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Abstract: A robust version of an indirect adaptive 
control scheme with self-excitation capability to 
the problem of controlling velocity of the 
electrohydraulic servosystems subject to 
unmodelled dynamics and load disturbances is 
proposed. The scheme contains an effective 
gradient least squares estimator using a dead zone 
technique and a certainty equivalence based 
adaptive controller. A design procedure for 
synthesising the adaptive controller is formulated 
by using the pole-placement technique, where a 
signal is created and fed back to the control law 
such that it has self-excitation capability and thus 
the stability of the closed-loop control system can 
be achieved. A series of simulations are 
performed to demonstrate the effectiveness of the 
proposed scheme. The results show that the 
proposed scheme is fairly robust to the control 
systems with uncertainties as well as improved 
performance characteristics, compared with that 
of the suboptimal PID control scheme with 
constant feedback gain and that of the adaptive 
model following control scheme. 

List of symbols 

K = valve constant, m3/sec/(mAd[N/m2]) 
Qt = load flow rate of servovalve, m3/s 
P, = supply pressure, Nim 
PI = load pressure across cylinder, N/m2 
m = total mass of piston and load, Ns2/rad 
C, = VISCOUS damping coefficient, Nsim 
F, = external load disturbance, N 
C, = piston ram area, m3/rad 
C, = totdl leakage coefficient, m5/(Ns) 
V, = total volume of valve and cylinder chamber, m3 
CO = bulk inodulus of the oil, N/m2 
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C,, = gain of nonlinear load disturbance 
I& = velocity of the piston, m/s 
U = input current of servovalve, mA 

1 Introduction 

Electrohydraulic servosystems are widely used in con- 
trol system applications for position or velocity con- 
trols such as mobile, airborne, and stationary 
equipment which require servos to convert electrical 
controls to large mechanical propulsion forces 
[l-3, 5 ,  61. The simulated system in this paper is shown 
in Fig. 1. It consists essentially of a power cylinder and 
a servovalve that controls oil flow. Owing to the flow 
pressure properties and to the load system motion 
itself, the dynamic characteristic between the power cyl- 
inder and servovalve is often complex and highly non- 
linear, which will result in the time-varying of the 
pressure gain and flow gain obtained from the line- 
arised hydraulic system for a specified operating point. 

l inear displacement 

3-phase-induction 

re1 i ef 
valve 

motor 
filter 

A 
Fig. 1 Schematic diugrani of electrohydraulic velocity control system 

Therefore, a linear model used for describing a hydrau- 
lic system should include unmodelled dynamics. In 
[2, 31, the authors proposed a model reference adaptive 
control scheme for the problem of controlling the posi- 
tion of the system using the linearisation technique for 
a fixed constant, nominal operating point and consider- 
ing no external load disturbances. As for the velocity 
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control problem, the authors [5]  presented an adaptive 
model following control scheme to tackle the system 
with changing operating points and linear load distur- 
bances. However, since the load disturbances of the 
hydraulic system depend on the velocity of the piston, 
and are always nonliinear and time-varying, it is diffi- 
cult to consider the :stability of the system only with 
linear load disturbances or with any fixed operating 
point. Furthermore, it is hard to exhibit good efficiency 
and performances by using conventional control 
schemes for the nonlinear hydraulic systems. 

In recent years, numerous approaches have been 
made in the literature towards achieving global stability 
and convergence of the control system using the indi- 
rect adaptive control scheme without external persist- 
ently probing signals [7, 9-13]. In this control scheme, 
the basic idea is to constitute an on-line estimation 
algorithm to estimate plant model parameters and then 
to obtain ii stabilising controller based on the certainty 
equivalence principle such that the stability of' the clos- 
edloop system can be achieved. In general, the external 
load disturbance always varies in an unknown fashion, 
although it is bounded, and the unmodeled dynamics 
exist due 1.0 the fact that the chosen plant model does 
not give complete descriptions of the controlled plant. 
So, the estimated model from an on-line estimation can 
never capture the true: system model, which would push 
the estimation into poor excitation. It is theriefore bet- 
ter to obtain an on-line linear model with urimodelled 
dynamics for use as the basis of control system design 
by dead-zone technique to avoid the phenomenon of 
poor excittation [ l l ,  15, 16, 18, 241. 

In this paper, we propose a certainty equivalence 
based indirect adaptive contrel (IAC) scheme with self- 
excitation capability using the pole-placement tech- 
nique for the problem of controlling the velocity of the 
hydraulic system sub.ject to unmodelled dynamics and 
load disturbances. The control scheme is an outgrowth 
of the work of [16, 18, 241, which can be used to guar- 
antee global stability of the controlled system without 
being corrupted by the uncertainties. To estimate the 
parameters of the plant model, we use the gradient 
least squares dead-zone estimator [16, 181 to obtain the 
best curve fitting data on-line. It has been shown that 
this estimator has monotonic parameter error reduction 
capability with an easily added norm-bound dead-zone 
errors given by the plant output and control input his- 
tories and uncertainti~es. Hence, it can treat a noncon- 
servative uncertain signal energy bound and give a 
better transient perfo:rmance of the system. In addition, 
it is cornputationally efficient and only requires 
approximately the same memory and computation time 
as recursive least squares. It is shown that, based on 
such an effective estimator, a design procedure for syn- 
thesising the certainty equivalence based ada-ptive con- 
troller is formulated by using the pole- placement 
technique, wherein a signal is created and fed back to 
the control law such that the control scheme has self- 
excitation capability. Thus, when it is applied to con- 
trol the velocity of tlhe hydraulic servosysteni, the sta- 
bility of the closed-loop control system can be achieved 
without being corrupted by the nonlinearity olf the flow 
pressure property, the variations of operating points of 
the hydraulic system, and the load disturbances. A 
series of simulations are performed to demonstrate the 
effectiveness of the proposed scheme. The results show 
that the proposed scheme is fairly robust to the systems 

with uncertainties and also improves performance char- 
acteristics, as compared with that of the suboptimal 
PID control scheme with constant feedback gain [4] 
and that of the adaptive model following control 
scheme [5]. 

2 
algorithm 

2.7 Modelling of the plaint 
Consider an uncertain plant P(p) which is described in 
a stable factor form by 

Derivation of the indirect adaptive control 

(4) 

A@' = [AA,_ 1 . . . AAOABnL-l . . . AB01 (5) 
where p 2 didt, u(t )  and y( t )  are the command input 
and plant output, respectively, and A@) = @+A,) ... 
@+A,) is a known, strictly Hurwitz polynomial. Moreo- 
ver, A#@) and B#(p) are the nominal part of the plant, 
and AA@) and AB@) are the signals which arise 
because of time variation of system parameters and 
external load disturbance. The following a priori infor- 
mation will be assumed about the process: 
(Al) A#@) and E#@) are coprime. 
(A2) 1/A011 < 6 ,  Vt  where 1 1 . 1 1  denotes the usual Eucli- 
dean norm on Rn+" ancl 6 is a some, known positive 
constant. 
(A3) n and m are known. 
The uncertain plant described above can be reformu- 
lated as 

A#(P)Uf(t)  = B#(PI'uf(t) + W f ( t )  (6) 
where uk t )  and yAt) are the filtered signals of the com- 
mand input u ( f )  and plant output y(t), respectively, sat- 
isfying 

* ( p ) u " f ( t )  =: 'u( t )  ( 7 )  

NP)Yf(YJ =- d t )  ( 8 )  

(9) 

@ ( t )  = bn-'yf(t). . - w f ( t ) - p " - l u S ( t ) " ' - U " f ( t ) ]  (10) 

and 

W f ( t )  = -aoT4(t) = p n y f ( t )  + OT$h(t) 

2.2 Adaptive control algorithm 
In the adaptive control system, since 0 is unknown and 
only the plant input and output are measurable, we are 
in a position to use the gradient least squares dead- 
zone estimator to estimate the parameters of the plant 
model from the plant input and output. Let O ( t )  be an 
estimate of 0. Since @(t)  is constructible in real time, 
and the parameter estirnate O ( t )  is known at time t ,  
wf(t) defined in eqn. 9 for each fixed t is estimated 
according to the following: 

w j  ( t ,  T )  = P"Yf(T) + Q " ( , + l O )  (11) 

= P ( T ) q q T )  + W f ( T )  0 5 7 5 t (la) 

IEE Proc.-C(introl Theory Appl., Vol. 143. Nu. S, September 19% 449 



where 6(t) = e(t)-o. Let the identification error be 
defined by 

e ( t )  = p n y f ( t )  - oT(t)4( t )  = w f ( t )  + i T ( t ) $ ( t )  (13) 
Since the difference f l ( t ) - O ( ~ ) ,  x E [0, t] ,  is known to the 
estimator, one can thus construct the functional corre- 
lation error signal 

q( t ,  7 )  = 2i f ( t .  7) + ( q t )  - Q ( T ) ) T 4 ( T )  (14) 

= Tr(t)4(7) + W S ( T )  0 5 T 5 t(eqn.12) (15) 
To construct an estimation algorithm, it is assumed 

that wAt) and its derivatives satisfy 

I lw(t)/ /  5 P 4 t )  V t  (16) 
where w(t) = [0 ... 0 pn-'wl{t) ... wj(t)lT, b i  is some posi- 
tive scalar and d( t )  is defined by 

02 P 4 t )  = - P 1 4 t )  + P2(IUJ(t)l + l Y f ( t ) i  + 1) 4 0 )  > -- 01 
(17) 

where [ 3 , ,  [j2 > 0 and (3,+(3, < min(A,, ..., A,) for some 

The gradient least squares algorithm for identifying 
8 3  0. 

the parameters of the plant model is given by 

where 
@(t )  = P a t )  = -r(t)l(t)s(t) (18) 

t 

t 

( 2 2 )  

( 2 3 )  

0 

n - 

4 t ) =  SUP 14.11 
o<T<t 

Proposition 1: [16-18] The estimation algorithm defined 
by eqn. 18 has the following properties: 
(i) Letting ';(t) = dist(O(t), 0)  where dist(.;) is a given 
distance, then 

P(C"t))  5 - 2 ~ ( t ) ~ ( t ) ( l l ~ ( t ) l l C ~  - ~ ~ ~ ( ~ ) ~ l l ~ ( ~ ) l l C I  5 0  Vt  
(24) 

with equality if and only if pO(t) = 0. 
(ii) 'Transient performance:' 

p m  [ l l d ~ ) l l C l  - /mI+ llrl(t)llc,dt L C2(0) 
0 

= constant 
(25) 

where [.I' denotes the positive part. 
From qqn. 18, we can make up the estimated polyno- 
mials .l(O(t),p) and B(O(t),p) for the controlled plant. 
Let s(0) and s ( O ( t ) )  be the Sylvester matrices consti- 
tuted "by the coefficients of polynomials (A#@),  B#(p)) 
and .l(O(t),p), B(O(t),p)), respectively. By the coprime- 
ness of A#@) and B#Q7), there exist two unique polyno- 
mials 

R ( p )  = pn + Rn-1pn-l + . . . + R i p  + R, 
S ( p )  = s,-lpn-l + . ' .  + SIP + so 

450 

such that 

where E@) = p2n + !,,-,p2"-' + ... + Eo is a desired 
closed-loop characteristic polynomial. Following the 
assumptions AI-A3 in Section 2.1, the certainty equiv- 
alence based robust adaptive controller is given by 

where r f ( t )  = r(t)/A(P) is an external reference input and 
T(p) = Tn. ~p"' + ... +T$+T, which can be selected 
properly to achieve tracking purpose. Moreover, 
R(B,, p )  and S(B,, p )  are evaluated from the following: 

R(P)A#(P) + S(P)B#(P) = (26 1 

N Q O " ( t ) , P ) 7 J f  = T ( P ) T f ( t )  - S(Q'Z(t)>P)Yf(t) +n0(t) (27) 

W ( t ) , P ) A ( Q O " ( t , , P ,  + S ( Q a ( t ) , P ) & w , P )  = E ( P )  
(28) 

and O,(t) and no(t) are evaluated as follows: 
If idet(s(fl(t)))i 5 p > 0, then 

Q,(t)=O(t) with t=max{$l$ < t and 1 det(S(Q(6)))l > p }  

(29) 

(30) 

(31) 

( 3 2 )  

I no ( t )  = nl ( t )  + no2 ( t )  

n&) = K j i q t ) ,  

nl( t )  = namax,/T,lT, 0 < a < cc 
/c > 0 

- 
T = supl{pnrS(t)pn-lrf(t). . T f ( t ) }  

Else 
Q,(t) = e ( t )  
no(t) = 0 

Note that the initial value O(0) must satisfy 
Idet(S(O(0)))l > p. It is seen that the adaptive control 
scheme takes the form of an adaptively tuned linear 
controller with an additional feedback signal no(t). 
Also, the reference signal is compensated by the signal 
nl( t ) ,  the control parameters variations are completely 
removed when idet(s(O(0)))i 5 p, and the effect of the 
uncertainties are cancelled by n2(t). The latter produces 
also the required amount of excitation. 

Eqn. 27 can be written as 

P " U f ( t )  = - R,-l(Bn(t))pn-lUf(t)- . ' ' -R"(Ba(t))u,f(t) 
+Tn-lp"-lTf(t) + ' ~ ' + T I T f ( t )  

- sn-l(Q'Z(t))p"-lYf(t) - " '  - So(Qa(t))Yf(t) 
+ no(t) 

( 3 3 )  
Then the control law eqn. 33 provides pnuJ(t) which 
together with eqn. 7 allows the computation of the 
actuator input u(t)  as follows: 

u( t )  = p n 7 r f ( t )  + X,-lpn-luf(t) + ' .  ' + X , U f ( t )  (34) 
Given the signals y( t )  and u(t) ,  the filtered signals 

yj{t) ,  q ( t )  and their differentiations, and the estimate 
O ( t ) ,  the purpose of this paper is to design a certainty 
equivalence based indirect adaptive control algorithm 
eqns. 18 and 27 such that the input signal u(t)  and out- 
put signal y( t ) ,  and the estimated parameter errors will 
be uniformly bounded subject to the unmodelled 
dynamics and load disturbances. 
Proposition 2: There exists a positive-scale k l  and any 
unit vector v such that ivr@(t)l / ( d ( t ) )  2 k l K  - p( t )  
where p( t )  is bounded for all t .  The proof is shown in 
Appendix 7.1. 
Proposition 3: The estimated parameter error is uni- 
formly bounded for all t .  The proof follows directly 

We can now establish the stability of the adaptive 
U 11. 

control system. 
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Theorem 1': With thle uncertain dynamics :satisfying 
eqn. 16, when the adaptive control algorithm eqns. 18 
and 27 is applied to the system eqn. 1, it ensures that 
u(t)  and y( t )  are uniformly bounded for all t. 

The proof is very similar to that of Appendix F in 
[24] and is: therefore, omitted. 

From the above analysis, the indirect adapt' ' ive con- 
troller design procedure is delineated as follows: 
Step 1: Select the plant model with proper dimension to 
construct O(t) and @(t)m and a proper filter l/A(p). 

Select a stability margin p and O(0) such that Idet(9 

Select the characteristic polynomial E@). 
Give the values for $(0), e, ,  PI,  p2, a, K, p, d(0) and 

r(4. 
Step 2: Update A,,j = 0, 1, ..., n-1, and BjJ == 0, 1, ..., 
m-1, using, the update law in eqn. 18. 
Step 3: Chlculate R(O,(t), p )  and S(O,(t), p )  from 
eqn. 26 and select 7(p) properly to achieve tracking 
purpose. 
Step 4: Then the adaptive control law is attained from 
eqn. 27. 
The Steps 2-4 are repeated at each sample time. 
Remarks: I n  Step 3 ,  if IRo(ea(t))l s E for a small positive 
value E, one can freeze ur(t) to keep safe from a very 
large control input since the freezing technique [21] is 
still applie'd. 

If the output performance is unsatisfactory, then we 
can increase the value p to cope with the gadn of the 
signal corruption and repeat Steps 2-4. 

From proposition 2 and theorem 1, if the identifier 
or the control law gows  without bound and/or u( f )  
and y( t )  bllow up, then modify the values a arid K from 
eqn. 30, and repeat Steps 2-4. 

3 Simuilations anid discussions 

3. I Simulations 
A mathematical model for the electrohydraulic velocity 
control system was derived in Appendix 7.2. The 
parameten of the hydraulic servosystem used for simu- 
lations are: listed in Table 1. 

(O(0)))l > IP. 

Table 1: Parameters oif electrohydraulic servosptem 

Parameter Value Dimension 

ca 1.32 x 10 m3/rad 
C" 88.2 N. slm 
c, 2.24 x lO-'O m5/( N. s) 

K 1.62 x IO4 rn3/sl(mA x t'(Nlm2) 
ulna, 15 m A  
U* 0.015 mA 
m 0.534 N x s2/rad 
ps 6.86 x IO5 N/m2 
vt I .79 10-3 m3 
CO 3.43 107 N/m2 

n 2 

From Table 1, the minimum and maximum values of 
Kq and K, in eqn. 51 can be given by 

0.07747 5 Kq <_ 0.15493 

1.27 x 5 K ,  5 2.54 x 1 0 - ~  (35) 
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and thus the parameters of the mathematical model of 
the electrohydraulic velocity control system in eqn. 54 
are 

y(t)  + Ailj(t) + Ao%f(t) == Bou(t) + ~ ( t )  (36) 
where A. = 174.6736, A, = 166.2256, 492.032 5 Bo 
5 984 and w(t )  = 1.97948 CdyZ(t) -3.7453 Cdy(t)y(t). 
(i) Step 1: A parametric model of the following form 
was fitted to the on-line data i o  the system: 

(37) m a  ( t )  1 P )  /A (P)  - 6 0  /A(P) 
A ( W ) , P ) / ~ ( P )  (P2 + AlP + Ao) /A(P)  

- 

that is, O ( t )  = [Al 4 k0lT and @(t) = byAt) y f ( t )  -u{(t)lT. 
Let the filter 1/A(p) having a roll-off at roughly 20rad/s 
be given by 

1 1 

The position of the filter in the simulated system is 
shown in Fig. 2. ---: 

gradient least squares dead-zone algorithm r- - 6, 

bandpass bandpass 

u ( t )  Y ( t )  
Fig. 2 Filter.y,/or purumtrr estimution ulgorithm 

Letting p = 2.25 x the initial values of the model 
parameters AI A$ and Bo can be selected as 0.01, 0.02 
and 0.015, respectively, such that idet(s(e(0)))l > p. 
Let the dominant closed-loop poles be placed with a 
bandwidth of roughly 10radis and with a damping fac- 
tor of 0.75, and this characteristic polynomial be given 

z ( p )  = p4 + 65p3 + 1475p2 $- 1 4 3 7 5 ~  + 62500 (39) 
The required known U priori control parameters used 
for simulations are listed in Table 2. 

by 

Table 2: Design parameters 

Parameter Value 

4 (0) 0 
C1 0.1 
01 15 

P2 10 

U 1 

k 12.3 
w 1.1 
d (0) 1 
Y ( t )  1 

(ii) Step 2: Update S ( l )  = [Al & & I r  using thc update 
law eqn. 18. 
(iii) Step 3: By the certainty equivalence principle, the 
control parameters R,(O,(t)), Ro(Oo(t)), S,(O,(t)) and 
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10 u( t )  =.u(t) + --n(t) 

0.01 

0 

(42) 
where h, = 50 and h, = 625 as given in eqn. 38. 

A0 
B O  
A1 

............. .. .......... ~ ......... . ~~ ................... ~ ......... <,',, 

i ........ ~ ~ ............... ~ ~ ~ .......... ~ ................. ............................................. 

In 

2- 0.01 
h 

0 1 ' " "  
0 0.04 008 012 016 0.20 

time, s 
Trajectories of control system subject to C,, = 0. velocity output Fig.3 

0-0-0 AMFC 

Y it) 
x-x-x suboptimal control scheme 

0 0 0 4  008 0.12 0.16 0.20 
time, s 

Fig.4 Trajectories of control system subject to C, = 0: actuator signal 

$2* I*C 

In . 
E- 0.01 
z1 

of " " " " ' J 
0 0.04 0.08 0.12 0.16 0.20 

time, s 
Trujectories of control system subjecl to C, = 9.8 x IO6:  velocity Fig.6 

ozrtput y ( t )  
x -x-x suboptimal control scheme *_*-* IAC 
0-0 0 AMFC 

2-TLE-=7 = J 5  

004 008 012 016 020 
time, s 

OO 

Fig.7 
rignul u( t )  

Trajectories of control syrtem subject to C, = 9 8 x IO6 uctuator 

*_*-* IAC 

482 

- O O l l - .  ' ' ' ' A I ,  , I 
0 004 008 012 016 020 

time, s 
Fig.8 
pczrumeters 

Trujectorm of control system subject to C, = 9.8 x IO': system 

0 02 

E 001 
In . 
< 

0 
0 004 008 012 016 020 

time, s 
Fig.9 
output V( t )  

fiojectoria oJcontrol system subject to C,  = 39.6 x IO6: velocity 

x-x-x suboptimal control scheme 
IAC 

0-0-0 AMFC 

2-::F ' ' ' --:! 
3 5  

0 
0 0 0 4  008 012 016 020 

time, s 
Fig. 10 
tor signal U 
*-* * IAC 

Tfajeclories o j  tontiol system Jubject to c, = 39 6 x 10' uctuu- 

- ' . O 4 k  004 ' 0.08 ' 0.12 ' 0116 ' 0 10 
time, s 

Fig. 11 
parameter's 

Trajectories of contvol system subject to C, = 39.6 x I O 6 -  system 

Following the design procedure, a series of simula- 
tion studies are made, for various load disturbances, to 
evaluate the performance by the proposed scheme. 
These results are compared with those of the subopti- 
mal PID controller [4] and that of the adaptive model 
following control scheme [5]. These simulations are 
done by a digital computer using the Simnon software 
package with a step size 0.001s. To investigate the 
effect of the load disturbance on the hydraulic system, 
n is chosen to be 2. Throughout the simulations, the 
reference velocity input is kept at O.O15m/s. The 
performances of the system with c d  = 0, c d  = 9.8 x IO6, 
C, = 39.2 x lo6 and C, = 9 . 8 ~ 1 0 ~  + 0 . 9 8 ~ 1 0 ~  sin(40xt) 
are illustrated in Figs. 3-5, 6-8, 9-11 and 12-14, 
respectively. The simulation results are compared to 
that of the suboptimal controller which has the follow- 
ing form: 

(43) 
This controller minimises the cost function ISE (inte- 
gral square error) criterion. The detailed design proce- 
dure of the suboptimal controller can be found from 
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[4]. From the design procedure the parameters k,,, ki 
and kd subject to various cases of uncertainties are 
shown in Table 3. 

Table 3: Design parameters for PID controller 

1980 0.032 0.0027 0 

1980 0.043 0.0023 9.8 x IO6 

1980 0.0118 0.0022 39.2 x IO6 

1980 0.043 0.0023 9.8 x IO6 + 0.98 x IO6 sin (4Orrt)  

5 :::c 
0 
0 004 008 012 016 020 

time, s 
Fig. 12 
0.98 x I O 6  s in (40~ t ) :  velocity output u( t )  

Truiectories of control sys/ein .subjc,c~ lo C, = 9.8 x IO6 t 

x-x-x suboptimal control scheme *-*-* IAC 
0-0-0 AMFC 

O I L  ’ 1 - ----L.J 
0 0.04 0.08 0.12 0.16 0.20 

time, s 
Fig.13 
0.98 x IO6 sin,/40&): actuator s@al u(f) 

Truiectories of’ control system subject to CO = ‘9.8 x IO6 + 
* .*-* IAC 

0.02 

0.01 

0 

-0  01 

Fig.14 
0.98 x IO6 .rin(40zt): systent paranwters 

0 0.04 0.08 0.12 016 0.20 
time, s 

Trajectories of control system subject to C,, = 9.8 x IO6 + 

The simiilation results are also compared to that of 
the adaptive model following control (AMFC) scheme 
[5] .  In the AMFC scheme, the design parameters used 
for simulations are the same as that in [5] since all con- 
ditions givmen in eqns. 31, 32 and 41 in [5] are ,satisfied. 

3.2 Discussions 
The above sirnulatiom indicate that: 
(i) For th’e case C, = 0, the velocity responses per- 
formed by the IAC arid AMFC schemes shown in Figs. 
3-5 are almost the same and slightly lag behirid that of 
the suboptimal PIDl controller. In this case, the 
response performed by the IAC scheme behaves with a 
small amount of steady state error, about 0.3‘%1 of the 
desired value, and a small amount of overshoot since 
the damping factor of the desired closed-loop charac- 
teristics is selected as 0.75. 
(ii) As to Cd = 9.8 x lo6 shown in Figs. 6-8, the 
responses -performed by the AMFC scheme arid subop- 
timal PID controller are observed to be inferior to that 
of the IAC scheme. /ilso, the response of the subopti- 
mal PID controller shows large overshoot and oscilla- 
tion. 
(iii) From Figs. 3-1 1, it is also observed that the veloc- 
ity responses of thie AMFC scheme show slower 
response (characteristics and that of the suboptimal 

controller exhibit large oscillation as the magnitude of 
the load disturbance increases, However, the responses 
of the proposed IAC scheme behave well only with a 
small amount of undershoot. This feature can be 
explained as follows. At some time, if the determinant 
of  the Sylvester matrix 3 0 ( t ) >  is smaller than the pre- 
specified controllable margin p, then the estimate is 
replaced by the last past one which we can use to 
design a stabilising controller, and the exciting signal is 
fed back to the cont:rolled plant simultaneously. 
Finally, when the excitation becomes poor again, the 
estimate still can be used to design the corresponding 
stabilising controller. 
(iv) As to Cd = 9.8 x IO6 + 0.98 x IO6 sin(40mt) shown 
in Fig. 6, the response of the velocity performed by the 
IAC scheme shows more satisfactory results for the dis- 
turbance with unknown as well as time-varying charac- 
teristics than that of the AMFC scheme and the 
suboptimal PID controller. 
(v) From the simulation results, because there exist par- 
ametric uncertainty and disturbance, the estimated 
parameters obtained from estimation algorithm will not 
approach the true values but when used for designing 
the adaptive controller, the controlled system can be 
stabilised all the time. 
(vi) From the above discusslons, the proposed IAC 
scheme can be a promising way to tackle the problem 
of controlling thc velocity of hydraulic servosystems 
subject to time-varying external velocity-dependent 
load disturbances. 

4 Conclusion 

In this paper, we have proposed a robust certainty 
equivalence based adaptive control scheme with self- 
excitation capability, which is an outgrowth of the 
work of [16, 18, 241, to the problem of controlling the 
velocity of electrohydraulic servosystems subject to 
unmodelled dynamics and external load disturbance. 
The estimator used for ideritifying the parameters of 
the plant model is similar to that proposed by [16-181. 
It is shown that the proposed adaptive control scheme 
using the certainty equivalence principle and pole 
placement technique can guarantee the boundednesses 
of the input and output of the controlled plant. From 
the simulation results, the proposed adaptive control 
scheme is fairly robust to the systems with unmodelled 
dynamics and unknown as well as time-varying load 
disturbance, as compared with that of the suboptimal 
PID control scheme arid that of the AMFC scheme. 
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7 Appendix 

7.1 Proof of Proposition 2 
From [14] and eqn. 27, we have 

QT(t)S(@)Ld(t) = T ( P ) T f ( t )  - S ( Q , ( t ) , P ) W . f ( t )  + no(t) 
(44) 

where e C ( 4  = [R,-,(%(t)> ’.. R,(%,(t)) s,-,(%(t>> ... 
SO(O,(t))lT and L is a known full rank matrix. Since 
OCr(t)S(o)L is not a zero vector, we can take vT = 
LTSr(@)E!,(t) / ~~LTST(@)€),(t)~~. Dividing both sides of 
eqn. 44 by lILTST(o)€tC(tjll and pd(t j  results in 

IVT4( t ) l  kllnz(t)l kl /S(Qa( t )>P)~~f( t ) l  - k ; p ~ d t ) l  
P$t )  P 4 t )  / a t )  P a t )  

O < k l < O o  

Since iT(p)rdt)l 5 nmaxilT,17 is bounded and, -from 
eqns. 16, 27 and 28, the signal IS(8,(t),p)wj(t)l / pd( t )  is 
also bounded, we have 

(45) 

where p(t)  = (k,lS(E!,(t),p>wdt)l + (cr-kl)nmaxj/TjIF)l 
(p d(t)) is bounded. 

sign(u) = I ,  for U-> 0, sign(u) = -1, for U-< 0. For the 
application of the adaptive control, the linearised sys- 
tem of eqn. 47 is obtained for an arbitrary operating 
point in the following: 

where K4 = Kv‘(P,,-sign(u*)P,*) is the flow gain, K, = 
Klu*l/{v‘(/(P,~-sign(u*)P~*)} the pressure coefficient and ‘*’ 
means the nominal operating point. The continuity 
equation of the servovalve and the cylinder chamber is 
given by 

Q i  1 K,u - K,Pl (48) 

Q1 = Cad + C I B  + (3) Ijl 
4co (49) 

where C, is the piston ram area, C, is the total leakage 
coefficient, V, is the total volume of the valve and the 
cylinder chamber, CO is the bulk modulus of the oil, 
and $ is the velocity of the piston. To determine the 
minimum and maximum values of the parameters Kq 
and K, the following physical consideration can be uti- 
lised: 

where C, is an arbitrary positive number less than 1 
and is chosen as 213 for the reason that power elements 
are sized such that PI does not exceed 213P, for the 
maximum loads normally expected. Thus, the mini- 
mum and maximum values of Kq and K, can be 
obtained as 

which imply that only the bounds of the magnitudes of 
Kq and K, are known. It is assumed that the magni- 
tudes of Kq and K,. are slowly time varying within the 
bounds. Under the assumption that Coulomb friction 
between the piston and sleeve is negligible, the equation 
of motion of the piston is given by 

where m is the total mass of piston and load, and C,, is 
the viscous damping coefficient. It is assumed that the 
external load disturbance, Fl(Q(t)), is differentiable with 
Q(t) and is frequently given by 

where Cd = 6 F I / 6 ~ ( t ) l i * ( t )  and n is a positive integer 
number. The above equation indicates that the load 
disturbance depends on the velocity of the piston, 
which acts as a nonlinear damper whose damping coef- 
ficient varies with the velocity [SI. Hence, letting y( t )  = 
W(t), we obtain the following linear differential equa- 
tion with parametric uncertainties and external load 
disturbance: 

(54) 
where C ,  = m/(4C0), K, = K, + C,, A. = (C: + K,C,)/ 

C,Pl = m&t) + C,&t) + f i (& t ) )  (52) 

F1(4(t))  = C,G”(t) (53) 

y ( t )  + Ailj(t)  + A o y ( t )  = @u( t )  + ~ ( t )  

(Cbm), AI = (Kern + CbCv)/(Chm>, BO (CaKq)l(Ci~m)> 
w(t> = -Cd,Y”(t> - Cd2y”-’(t)Av(t>, Cdl = KeCdl(Cbm), 
c d z  = nCdIrn and n 1. 
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