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Segmental Eigenvoice With Delicate Eigenspace
for Improved Speaker Adaptation

Yu Tsao, Shang-Ming Lee, and Lin-Shan Lee

Abstract—Eigenvoice techniques have been proposed to provide
rapid speaker adaptation with very limited adaptation data,
but the performance may be saturated when more adaptation
data become available. This is because in these techniques an
eigenspace with reduced dimensionality is established by properly
utilizing the a priori knowledge from the large quantity of training
data. The reduced dimensionality of the eigenspace requires
less adaptation data to estimate the model parameters for the
new speaker, but also makes it less easy to obtain more precise
models with more adaptation data. In this paper, a new segmental
eigenvoice approach is proposed, in which the eigenspace can be
further segmented into N subeigenspaces by properly classifying
the model parameters into IN clusters. These IN subeigenspaces
can help to construct a more delicate eigenspace and more precise
models when more adaptation data are available. It will be shown
that there can be at least mixture-based, model-based and fea-
ture-based segmental eigenvoice approaches. Not only improved
performance can be obtained, but these different approaches can
be properly integrated to offer better performance. Two further
approaches leading to improved segmental eigenvoice techniques
with even better performance are also proposed. The experiments
were performed with both a large vocabulary and a small vocabu-
lary recognition tasks.

Index Terms—Eigenvector approach, principal component anal-
ysis, speaker adaptation.

1. INTRODUCTION

HE mismatch in acoustic characteristics between speech
signals produced by the training speakers and those by the
testing speakers has been causing serious performance degra-
dation for automatic speech recognition (ASR) systems. Sub-
stantial efforts have been made to try to reduce such mismatch,
which are usually referred to as speaker adaptation techniques.
In these techniques, a limited quantity of adaptation data pro-
duced by the new speaker is used to generate a set of speaker
dependent (SD) models for the new speaker by adapting the pa-
rameters of a set of speaker independent (SI) models toward the
directions of the acoustic characteristics of the new speaker. Ef-
ficient use of the limited quantity of the adaptation data to obtain
the highest achievable recognition accuracy has been an impor-
tant direction in speaker adaptation.
Many different speaker adaptation techniques have been
developed and shown to be successful. Maximum a posterior
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(MAP) approach [4] and maximum likelihood linear regression
(MLLR) [5], [6] approach are good examples. MAP approach
adapts the model parameters based on the MAP criterion.
It has been shown to offer probably the best performance if
enough adaptation data are available. When the available data
are not adequate, however, special adaptation processes are
necessary to provide very good performance [7], [8]. MLLR
approach adapts the model parameters using a set of linear
regression functions with parameters estimated by maximum
likelihood criteria. It was shown to be able to achieve very good
performance with smaller quantity of training data. But the
performance turned out to be saturated when more adaptation
data become available. Some improved MLLR approaches have
been proposed to deal with this problem [9]-[13]. Eigenvoice
techniques, on the other hand, have been shown to possess the
distinct feature of very rapid speaker adaptation. Significant
performance improvements have been obtained with only very
limited quantity of adaptation data [1]-[3], [14], [15].

The basic idea of eigenvoice approach is to apply the prin-
cipal component analysis (PCA) [16] on the vector space con-
structed by the many parameters of the speaker dependent (SD)
models for a group of training speakers, such that only those
dimensions (or the eigenvectors) carrying the largest data varia-
tions are extracted and used to establish the eigenspace with re-
duced dimensionality. The acoustic properties of each speaker
is projected onto this eigenspace as a vector. In the adaptation
process, the adaptation data of a new speaker are used to de-
termine this projection in the eigenspace representing the new
speaker by estimating its component on each dimension of the
eigenvectors, with which the SD models for the new speaker can
be constructed. Because the PCA process has chosen the eigen-
vectors carrying the largest data variations, and the dimension-
ality of the eigenspace is low, only small numbers of parameters
are needed, and, therefore, good performance can be achieved
with very limited quantity of adaptation data. However, the low
dimensionality of the eigenspace or the small number of pa-
rameters to be estimated in the eigenvoice approach may also
imply some inherent limitations. The eigenspace representation
of the speaker characteristics can’t be made more delicate, more
exquisite or more precise when more data become available.
As a result, in many cases the performance of eigenvoice ap-
proaches may be saturated quickly as the adaptation data in-
crease. Some new approaches have been developed toward this
direction recently [17].

In this paper, a new approach to improve the eigenvoice tech-
nique by “segmenting” the eigenspace into N subspaces (called
subeigenspaces below) is proposed, with a goal to develop
a more delicate or precise eigenspace when more adaptation
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data become available. In this new approach, the parameters
of the SD models for the training speakers are somehow
classified into N clusters. Each of such cluster of parameters
collected from the SD models for all the training speakers are
then used to construct a subeigenspace individually. In this
way the eigenspace of eigenvoice techniques is “segmented”
into N subeigenspaces, and it becomes possible to make the
eigenspace more delicate and precise when more adaptation
data become available. This new approach is referred to as the
segmental eigenvoice [18] here in this paper. As will be clearer
later on in this paper, there can be at least mixture-based,
model-based, and feature-based approaches to classify the
parameters and develop the subeigenspaces. Experimental
results show that the recognition performance can actually be
significantly improved by this segmental eigenvoice approach,
and furthermore, the different mixture-based, model-based and
feature-based segmental eigenvoice approaches can be properly
integrated to offer even better performance.

The rest of this paper is organized as follows. Section II
briefly summarizes the eigenvoice approach, and Section III
presents the concept of the segmental eigenvoice. Section IV
describes the experimental results for a large vocabulary
recognition task, including those for baseline experiments and
various segmental eigenvoice approaches, and those for some
improved approaches for segmental eigenvoice. Section V then
presents an extra set of experiments to verify the superiority
of the segmental eigenvoice approaches for a small vocabulary
digit recognition task. Section VI is the conclusion.

II. BRIEF SUMMARY OF THE EIGENVOICE APPROACH

The eigenvoice approach is summarized very briefly here for
illustration purposes. In the training step, an eigenspace is es-
tablished off-line by analyzing the a priori knowledge from a
large number of training speakers with PCA performed to re-
duce the dimensionality. In the adaptation step, the model for
a new speaker is constructed on-line according to the projec-
tion of the vector for the new speaker on the lower-dimensional
eigenspace. Because the number of parameters to be estimated
is significantly reduced, the adaptation can be achieved with rel-
atively smaller quantity of adaptation data.

A. Training Step for Eigenvoice Approach

M sets of well-trained SD models for M training speakers,
{s =1,2...M}, were first obtained. The parameters in the SD
models for a speaker s are used to construct a supervector X
with a large dimension d, where d is the total number of dis-
tinct parameters for the SD models for a specific speaker. X
is considered as a sample of a random vector X with dimen-
sion d. This random vector X describes the acoustic charac-
teristics across different speakers. PCA is then performed on
the ensemble of the supervectors X, s = 1,2... M, collected
from all the M training speakers, by finding the eigenvectors and
eigenvalues of the covariance matrix G for the random vector
X, where G is estimated with the ensemble of the supervectors
Xs,s = 1,2...M. k eigenvectors, {ej7j = 1,2...k}, with
the largest corresponding eigenvalues are finally selected to con-
struct a k-dimensional eigenspace S, where k is a significantly

smaller number. These k eigenvectors and, therefore, the k-di-
mensional eigenspace carry most of the speaker information for
the M training speakers.

B. Adaptation Step for Eigenvoice Approach

A new speaker is represented by a vector projected onto the
k-dimensional eigenspace

k
V= Zw]-e]- (1)
i=1

where the coefficients w;, 7 = 1,2...k, are estimated by the
maximum likelihood eigen-decomposition (MLED) approach,
which is achieved with the expectation—-maximization (EM) al-
gorithm [19] via an auxiliary function [1]-[3]. The models of the
new speaker are then constructed from the obtained vector v.

III. CONCEPT OF THE SEGMENTAL EIGENVOICE APPROACH

As mentioned before, the segmental eigenvoice approach
“segments” the eigenspace of the original eigenvoice approach
into N subeigenspaces. Everything else is very similar to the
original eigenvoice approach. The formulation of the whole
concept is given below and illustrated in Figs. 1-3.

A. Training Step for Segmental Eigenvoice Approach

M sets of well-trained SD models for M training speakers,
{s = 1,2...M}, were obtained, each with d distinct param-
eters as in the original eigenvoice approach mentioned above.
These d parameters in the SD models for each speaker s are
first classified in some way into N clusters, {¢ = 1,2...N},
where each cluster ¢ includes d. parameters

N
Z d. =d. )
c=1

The detailed processes of this classification of d parameters
into N clusters will be discussed below. It can be at least
mixture-based, model-based, or feature-based. The d. param-
eters in the cluster ¢ for the SD models of speaker s are then
used to construct a subsupervector X, ; with dimension d..
In other words, the supervector X obtained previously for
each training speaker s in the original eigenvoice approach is
now “segmented” into N subsupervectors X, ;, ¢ =1,2...N.
These N subsupervectors X.,, ¢ = 1,2...N, are then
taken, respectively, as samples of N random subvectors X,
¢ = 1,2...N, each for a cluster ¢ and describing a subset of
the acoustic characteristics across different speakers. Again, the
random vector X in the original eigenvoice approach mentioned
previously describing the acoustic characteristics across dif-
ferent speakers is “segmented” here into N random subvectors
X.,c=1,2...N. PCA can now be performed, respectively,
on each of these N random subvectors mentioned above, X,
¢ =1,2...N, to find the eigenvectors and eigenvalues for the
corresponding covariance matrices G., ¢ = 1,2...N, which
are estimated from the ensembles of the subsupervector X, ,
s=1,2...M,c=1,2...N, collected from all the M training
speakers. For the random subvector X, for the cluster ¢ of
parameters, k. eigenvectors with the largest corresponding
eigenvalues, {e;-C), j = 1,2...k.}, are selected to construct
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Fig. 1.

a k.-dimensional subeigenspace S., and k. is a significantly
smaller number. As a result, the eigenspace S in the original
eigenvoice approach mentioned previously is “segmented”
into N subeigenspaces S, ¢ = 1,2...N. The whole training
process mentioned above is illustrated in Fig. 1.

B. Adaptation Step for Segmental Eigenvoice Approach

In the adaptation step, N sets of coefficients, {wg»c)./ J =
1,2...k.}, ¢ = 1,2...N, corresponding to the N
subeigenspaces S. are estimated for the new speaker by the
maximum likelihood eigen-decomposition (MLED) approach
via the EM algorithm. Each new speaker is then represented by
the N subvectors

ke
uC:Zw§">eJ~(“>, c=1,2...N (3)
j=1
in the N subeigenspaces. The models of the new speaker are
then constructed from a vector v in the entire k-dimensional
eigenspace, which is formed by concatenating these N subvec-
tors v., c = 1,2...N

v={vi,...Ve,...ON} 4)

The whole adaptation process mentioned above is illustrated
in Fig. 2. If we consider each of the above subvector v. ,
¢ = 1,2...N, to be a vector v, in the entire k-dimensional
eigenspace but with all other components being zero, i.e.

1Z1 :{1/1,0,...0,...0}
v. ={0,...0,v.,0,...0}
UN :{0,... o,... 07VN}-

Training step of the segmental eigenvoice approach.

then the above (4) can also be represented as a summation

Such a relation can then be further illustrated by the vector
spaces in Fig. 3.

C. Mixture/Model/Feature-Based Segmental Eigenvoice

There can be at least several different ways to classify the
d model parameters into N clusters as mentioned above. The
most natural approach may be mixture-based, i.e., those param-
eters for mixtures with closer acoustic properties are classified
together in a cluster. In this approach, all the Gaussian mixtures
in the SD models, and, therefore, their parameters, are classi-
fied into N clusters based on some distance measure. There can
be many different ways of evaluating the distance between two
Gaussian mixtures, and Bhattacharyya distance [20] and the Di-
vergence parameter [21] are two example measures used in the
experiments presented below. Bhattacharyya distance is defined
as

~1
Dp = é(lil — pa)" (% (3 + E2)) (11 — p2)

(Z14%2)
2

it PR S

(&)

while the Divergence parameter is defined as

DD _ Z <O’2(i)2 + Alg(i)z + Ul(i)z + Alg(i)2> (6)

O'l(i)2 U2('i)2

%



¢ =1,2...N, and the entire k-dimensional eigenspace.

where j11, po are the mean vectors of the two mixtures, X1, Yo
are the covariance matrices of the two mixtures, o1(7)?, o2(7)?
are the ith diagonal components of 31 and 3o, respectively,
A12(i)? = (p1(3) — p2(4))?, and 1 (), pa(i) are the ith com-
ponents of 1 and po, respectively. With the distance measures
as summarized above, vector quantization (VQ) can be applied
to classify the mixtures (and their parameters) into clusters.
Another straightforward approach is the model-based classi-
fication, i.e., those parameters for models for phone units with
closer acoustic properties are classified together in a cluster. For
example, the phone units can be first classified into consonants
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Fig. 2. Adaptation step of the segmental eigenvoice approach.
and vowels, and consonants/vowels can be further classified
based on phonetic knowledge and/or data-driven approaches,
etc. Another very natural classification of the parameters is fea-
ture-based, i.e., considering the type of the parameters, for ex-
ample, energy parameters, MFCC parameters, first-order and
second-order delta MFCC parameters, etc., and all parameters
of the same type can be classified together. The effectiveness of
all these different approaches of classifying the parameters will
be evaluated and discussed in details below. It should be noted
that the main idea for the development from the original eigen-
voice to the mixture-based and model-based segmental eigen-
voice approaches is very similar to the extension of MLLR from
B a single transformation function (for a single class) to many
K ‘;ig:?:p‘;?:l transformation functions (for many classes). Also, the devel-
opment from the original eigenvoice to the feature-based seg-
mental eigenvoice is very similar to the extension from the basic
Fig. 3. Relationship among the k.-dimensional subeigenspace S., full-matrix MLLR to block-matrix MLLR.

IV. EXPERIMENTAL RESULTS

In this section, the results for the core experiments for
this research are summarized. We, therefore, first describe
the experimental environment, which is a large vocabulary
task, and some baseline experiments for comparison purposes
in Sections IV-A and IV-B. The experimental results for
the new segmental eigenvoice approaches are then given in
Sections IV-C-IV-E. In Section IV-F, we will show that the
segmental eigenvoice approaches can be further integrated
with parameter smoothing and the Structural MAP (SMAP)
techniques to produce improved performance. An extra set of
experiments for a very different task with a small vocabulary
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will then be presented in Section V to show that the perfor-
mance improvements achieved here are in fact consistent across
many different tasks.

A. Experimental Environment

In the core experiments for this research, a large vocabulary
Mandarin speech database for recognition purposes recorded
at Taipei produced by 104 male speakers was used, in which
100 speakers used in training, and the rest 4 as testers. The
recording was done in office-like environment directly through
microphones, with low-level noise but negligible channel ef-
fects. Each speaker produced 200 utterances. The average length
of the utterances is roughly 3 s or 11 Mandarin syllables. In the
following experiments, because the focus here is rapid adapta-
tion, we limited the adaptation data for each new speaker to be
less than 40 utterances, which corresponds to less than 2 min or
440 Mandarin syllables. The adaptation performance reported
below was obtained with 40 testing utterances produced by each
of the four testers but not used in the adaptation processes, and
the results are the average of the four testers.

The speech signal was sampled at 16 KHz, and parameter-
ized into one energy component, one delta energy component,
14 MFCC components and 14 delta MFCC components. So
the total dimension of a feature vector is 30. Cepstral Mean
Subtraction (CMS) [22] was performed first on a per-utterance
basis. The SI model was trained with the 100 training speakers,
each with all the 200 utterances. Considering the monosyllabic
structure of the Chinese language, the acoustic units used were
the intra-syllabic Right-Context-Dependent (RCD) Initial/Final
units [23], which include 112 RCD Initial models along with
38 Context-Independent (CI) Final models. Here, Initial is the
initial consonant of a Mandarin syllable, while Final is the
vowel (or diphthong) part of the syllable plus an optional me-
dial and an optional nasal ending. Each Initial model has three
states, each Final has four states, while a silence model with
one state is also used. Each state of Initial or Final models has
mixture numbers ranging from 1 to 4 depending on the quantity
of available training data. The state of the silence model has
eight mixtures. The recognition performance measure used in
the experiments below is the free-decoded syllable error rates
for continuous utterances without knowledge of lexicon or con-
straints of language models. So it tells directly the achievable
improvements in acoustic recognition, not interfered by any
other linguistic knowledge or constraints. This error rate for the
SI model trained with the 100 training speakers is 36.31%.

In the experiments for eigenvoice or segmental eigenvoice to
be discussed below, we need SD models for the 100 training
speakers, i.e., M = 100 as in Sections II and IIl. These SD
models for each training speaker were adapted by the 200 utter-
ances for the respective speaker using MAP adaptation. All the
mixtures in the SD models for each speaker were used to con-
struct a 57 780-dimensional supervector, i.e., d = 57780 as in
Sections I and III. After performing PCA, we had an eigenspace
of dimension k, where k is a parameter to be chosen empirically.

B. Baseline Experimental Results — MLLR, MAPLR, SMAP,
and the Original Eigenvoice

The block matrix MLLR (with optimal number of classes)
was first taken as the reference approach for MLLR for com-
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parison here. It is referred to as experiment (a) with perfor-
mance shown in Fig. 4 as curve (a). Also compared here is a
well-known improved version of MLLR approach, Maximum A
Posteriori Linear Regression (MAPLR) [12]. In this approach,
the transformation parameters and the model parameters are
jointly estimated based on the maximum a posteriori (MAP) cri-
terion. This is referred to here as experiment (b), with results
plotted in Fig. 4 as curve (b). It can be found in Fig. 4 that this
improved version of MAPLR [curve (b)] performs better than
block matrix MLLR [curve (a)] in all cases, from 2 up to 40
adaptation utterances. Curve (c) in Fig. 4, on the other hand,
is for another experiment (c) for the Structural MAP (SMAP)
adaptation [7], in which a structural Bayes approach is used in
the MAP parameter optimization. It can be clearly seen from
Fig. 4 that for the SMAP adaptation [curve (c)] the syllable error
rate decreases monotonically and continuously as the quantity
of adaptation data increases beyond about 14 utterances, but this
approach offers less stable performance for less than 14 utter-
ances, which is the nature of SMAP adaptation. With the above
comparison in Fig. 4, curve (b) for MAPLR technique is se-
lected as the reference to be compared with for the purpose here.

The capability of the original eigenvoice approach was then
obtained in an experiment (d). In this experiment, in each case
(number of adaptation utterances) the number of eigenvectors,
or the dimensionality k in Section II, has been optimized em-
pirically. The result for this experiment (d) is then compared
with the above reference of MAPLR in Fig. 5. The curve (b)
in Fig. 5 is exactly the same curve (b) in Fig. 4 for experiment
(b), for the MAPLR technique, and the curve (d) is for the ex-
periment (d) for the original eigenvoice. It can be found that the
original eigenvoice approach [curve (d)] performs significantly
better than MAPLR [curve (b)] for adaptation data less than 14
utterances, but becomes similar or slightly worse for more ut-
terances. The former is the distinct feature of the original eigen-
voice approach, while the latter is the inevitable limitation of it.

C. Mixture-Based Segmental Eigenvoice

Here and below we briefly summarize the experimental re-
sults for the proposed mixture-based, model-based and feature-
based segmental eigenvoice approaches in Sections IV-C-IV-E,
respectively. We start in this subsection with mixture-based ap-
proach. The next experiment (e) is for mixture-based segmental
eigenvoice with Bhattacharyya distance in (5) used as the dis-
tance measure in VQ clustering. The experiment was performed
with number of clusters N varying from 2 to 15, and it was found
that N = 3 offered the best results. These best results for N = 3
are listed in the second row (e) in Table I. Also listed in the first
row (d) in Table I are the results for the original eigenvoice for
experiment (d) mentioned above for comparison. We can tell
from the first two rows (d) (e) of Table I that if the available
adaptation data are too limited (two utterances, for example), the
performance of the mixture-based segmental eigenvoice may
become worse than the original eigenvoice, apparently because
of the difficulties in accurate estimation of the necessary coef-
ficients. However, an error rate reduction of up to 7% becomes
achievable when the adaptation data were more than ten utter-
ances, which is an obvious improvement. Note that N = 3 was
found to be a good choice only for the cases tested here. Larger
number of N may possibly offer better performance than three
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clusters when more adaptation data become available, but that
part is out of the scope of this paper.

It should be pointed out that in either the original or any kind
of the segmental eigenvoice approaches to be discussed here, the
proper choice of the dimensionality k of the original eigenspace,
or k. of each subeigenspace, is critical for the achievable perfor-
mance. In all the cases in all the experiments here and discussed
below in this paper, the dimensionalities of the subeigenspace
have actually been empirically optimized. Therefore, the im-
provements obtained by the segmental eigenvoice approaches
here are definitely not achievable by simply increasing the di-
mensionality of the eigenspace of the original eigenvoice ap-
proach, although the parameters describing the acoustic charac-
teristics of the new speaker can be increased in that way too.

Another experiment (f) for mixture-based segmental eigen-
voice was then performed with the Divergence parameter in (6)
used as the distance measure in VQ. The results showed very
similar trends to those in experiment (e), and the best perfor-
mance again occurs when N = 3 and the results are listed in the

Comparison of experiments (b) MAPLR technique with (d) the original eigenvoice approach.

next row (f) of Table I. Comparing the results in rows (e) and (f)
of Table I, it can be clearly found that lower error rates can be
obtained as compared to the original eigenvoice with either the
Bhattacharyya distance or the Divergence parameter as the dis-
tance measure (except for the case with too limited adaptation
data), and the Bhattacharyya distance produces better perfor-
mance than the Divergence parameter in most cases. Therefore,
Bhattacharyya distance with 3 clusters will be taken as the rep-
resentative for mixture-based segmental eigenvoice in the dis-
cussions below.

D. Model-Based Segmental Eigenvoice

The next experiment (g) is for model-based segmental eigen-
voice. The Initial and Final models used here as discussed pre-
viously in Section IV-A were classified manually into N =
2, 3, and 6 clusters based on phonetic knowledge only. Note
that there can actually be many different ways to perform the
model classification, and, therefore, these three cases N = 2,
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TABLE 1
SYLLABLE ERROR RATES (%) FOR THE LARGE VOCABULARY TASK FOR DIFFERENT VERSIONS OF SEGMENTAL EIGENVOICE
TECHNIQUES PROPOSED IN THIS PAPER, COMPARED WITH THE ORIGINAL EIGENVOICE (N: NUMBER OF CLUSTERS)

Number of 2 | 4 8 |10 12| 14|16]18]20| 30 | 40
Utterances
. (d.) . 32.53(31.05/29.57(29.29(29.34(29.37|29.40|29.42(28.18(28.40(28.33 [28.48
Original Eigenvoice
(¢)
Mixture-based | Bhattacharyya | N=3 [33.15/30.16(29.47|29.26|27.75|27.54|27.33(27.41(27.25(27.19(26.74 |26.71
Segmental distance
ioenvoi (0
Eigenvoice Divergence N=3 [34.14/31.63|28.87|28.45|27.89/28.37|28.51(28.37(28.18(28.13| 27.69 | 27.54
parameter
(g)
Model-based Segmental N=3 |34.02(30.83]30.28|29.89|28.50|28.47(28.33|27.99|28.02|27.80| 27.91 | 27.56
Eigenvoice
o
Hybrid Mixture/model-based N=3 [34.25[30.92|28.18|28.77|27.76|27.65|27.70|27.44(27.28(27.22| 27.11 | 27.03
Segmental Eigenvoice
(i
Feature-based Segmental N=3 [32.16]29.75|28.65/28.78|29.22(28.75(28.56|28.62|27.94(28.18| 27.80 | 27.89
Eigenvoice
i N=9
Inteerated Mixt(ulze/feature-baﬁed 34.88129.26(27.44126.92(26.58(26.72(26.05(25.94(25.94(26.26 | 26.09 | 25.57
Segmental Eigenvoic e N°’27 (N=9)|(N=9) |(N=9)|(N=9) |(N=9)|(N=9) | (N=9) |(N=9)| (N=9) |(N=9)|(N=27)|(N=27)

3 and 6 mentioned here are simply three examples. The re-
sults for this experiment (g) showed that again N = 3 of-
fered the best results for most cases, which are listed as the
next row (g) in Table I. Similar to the mixture-based segmental
eigenvoice, improved performance as compared to the original
eigenvoice is achievable except for the cases with very lim-
ited adaptation data. But comparing the results in row (g) with
those in row (e) of Table I, it can be found that in all cases the
model-based segmental eigenvoice performs slightly worse than
the mixture-based segmental eigenvoice approach. One possible
reason for this may be that each model includes many mixtures;
therefore, classification based on mixtures can be done more
precisely than that based on models, and as a result more delicate
subeigenspaces can be obtained with mixture-based approach.
However, it is still possible that the model-based classification
approach, specially the phonetic knowledge used here, may pro-
vide some better directions for mixture-based classification, be-
cause the best approach for classifying the mixtures is actually
unknown, while VQ with Bhattacharyya distance as used above
is simply a relatively better way. A good example for this con-
cept is then to try to do some coarse classification first with
model-based approaches by the phonetic knowledge, then some
fine classification with data-driven mixture-based approaches.
One such approach, referred to as hybrid mixture/model-based
segmental eigenvoice here, is that all the models can be first
classified into 2 clusters, one with all Initial models (i.e., all
consonants) and the other with all Final models (i.e., primarily
vowels). Then all the mixtures in the clusters of Initial models
and Final models are further classified into N1 and Ny clus-
ters, respectively, with Bhattacharyya distance to give a total of
N = Np + Np clusters. The experiment for this approach with
N = 2, Ng = 1 and, therefore, N = 3 is referred to as ex-
periment (h) here, with the results listed in the next row (h) of
Table 1. The results indicated that there existed cases in which

this hybrid mixture/model-based approach performed slightly
better than the mixture-based approach alone, and 5% to 6%
error rate reduction can be achieved as compared to the original
eigenvoice for this mixture/model-based segmental eigenvoice.

It should be noted that the hybrid mixture/model-based ap-
proach is also a special case of the mixture-based approach.
It is, therefore, reasonable that these two approaches perform
very closely in many cases. Also, it is worth mentioning that
the method used in classifying the parameters and the number
of clusters are apparently two important keys. Furthermore, for
the several initial examples shown here, mixture-based, model-
based, or hybrid mixture/model-based segmental eigenvoice ap-
proaches as in rows (e), (f), (g), and (h) in Table I, the achiev-
able improvements seem to be not very significant, although the
trends of improvements are obvious and consistent across dif-
ferent approaches. Moreover, a common limitation for all these
segmental eigenvoice techniques mentioned here is that they
may produce worse performance than the original eigenvoice
when there are too limited adaptation data available. This will
not be the case when we examine the feature-based segmental
eigenvoice in the next Section IV-E.

E. Feature-Based Segmental Eigenvoice

In the feature-based segmental eigenvoice approach, the pa-
rameters in the supervectors are naturally classified based on the
type of the parameters. The energy components can be classi-
fied into one cluster, the MFCC components into another and
the delta MFCC components into the third, which gives N = 3.
All the rest processes are the same as before. This is referred
to as experiment (i) here. The results are listed in the next row
(1) of Table I. It can be seen from the experimental results that
the feature-based segmental eigenvoice offered better perfor-
mance than the original eigenvoice in all cases for adaptation
data ranging from two up to 40 utterances, regardless of the
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quantity of the adaptation data. An important observation is that
some improvements are obtainable even with only two utter-
ances, which is not true for any other segmental eigenvoice ap-
proaches discussed previously. Note that in the feature-based
approach all the feature vectors for all the adaptation data are
used to estimate the sets of coefficients for each subeigenspace,
while in mixture- or model-based approaches the feature vectors
for the adaptation data are first divided into N clusters, and then
only one cluster of the feature vectors is used to estimate the set
of coefficients for one subeigenspace. This may be the reason
why the performance of the feature-based segmental eigenvoice
is not very sensitive to the quantity of the adaptation data.
Because the basic concepts and processing procedures are
quite similar for mixture-based and model-based segmental
eigenvoice, yet very different for feature-based segmental eigen-
voice, it is, therefore, reasonable to believe that the integration
of these different categories of approaches may give even better
performance. For example, all the mixtures or models can be
first classified into N clusters by mixture- or model-based ap-
proaches, and the mean vectors for the mixtures in each cluster
can then be further segmented by feature-based approaches
into Ny clusters to give a total of N = N; x N5 clusters and so
on. The initial test for this concept is for the integration of the
mixture-based approach with feature-based approach, referred
to as the integrated mixture/feature-based approach here. In
the experiment, it was found that for this integrated approach,
with two to 20 utterances of adaptation data the best results
were obtained with Ny = 3, N» = 3 and N = 9, while with 30
to 40 utterances the best results were obtained with N; = 9,
Ny = 3 and N = 27. This is reasonable, i.e., larger N for more
adaptation data. This is referred to as experiment (j) here. The
complete results of experiment (j) together with the number
N of clusters used in each case are listed in the last row (j) of
Table I. Quite significant improvements can be observed for
this experiment (j) as compared to the original eigenvoice in
row (d). For example, the error rate reduction is 7.20% (29.57%
to 27.44%), 9.41% (29.34% to 26.58%), 11.83% (29.42% to
25.94%), and 10.22% (28.48% to 25.57%), respectively, for 6,
10, 16, and 40 utterances of adaptation data. This situation is,
therefore, further illustrated in Fig. 6, in which the curve (j) for
the experiment (j) for row (j) in Table I with N = 9 or 27 is
compared with each of its individual component approaches,
the curve (i) for experiment (i) in row (i) in Table I for the
feature-based segmental eigenvoice alone with N = 3 and
the curve (e) for experiment (e) in row (e) in Table I for the
mixture-based segmental eigenvoice alone with N = 3, along
with the curve (d) in row (d) in Table I for the original eigen-
voice. Note here again that in Fig. 6 for 30 and 40 utterances
of adaptation data, the results for curve (j) were obtained with
N; = 9, Ny = 3 and N = 27, while those for both curves (i)
and (e) were with N = 3. These were the best results for the
respective cases. In other words, when different approaches
are integrated to segment the eigenspace, when more adapta-
tion data are available, a larger value of N = N; x Ny may
give better results, although the component number, N; and
N5, may not be the best number when only a single indi-
vidual component approach was used. Fig. 6 clearly verified
the previous statement, i.e., the integration of two different
categories of approaches gives better results than any of its
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Fig. 6. Experiment (j) for the integrated mixture/feature-based approach
(N = 9 or 27), to be compared with the individual component approaches:
experiments (e) and (i) for mixture-based (N = 3) and feature-based (N = 3)
approaches alone, respectively. Also shown is the original eigenvoice in
experiment (d).

component approaches. Therefore, the improvements obtained
in the feature-based and mixture-based segmental eigenvoice
approaches are apparently additive. Also note that here in the
experiment (j), N = 9 or 27. This is significantly larger than
N = 3, with which the best results were obtained with previous
approaches. So we have 9 and even 27 subeigenspaces here and
better results were obtained. This verifies that as long as good
approaches can be found, more delicate subeigenspaces may
be constructed to provide better performance.

FE. Further Approaches for Improved Segmental Eigenvoice

Here we presented two additional approaches, which can be
used to further improve the performance of the segmental eigen-
voice proposed here. The first is to use the parameter smoothing
concept, while the second is to integrate with the Structural
MAP (SMAP) approach. They are, respectively, discussed in
Sections IV-F1 and IV-F2 below.

1) Improved Segmental Eigenvoice With Parameter
Smoothing: In Section IV-C it has been pointed out that
for all the cases in all the experiments discussed in this paper,
the dimensionalities of the eigenspace or subeigenspaces
have actually been empirically optimized. In fact, there is
still an extra issue not mentioned. When performing the seg-
mental eigenvoice experiments as described above, in each
case (number of adaptation utterances) the dimensionality of
all different subeigenspaces were always set to be equal for
simplicity, although such an equal-dimensionality assumption
for all different subeigenspaces is apparently not necessarily
optimal. This in fact creates some problem worth further inves-
tigating as discussed here in this subsection. When classifying
the adaptation data into clusters, it very often happened that
more adaptation data were distributed to some clusters, while
some other clusters had only very small quantity of adaptation
data. If all the subeigenspaces are given the same dimension-
ality, some sets of coefficients may be poorly estimated and the
SD model parameters thus obtained may become imprecise.

Here we propose an additional approach to handle the
above problem due to insufficient adaptation data in some
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subeigenspaces. This approach adopts the concepts of param-
eter smoothing, taking into consideration the reliability of the
coefficient estimation based on the sufficiency of the adaptation
data. This parameter smoothing is expressed as in (7) below,
and is depicted in Fig. 7

T
I t; Te(t)
/A — - .U’SI + = - Mmgon (7)
T+ Zl%(t) I+ Zl%(t)
t= t=

where %, i€18°" represent the mean vectors for a certain mix-
ture in a certain state for, respectively, the ST model and the SD
model obtained from a specific segmental eigenvoice approach,
[1 is the newly obtained mean vector for the desired mixture and
state with the parameter smoothing approach, I' represents the
weight of the a priori knowledge, which is usually an empiri-
cally determined parameter, ~.(¢) is the occupation probability
for the desired mixture and state included in the cluster c for the
segmental eigenvoice here, and the summation is over all adap-
tation data frames £. The adapted mean vectors obtained in this
way will remain closer to the mean vectors for SI models if the
accumulated occupation probability for the adaptation data and
the desired cluster ¢ is small compared to I'. fi5 in Fig. 7 is an
example for such cases. On the other hand, if the accumulated
occupation probability is large compared to I', the adapted mean
vector for this cluster ¢ will be closer to that obtained by the seg-
mental eigenvoice directly. ji; and fi3 in Fig. 7 are examples for
such cases. This is referred to as the improved segmental eigen-
voice approach with parameter smoothing here in this paper.
All the segmental eigenvoice approaches discussed above can
be further improved with this approach. Here we take the ap-
proach with the best results obtained previously, the integrated
mixture/feature- based segmental eigenvoice in experiment (j)
or row (j) in Table I, curve (j) in Fig. 6 above as an example.
The results for the improved version with parameter smoothing
for this case, referred to as experiment (k) here, is plotted as
curve (k) in Fig. 8, as compared to the results for the previous
experiment (j) and the original eigenvoice approach for exper-
iment (d) (curves (j) and (d) in Fig. 8). From Fig. 8, the dis-
tinct feature of the improved segmental eigenvoice with param-
eter smoothing can be clearly seen, i.e., when the adaptation
data were very limited (2 utterances only) the performance of
the previous segmental eigenvoice (the integrated mixture/fea-
ture-based approach in the case here) can be made better than the
original eigenvoice. When the adaptation data were increased,
slightly better performance as compared to the previous seg-
mental eigenvoice approach is also obtainable in some cases.
This is of course due to properly taking into consideration the re-
liability of the parameter estimation in the segmental eigenvoice
approaches. Therefore, one natural limitation of the segmental
eigenvoice approaches, i.e., poor coefficient estimation when
the adaptation data are very limited, can be overcome properly.
In fact, some preliminary experiments performed at this stage
also indicated that the value of I" in (7) should be dynamically
adjusted according to the quantity of the adaptation data. Of
course, when more and more adaptation data become available,
the performance of the improved segmental eigenvoice with pa-
rameter smoothing will eventually converge to the previous seg-
mental eigenvoice approach, as suggested in (7) and Fig. 8.
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Improved segmental eigenvoice approach with parameter smoothing:

Fig. 7.
white arrows pointing from g7 to p;#°" represent the adaptation process for

the segmental eigenvoice, and black arrows pointing from ! to fi; represent
the adaptation process for the improved segmental eigenvoice with parameter
smoothing.

2) Integration of the Segmental Eigenvoice With SMAP: The
above Section [V-F.I indicated that the parameter smoothing ap-
proach can properly handle one end of the natural limitation of
the segmental eigenvoice approaches, i.e., the imprecise param-
eter estimation for very limited adaptation data. But the achiev-
able improvements for that approach diminish gradually when
more adaptation data become available. Therefore, the other end
of the natural limitation of the segmental eigenvoice approaches,
i.e., the performance saturation when more adaptation data be-
come available, remains to be considered. Of course this can
be handled to a good extent by increasing the number of clus-
ters or subeigenspaces, N, as discussed previously. But this may
not be the only solution. Here we propose an extra approach to
handle this other end of the natural limitation. We consider that
the MAP adaptation approach in principle is able to offer the
best performance when more adaptation data are available. Be-
cause the Structural MAP (SMAP) is an improved version of
MAP in which the situation of relatively less adaptation data is
also considered, SMAP should be a better approach to be used
here. Therefore, the second approach for improved segmental
eigenvoice presented here in this subsection is to integrate the
segmental eigenvoice with SMAP, or performing the segmental
eigenvoice approach first, followed by SMAP adaptation. The
purpose is to handle the other end of the natural limitation of
the segmental eigenvoice, i.e., the performance saturation when
more adaptation data become available. This integration with
SMAP can be applied to any segmental eigenvoice approach
presented above (of course including the original eigenvoice as
well).

In the experiment (1) to be presented here, the best approach
obtained above, the integrated mixture/feature-based approach
with parameter smoothing in experiment (k), was further fol-
lowed by SMAP. The results are shown as the curve (1) in Fig. 9,
compared with the curve (k) for the experiment (k) without
SMAP, exactly the same curve (k) in Fig. 8. Also depicted is
the curve (m) for another experiment (m), the original eigen-
voice also followed by SMAP, as well as the curve (d) for the
original eigenvoice. From Fig. 9, it is obvious that the perfor-
mance of both the integrated mixture/feature-based segmental
eigenvoice with parameter smoothing [curve (k)] and the orig-
inal eigenvoice [curve (d)] can be significantly improved when
more adaptation data (more than 14 utterances) become avail-
able [curves (1) versus (k) and curves (m) versus (d)], if followed
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Fig. 8.
experiments (j) (without parameter smoothing) and (d) (original eigenvoice).

by the SMAP technique. Of course the improvements become
insignificant when the quantity of the adaptation data become
relatively small. Therefore, the parameter smoothing approach
presented in the above Section IV-F1 is helpful in handling the
natural limitation of the segmental eigenvoice at one end (i.e.,
with very limited adaptation data), while the integration with
SMAP presented in this subsection is helpful in handling the
natural limitation of the segmental eigenvoice at the other end
(i.e., saturation with more adaptation data). Thus both ends of
the natural limitation have been well taken care of. Now com-
paring curves (1) and (m), the achieved improvements for the
segmental eigenvoice approaches presented here in this paper is
quite clear. Even if the original eigenvoice followed by SMAP
can also offer very good performance including the situation
when more adaptation data are available [curve (m) in Fig. 9],
the segmental eigenvoice followed by SMAP as proposed here is
able to achieve significantly better results over the whole range
of adaptation data from 2 to 40 utterances to be considered here
[curves (1) versus (m) in Fig. 9]. Note that the error rate reduc-
tion achieved here [curve (1) versus (m)] is 9.90% (30.10% to
27.12%), 8.94% (29.30% to 26.68%) and 10.80% (28.99% to
25.86%), respectively, for 6, 10, and 14 adaptation utterances,
which can be considered significant.

V. EXTRA SET OF EXPERIMENTS FOR
A SMALL VOCABULARY TASK

In all the above experiments presented in Section IV, obvious
improvements were achieved with the various segmental eigen-
voice approaches proposed in this paper for a large vocabulary
task. One may wonder whether the segmental eigenvoice ap-
proaches also work for small vocabulary tasks. Moreover, all the
results presented above in Section IV are the average for four
testing speakers, which is relatively small. This is why in this
section an extra set of experiments were performed on a small
vocabulary task, with a much larger number of testing speakers.
The results show that the proposed segmental eigenvoice ap-
proaches indeed offer improved performance for a quite variety
of different environments.

Performance of the improved integrated mixture/feature-based segmental eigenvoice with parameter smoothing, experiment (k), compared with

In this task to be reported here in this section, the testing
database used in this extra set of experiments was the NUM-
100A digit database provided by the Association for Computa-
tional Linguistics and Chinese Language Processing (ACLCLP)
at Taipei. This database includes 8000 Mandarin digit strings
produced by 50 males and 50 females. The speech signal was
recorded under normal laboratory environment through micro-
phone at 8 KHz sampling rate. This 8000 Mandarin digit strings
consist of 1000 2, 3, 4, 5, 6, 7-digit strings each, and 2000
single-digit utterances. In the experiment presented below, 40
male speakers were selected as testers, and each test speaker
has, respectively, twenty single-digit utterances to be used as
the adaptation data, and five 7-digit strings for testing. Because
the ten Mandarin digits are simply ten distinct syllables, the
digit models needed for this task can directly be the ten cor-
responding syllable models used in the above large vocabulary
experiments constructed from the RCD Initial models and the
CI Final models as presented in Section IV-A. So all the ten SI
digit models for testing and the 100 sets of SD digit models for
the original eigenvoice or segmental eigenvoice approaches can
simply be picked up from those mentioned in Section IV-A and
used in the whole Section IV, and, therefore, all the training en-
vironment and experimental setup are exactly the same as in the
above. The only difference is that the testing data here include
only the ten digits and, therefore, the recognition process is to
select one out of the ten digits. In addition, the testing data need
to be interpolated from 8 KHz sampling rate to 16 KHz in order
to be compatible to the training conditions. In all the experi-
ments presented below, the number of adaptation data for each
testing speaker was increased from 2 to 20 single-digit utter-
ances. The recognition results presented below are the free-de-
coded digit error rates for the 7-digit strings, averaged over all
the 40 testing speakers. The digit error rate for the ten SI digit
models trained with the 100 training speakers (as mentioned in
Section IV-A) is 8.69%.

The results for the experiments are listed in Table II. SMAP
was taken as the baseline, together with the original eigenvoice
as well as the segmental eigenvoice approaches both followed
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Fig. 9. Performance of the integrated mixture/feature-based segmental eigenvoice with parameter smoothing followed by SMAP [experiment (1)] and the original
eigenvoice followed by SMAP [experiments (m)], also shown are experiments (k) and (d) without SMAP.

by SMAP, respectively, referred to as experiments (n) (o) (p)
here. The results are listed in Table II as the first three rows (n)
(o) (p). In the case of original eigenvoice or segmental eigen-
voice, the dimensionality of the eigenspaces or subeigenspaces
has been empirically optimized. Note that here not only the vo-
cabulary was very small, only ten digits, but the adaptation data
were very limited either. For example, in the 2- or 4- utterances
cases we have only two or four syllables as the adaptation data.
It can be found from row (n) that SMAP can provide some error
rate reduction, though to a relatively limited extent, even with
2 single digits (two syllables only) of adaptation data, as com-
pared to the SI result of 8.69%. The error rate was then mono-
tonically decreased as the adaptation data were increased all the
way up to 20 single digits, although with some minor excep-
tion cases. The original eigenvoice followed by SMAP in row
(o) of Table II, on the other hand, was able to perform simi-
larly. In this case some error rate reduction was achieved starting
with six single digits of adaptation data, and the error rate was
then reduced monotonically with increased adaptation data. But
the error rates in row (0) were worse if only two or four single
digits of adaptation data were available, and, by comparing rows
(0) to (n), it can be found that in this task the original eigen-
voice followed by SMAP was not able to do better than SMAP
alone in almost all cases of adaptation data, probably because
the adaptation data were too limited to estimate precise parame-
ters. The segmental eigenvoice followed by SMAP, on the other
hand, listed in row (p), performed differently. Note that here
the number of clusters for the segmental eigenvoice approaches
has been optimized in each case. For 2-6 adaptation digits fea-
ture-based alone with three clusters (N = 1, Ny = 3) gave
the best results, while for 8-20 adaptation digits mixture-based
alone with 2 clusters (N; = 2, Ny = 1) gave the best results.
These conditions are also shown in row (p) of Table II. The nice
feature of row (p) is that the segmental eigenvoice followed by
SMAP was able to offer improvements with respect to the base-
line of SMAP alone in all cases right starting with two single
digits of adaptation data, all the way to 20 single digits. In par-

ticular, the error rate reduction was 12.05% (8.55% to 7.52%),
9.42% (8.17% to 7.40%), and 14.69% (7.83% to 6.68%) for 4,
6, and 8 single digits (single syllables) of adaptation data, for ex-
ample, which are reasonably significant. This verified the capa-
bilities of the segmental eigenvoice approaches proposed here.
The improvements become slightly less for ten single digits of
adaptation data or more, which is natural. Because in this task
only the ten digits are to be distinguished, the performance be-
comes better when more adaptation data become available for
all adaptation techniques.

In the next set of experiments (q) and (r), parameter
smoothing as presented in Section IV-F1 was applied in ad-
dition, i.e., we have the original eigenvoice with parameter
smoothing and followed by SMAP [experiment (q)], and the
segmental eigenvoice with parameter smoothing and followed
by SMAP [experiment (r)], with results listed in the last two
rows (q) and (r) in Table II. Again here the number of clusters
for the segmental eigenvoice approaches has been optimized in
each case. For 2-6 adaptation digits feature-based alone with 3
clusters (N7 = 1, Ny = 3) gave the best results, while for 8-20
adaptation digits mixture-based alone with 2 clusters (N; = 2,
N, = 1) gave the best results. These conditions are also shown
in row (r) of Table II. By comparing rows (q) with (o), we
see that for the original eigenvoice followed by SMAP, the
additional parameter smoothing did offer some improvements
for 2-14 single digits of adaptation data, although the improve-
ments are kind of limited, and in all the cases (2-20 single digits
of adaptation data) the results in row (q) are actually not too
much different from the baseline of SMAP alone in row (n).
For the segmental eigenvoice flollowed by SMAP, on the other
hand, the additional parameter smoothing [in row (r)] was able
to offer much more improvements, for example, comparing
rows (r) with (p) in Table II, the error rate reduction was
13.26% (8.37% to 7.26%), 15.82% (7.52% to 6.33%), 16.35%
(7.40% to 6.19%) and 13.47% (6.68% to 5.78%) for 2, 4, 6,
and 8 single digits of adaptation data. In fact, row (r) includes
the lowest error rate for all the cases (2 up to 20 single digits
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TABLE I
DIGIT ERROR RATES (%) FOR THE SMALL VOCABULARY TASK FOR SMAP AS THE BASELINE, COMPARED WITH THE ORIGINAL EIGENVOICE AND SEGMENTAL
EIGENVOICE TECHNIQUES BOTH FOLLOWED BY SMAP, WITHOUT OR WITH PARAMETER SMOOTHING. THE DIGIT ERROR RATE FOR THE SI MODEL
IS 8.69%. THE BEST PERFORMANCE FOR EACH CASE (NUMBER OF ADAPTATION UTTERANCES) IS SHOWN WITH BOLD DIGITS
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Number of Utterances 2046 |8|10]12]14]16]18]20
(Single Digits)
(n)
SMAP 849 | 855 8.17| 783 [7.01 [ 625 |6.14 | 5.71 | 555|547
(0)
Original Eigenvoice, Followed by SMAP 9.06 | 8.85|8.53|7.92|7.14|631]6.01]|573]5.62]5.59
(p) 837 (752 740]| 6.68 | 647 [ 595|568 | 553 |5.38 | 5.31
Segmental Eigenvoice, Followed by SMAP (N;=1{(N =N =1 (N =2 (N =2 | (NG=2 (N =2 (N =2 (N =2 | (N =2
(N, for mixture-based,N, for feature-based, N= N;xN,) |N2=3)|N2=3)|N,=3)|N2=1)|N>=1)|N>=1)|N>=1)|N.=1)|N.=1)|N=1)
(q)
Original Eigenvoice 8571841806751 (692|621 (599(5.72]5.62]5.59
with Parameter Smoothing, Followed by SMAP
(r)
Segmental Eigenvoice 7.26 | 633 | 6.19|5.78 | 5.62 | 5.36 | 5.26 | 5.24 | 5.15 | 5.12
with Parameter Smoothing, Followed by SMAP (N=1(N=1ING=ING=2|ING=2 (N2 (N0=2 | (N0 =2 | (NG =2 (N0 =2
: e Y N;=3)|N2=3)[No=3)[Na=1)|No=1)[No=1)[N= 1) |No=1) [N;=1)|N,=1)
(N; for mixture-based,N, for feature-based, N=N; XN;)

of adaptation data) as compared to all other rows in Table II.
The “real improvements” achieved by the segmental eigenvoice
proposed in this paper, however, should probably be observed
by comparing rows (r) with (q), i.e., the segmental eigenvoice
as compared to the original eigenvoice, both with parameter
smoothing and followed by SMAP. The error rate reduction for
this case is then 15.29% (8.57% to 7.26%), 24.73% (8.41%
to 6.33%), 23.20% (8.06% to 6.19%) and 23.04% (7.51% to
5.78%) for 2, 4, 6, and 8 single digits of adaptation data and
so on, which should be considered significant. All these results
verified the superiority of the segmental eigenvoice approaches
proposed here for speaker adaptation even for small vocabulary
tasks.

VI. CONCLUSION

This paper proposes the concept of segmenting the
eigenspace into smaller subeigenspaces, so as to construct
more delicate eigenspace and more precise SD models for
new speakers for rapid speaker adaptation. The mixture-based
segmental eigenvoice is primarily based on the statistical char-
acteristics of all the model mixtures, while the model-based
segmental eigenvoice may utilize the phonetic knowledge in
segmenting the eigenspace. Both of these two versions of seg-
mental eigenvoice approaches can produce better performance
than the original eigenvoice, except when the adaptation data
are too limited. But the actually achievable performance de-
pends heavily on how the eigenspace is segmented, or how the
mixtures or models are clustered. The feature-based segmental
eigenvoice, on the other hand, has a different point of view. It is
based on the hypothesis of limited correlation among different
types of feature parameters. The performance improvements
achievable by feature-based segmental eigenvoice are found to
be less sensitive to the quantity of the adaptation data. Experi-
mental results indicate that not only each of these approaches

can offer better performance than the original eigenvoice,
but the proper integration of them may provide even better
results than the individual approaches. Further approaches for
improved segmental eigenvoice were also developed. One uses
parameter smoothing to consider the reliability of the coeffi-
cient estimation to handle the case of very limited adaptation
data. The other integrates the segmental eigenvoice approaches
with SMAP to handle the case when more adaptation data are
available. Both approaches were shown to offer extra improve-
ments for the segmental eigenvoice proposed in this paper.
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