvalues (including propagation constants 
and cutoff wavelengths) of LSE,, and LSM,, modes in a 
rectangular waveguide loaded with a homogeneous or 
inhomogeneous lossless dielectric slab in an efficient 
manner with the initial eigenvalues given in subsection 
111-D based on a physical consideration. 

As shown in the numerical examples, this method is 
very efficient for finding all the eigenvalues of LSE,, and 
LSM,, modes by a given free-space propagation constant 
for the propagation constant calculation and a given lower 
bound of the cutoff wavelength for the cutoff wavelength 
calculation. In ,addition, the importance of the adaptive 
update factor in preventing the possibility of missing 
existing eigenvalues is also discussed. 
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