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A new approach using eigenstructure assignment is developed

for the design of excitation controllers for synchronous generators.

The computation procedure for the developed method is easy to
apply and exact solution can be obtained without any kind of
iteration. Controllers designed by the proposed approach can be
easily implemented via proportional-integral (PI) controllers.
Practical considerations are addressed in reaching an optimum
selection of closed-loop eigenvalues. Time domain simulation
results are also presented to verify the effectiveness of the

proposed design method.
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I. NOMENCLATURE

General

Subscript denoting achievable value.
Subscript denoting desired value.
System matrix.

System control matrix.

System output matrix.

System disturbance matrix.

State vector.

Control vector.

Output vector.

Disturbance vector.

Eigenvalue.

Eigenvector.
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System Variables

w Rotor speed.

6 Torque angle.

eg q axis component of voltage behind
transient reactance.

) Equivalent excitation voltage.

143 Stabilizing transformer voltage.

Ve Terminal voltage.

Vo Infinite bus voltage.

T, Energy conversion torque.

Tm Mechanical input torque.

Veef Reference input voltage.

System Parameters

Z, Transmission line impedance.

K4 Voltage regulator gain.

T4 Voltage regulator time constant.

Kr Stabilizing transformer gain.

Tk Stabilizing transformer time constant.

K, ~ Kg Constants of linearized model of
synchronous generators.

o d axis transient open circuit time

constant.

M Inertia coefficient, M =2H.

D Damping coefficient.

Kau,Kas Excitation controller feedback gain.

Kp,K; PI controller gain.

Il.  INTRODUCTION

Since the 1970s, supplementary excitation
controller, commonly referred to as power system
stabilizer (PSS), has been widely employed to enhance
the damping of synchronous machine low-frequency
oscillations and to improve the stability of power
systems [1-4]. Considerable efforts have been placed
on the design of PSS, and various types of excitation
controllers have been extensively investigated [2-9].

From a practical viewpoint, it is desirable to use
system outputs instead of state variables as feedback
signals, especially when a large-scale control system is
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considered. In the excitation controllers proposed in
previous works, speed deviation and/or torque angle
deviation are often taken to be the output variables
and thus the feedback signals. As a matter of fact,
these two variables play an important role in the
model reduction of power systems [10, 11]. Therefore,
we focus on the design of excitation controllers by
feeding back the states of speed deviation and torque
angle deviation.

A new approach is presented here for the design of
excitation controllers using speed deviation and torque
angle deviation as feedback signals. This approach
which can achieve exact eigenvalue assignment is
developed essentially based on output feedback
eigenstructure assignment technique [12-15] which
has been successfully utilized to design flight control
laws for aircraft in the aerospace engineering [16-22).
The proposed method is novel in that the excitation
controller designed by such method, as can be shown,
is in itself equivalent to a proportional-integral (PI)
output feedback controller of which the structure is
relatively simple for practical implementation [7, 8].
Another important consideration in the design of an
excitation controller using eigenstructure assignment
technique is the choice of desired closed-loop
eigenvalues. In this study, the effect of alternative
assigned closed-loop poles on feedback gains of the
excitation controller is examined in detail to obtain
an optimal selection of desired cigenvalues. In order
to verify the effectiveness of the proposed method,
results of time domain simulation for the system
under disturbance is demonstrated. It is found that
the designed excitation controller is not only simple
in structure so that it can be casily implemented but
improves system dynamic performance significantly.

ll.  STUDY SYSTEM

The system considered here is a synchronous
generator connected to a large power system as shown
in Fig. 1. The synchronous generator is equipped
with an IEEE type 1s exciter [2, 4]. The linearized
incremental model for this system is shown in Fig.

2. This model, the widely known deMello-Concordia
model, has been extensively studied and details can be
found in [1, 4]. The following system data [2] are used
for the study of power system stabilizer design.

K = 1.0755 K4 = 400 D=0

K, =12578 T, =005 Umax = 0.12
K3 = 03072 Kp=0.025  tpin=—0.12.
Ks =1.7124 Tr=10

Ks=—-00409 Tj =59

K¢ = 0.4971 M =474

Ve

Fig. 1. System configuration for single machine connected to large

power system through external impedance.

TABLE I
System Open-Loop Eigenvalues

Open-loop Eigenvalues

—0.0138 % j9.2216
—1.8523 + j0.0320
—217.8194

Then the study system can be represented by the
following state space form:

X=Ax+Bu+Td (€]
y=Cx @

where x = [Aw A6 Ae) Aerp AVF]' is the state
vector, u is the supplementary excitation control signal,
and

d =[AT, Avref]T 3)
and
y=[aw A" @)

are the disturbance vector and output vector,
respectively. The numerical values for the matrices A,
B, C, and T are derived as follows:

0 —02269 —02654 0 0
377 0 0 0 0
A=|0 -02902 -05517 0.1695 0
0 3272 -3976.8 20 —8000
0 818  -942 -05 -201
®)
B=[0 0 0 8000 200]T ©)
10000
S
01000
02110 0 0 0 0 T
r-| |
0 0 0 8000 200

Equations (5), (6), (7), and (8) form the
mathematical model of the study system. Then
eigenvalues of this system can be figured out. The
results are listed in Table L

From the eigenvalues listed in Table I, it is found
that there exist one pair of critical eigenvalues, i.e.,
—0.0138 £ j9.2216, which are likely to cause oscillation
problem. This pair of eigenvalues, often referred to
as the electromechanical mode, are the eigenvalues
associated with rotor oscillation. The poor damping
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re4————input signals

Fig. 2. Linearized incremental model of synchronous machine with exciter and stabilizer.

of the electromechanical mode can be further verified
through time domain simulations by applying a 0.05
per unit step change in the mechanical torque input
AT, or reference voltage input Av,er. The resultant
response curves of rotor speed deviation (Aw) are
shown in Fig. 3. These simulation results indicate that
system responses are highly oscillatory and poorly
damped. Therefore, an excitation controller is utilized
to enhance system damping.

IV. OUTPUT FEEDBACK EIGENSTRUCTURE
ASSIGNMENT

In this section the eigenstructure assignment
technique using output feedback is reviewed.
References [16] and [17} have provided nice
presentations and expositions to this topic. The
materials discussed here are primarily based on [16]
and [17].

Consider a linear time invariant system described
by the following state equation:

X =Ax+Bu )

y=Cx (10)

where x, u, and y are called state, control, and

output and are of dimensions # x 1, m x 1, and r x 1,
respectively. Matrices 4, B, and C are of appropriate
dimensions. This system is of nth order and has m
inputs and r outputs. Formally, both m and r are not
equal to zero. Given this system, we have the following
problem statements.

Aw (pu)
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] / ’\v / i/ \ /’\\\
i / ! fk /

0.0004 \ {
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-0.002 T T

time (second)
(@
Aw (pu)
0.002
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T T

0 1 3 3
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(b)
Fig. 3. Dynamic responses of open-loop system subject to step
change disturbance. (a) AT, = 0.05 per unit. (b) Aveg =0.05
per unit.
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~0.0011

-0.002

w
U

Given a self-conjugate set of scalars {);} and a
corresponding self-conjugate set of n x 1 vectors {V;},
i =1,...,k, find control laws of the form u = Fy,
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where matrix F is of appropriate dimension such that
k of the eigenvalues of closed-loop matrix 4 + BFC
are precisely those of the self-conjugate set {);}, with
corresponding eigenvectors the self-conjugate set {V;}.

Note that the set {A;} and {V;} correspond to the
desired closed-loop eigenvalues and eigenvectors,
respectively, and the matrix F is the output constant
feedback gain matrix. Then, according to [13], we have
the following.

THEOREM. Given the controllable and observable
system described by (9) and (10), then max(m,r)
closed-loop eigenvalues can be assigned and max(m,r)
eigenvectors can be partially assigned with min(m,r)
entries in each vector arbitrarily chosen using gain
output feedback.

With this Theorem, we can determine the
number of eigenvalue/eigenvector pairs, i.e., the “k”
in the problem statements, as well as the number
of eigenvector elements which can be assigned by
constant gain output feedback.

In advance of further analysis, the concept of
eigenvector assignability should be addressed since in
general, arbitrary eigenvector assignment is not always
possible. An assignable eigenvector must reside in the
subspace spanned by the columns of (Al — 4)~1B
which is of dimension m. We can obtain a “best
assignable” eigenvector by orthogonal projection of
a desired eigenvector onto the subspace spanned by
(M — A)~1B. Refer to this best assignable eigenvector
as achievable eigenvector. Then for a pair of desired
eigenvalue A, and eigenvector v4, the achievable
eigenvector v, can be computed as [16, 17, 23]:

ve=L(LTL)y 'Ly, 1)

where

L=(\4I-A4)'B. (12)

In many practical situations, the designer is
interested only in certain elements of the eigenvector
and thus will attempt to assign only the concerned
clements but not the whole column of the eigenvector.
As an example, which is the case in this study, system
control engineers are often concerned with the rotor
speed deviation state, Aw. In such case of partial
specification of v, v, can also be computed in the
same manner [16, 17]:

ve = L(DTD)" D"z, (13)

where z4 is the vector consisting of desired elements
which have been reordered to the leading position of
vq4, and D is the submatrix obtained by reordering the
rows of L to conform with the reordering performed
on vgy.

Note that the v, computed from (13) is of
dimension » x 1. In other words, though we only give
partial specification of the eigenvector, even in the

extreme case of only one specified element (z; is of
dimension 1 x 1), the computed achievable eigenvector
is of full dimension n x 1.

Then, as shown in [16, 17], by a similarity
transformation and some manipulations, we can obtain
the following equation which holds for each A;/v,
pair:

Aiza — A1v, = FCy, 14)
where z, is the specified part of v,, and A; is the
submatrix of A conforming with z,. Equation (14) can
be put into a more concise form by defining

q=Cvy, 15)
and
P= Adla — Ayv, (16)
and then we have
Fq = p. (17)

Equation (17) forms the basis of F computation and is
used in Section V to establish the design algorithm. It
is noticed that for each pair of A\; and v,, there exist
a pair of p and g, where both p and g are vectors of
appropriate dimensions.

V. DESIGN OF EXCITATION CONTROLLER

In this section, based on the materials of the
previous section, we develop a new approach to the
design of excitation controllers. This approach takes
advantage of the eigenvalue assignment capability of
the output feedback eigenstructure technique.

Recall the study system as described in Section
II1. It is a single-input two-output system. Then
from the Theorem in Section IV, we can assign
two closed-loop eigenvalues, and their associated
eigenvectors can be partially assigned with one
element in each vector arbitrarily specified. Therefore,
in view of the open-loop eigenvalues of the study
system, we wish to assign the electromechanical mode
eigenvalues (two eigenvalues of complex-conjugate
pair). As for the desired element of the eigenvector,
we choose the speed deviation state Aw as the element
to be specified since the electromechanical mode
is associated with rotor speed deviation, and this
element can always be set to be 1.0. Note that once
a choice of desired eigenvalue is made and the desired
clement of the associated eigenvector is specified, an
achievable eigenvector, which is of full dimension, can
be obtained from (13).

It is our purpose to apply the controller as shown
in Fig. 4 to generate the supplementary signal for
excitation control. Obviously, feedback gain matrix F
has the following structure:

F =[Kaw Kasl (18)
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supplementary
excitation
control signal

Fig. 4. Excitation controller configuration.

where Ka, and Kas are the feedback gains for Aw
and A¢, respectively.

Recall (17). Once the desired eigenvalue A, has
been chosen and then the achievable eigenvector v, is
figured out, the vectors ¢ and p can be determined.
Note that for the study system, ¢ is of dimension 2 x 1
and p is of dimension 1 x 1. Denote the desired 2
eigenvalues as X and X(X is the complex conjugate of
A) and the associated achievable eigenvector pair v and
v(V is the complex conjugate of v). Then there will be
vector pairs p, p and ¢, q such that

Fg=p Fg=p.
Because both feedback gains K., and K4 are real
numbers, only one equation of (19) is needed to solve

the unknowns, Ka, and Kas. Picking out the former
one, we have

and (19)

(Koo Kool|?] = 1p1 @0)
Upl
where g = [q1¢2]" and p = [p;]. Multiplying through
yields
Kawqi + Kasqz = p1. 21)

Note again that Ka,, and Kas, which are the
unknowns of (21), are real numbers, and q1, @2, and p;
are of complex values. By equating the real parts and
imaginary parts of the two sides of (21), respectively,
we can calculate Ka,, and Kas. This completes
the parameter computation of the output feedback
excitation controller.

Fig. 5 summarizes the computation procedure
of the proposed method for the design of excitation
controller. It is found that the computing algorithm is
simple and easy to apply. The solution to the problem
is unique and can be obtained directly without any
iteration. This implies the efficiency inherent in the
proposed design approach.

A relevant comment on the implementation of the
proposed excitation controller whose configuration
is shown in Fig. 4 is that such controller can be
implemented as an output feedback PI controller using
rotor speed deviation (Aw) as the input signal [7, 8],
as shown in Fig. 6. This is due to the fact that the
rotor angle deviation Aé is the time integral of speed
deviation Aw. Comparing Fig. 4 with Fig. 6 yields

Kp =Kau
Ky =Kns.

22
(23)

Equations (22) and (23) set up the equivalence of the
proposed controller to a PI controller. Meanwhile, it

START

INPUT SYSTEM MATRICES A, B, & C l

{ INPUT DESIRED EIGENVALUE/EIGENVECTOR PAIR l

L,COMPUTE ACHIEVABLE EIGENVECTOR J

OBTAIN Equation (17)

LﬁCOMPUTE FEEDBACK GAIN MATRIX F l

STOP )

Fig. 5. Flow chart of design algorithm.
(=]
K[ u supplementary
b= ¢ 4, —— P> excitation
P S control signal

Fig. 6. PI excitation controller.

TABLE II
Sample Results Of Computed Controller Parameters And
Closed-Loop Eigenvalues

Kaw = —20.381 Kaw = —1.429 Kao = 22.486
Kas = —0.295 Kas = —0.270 Kas = —0.258
—1.04 j7.0* ~1.04 j9.0* 1.0+ j11.0*
—0.9424 £ j1.1290  —0.8698+ j0.8692  —0.7781 % j0.6838
—217.669 —217.8120 —217.9950

Note: * denotes exact assignment of eigenvalues.

is worth noting that, from the mathematical viewpoint,
the addition of a PI controller using Aw as the input
signal to the study system does not alter system order.
A characteristic feature of the PI controller is that

it is very simple for practical implementation as
commercial Pl controllers have been widely employed
by the industry for years.

VI.  NUMERICAL RESULTS

Consider the study system. We are to
design excitation controllers using the approach
developed in Section V. Several desired closed-loop
electromechanical mode eigenvalue pairs have been
chosen, and then the corresponding feedback gains
are computed. Sample results, including controller
parameters and closed-loop eigenvalues, are given in
Table I1.

In using the pole assignment technique, the choice
of desired closed-loop eigenvalue(s) deserves deliberate
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Fig. 7. Effect of imaginary part of desired eigenvalues on
controller parameters. (a) Im(Ay) versus Ka,,. (b) Im()\;) versus
KAg .

consideration. For power system engineering practice,
a real part of —1.0 for electromechanical mode
eigenvalues will give satisfactory dynamic behavior

[3, 9]. On the other hand, the selection of imaginary
part of the desired eigenvalue requires detailed
analyses to reach a final decision.

In order to obtain a suitable choice of closed-loop
electromechanical mode eigenvalues, the effect of the
desired imaginary part on the computed feedback
gains (Kaw and Kag) are investigated. Fig. 7 gives
the plots for the assigned imaginary part versus the
computed absolute values of K5, and Kas. As can be
observed from Table II and Fig. 7, the absolute value
of K, is far greater than that of Kas and the value
of Kas remains essentially constant. Therefore, we
focus on Ka,,. Fig. 7(a) reveals that K, is smallest if
the desired imaginary part is set to be 9.2216. Since
it is desirable to have a controller of low gain, the
desired closed-loop clectromechanical eigenvalues
are determined to be (~1.0 £ j9.2216). That is, we
choose to improve the damping of electromechanical
mode without changing its oscillation frequency. This
conclusion is consistent with some remarks made
in [3]. The system eigenvalues and the computed
controller parameters based on such selection are
listed in Table III.

In order to demonstrate the effectiveness of the
proposed feedback controller whose parameters are
given in Table III, time domain responses of Aw for
the closed-loop system subject to a 0.05 per unit step
change in AT, or Av are performed, and the results
are presented in Fig. 8. By comparing the open-loop
system responses (Fig. 3) with the closed-loop system

TABLE III
Feedback Gains And Closed-Loop System Eigenvalues

Kaw =0978 Kas =-0270

1.0+ j9.2216*
—0.8606 + j0.8464
—217.8305

Note: * denotes exact assignment of eigenvalues.

&w (pu)
0.002

o.oo1-/\

ol L\

-0.001

-0.002

T Y

0 i 2 3 4
time (second)

@

o

dw (pu)
0.00:

0.0011

0.0001

N /\/\/—\—/—V\—
~0.001 1 \// v

-0.002

T T

0 1 2 3 4 5
time (second)
(b)
Fig. 8. Dynamic responses of closed-loop system subject to step
change disturbance. (a) AT, = 0.05 per unit. (b) Avyr = 0.05 per
unit.

responses (Fig. 8), it can be concluded that installation
of the proposed excitation controller has achieved
significant improvement on the damping of the study
system.

VIl.  CONCLUSIONS

A new approach which can achieve exact eigenvalue
assignment has been presented for the design of
synchronous generator excitation controller. This
method is developed based on output feedback
eigenstructure assignment technique. The excitation
controller designed by the proposed method is of
simple structure and can be easily implemented. From
the numerical results obtained from frequency domain
analysis and time domain simulation results, it is found
that damping of the study system has been greatly
improved. This establishes the validity of the proposed
design approach.
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