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SIGNAL EXTRAPOLATION FROM HARTLEY 
TRANSFORM MAGNITUDES 

Indexing terms: Signal processing, Transforms, Mathematical 
techniques 

A novel approach to the problem of signal extrapolation 
from its Hartley transform magnitudes is presented. Using a 
newly defined function, it is proved that using only one 
known sample and the associated Hartley transform magni- 
tudes a finite extended signal can be completely recon- 
structed. An algorithm for signal reconstruction from 
short-time Hartley transform (STHT) magnitudes with 
minimal window overlap can consequently be derived. 

Introduction: The problem of signal reconstruction from 
partial information in the Fourier domain has been widely 
con~idered.'-~ Most works are only concerned with the recon- 
struction of signal from magnitude information or phase 
information. A signal can be reconstructed from its partial 
Fourier domain information with the aid of some a priori 
information about the signal. In this case, the task changes to 
signal extrapolation from partial Fourier domain informa- 
tion? The development of signal extrapolation from partial 
information needs an investigation of how many samples of a 
signal are required to uniquely estimate other unknown 
samples of the signal. The results obtained play a kernel role 
in deriving conditions for which the partial information of 
short time Fourier transform (STFT) is a unique signal repre- 
sentation. 

Bracewell' has introduced the Hartley transform, which 
uses the real variable cas(2nfn) as the transform kernel and is 
intuitively simpler and faster than the Fourier transform. 
Signal reconstruction from partial information in the Hartley 
domain has been discussed in Reference 6. Signal extrapo- 
lation from partial Hartley domain information is the theme 
of this letter. A novel algorithm for extrapolating signals from 
Hartley transform magnitude information with one known 
sample is derived. This result can be applied to signal recon- 
struction from short time Hartley transform (STHT) magni- 
tudes? 

Signal extrapolation from Hartley transform magnitudes: The 
theorem of signal extrapolation from Fourier transform mag- 
nitudes is first quoted from Reference 4.  

Theorem 1 :  For N =- 0, let x(n) be a sequence that is zero 
outside the interval [O, NI and assume that x(0) # 0. Then the 
Fourier transform magnitude 1 F(w)l and the Q samples of x(n) 
in the interval [0, Q) will uniquely specify the entire sequence 
x(n) if and only if Q 2 rM/21 (where M = N + 1 and Tal is 
the smallest integer greater or equal to a). 

Intuitively, from the relations between Hartley transform 
and Fourier transform, theorem 1 should also be valid for 
Hartley transform based signal extrapolation. However, from 
theorem 2 stated below, we prove that Q = 1 is satisfactory for 
the Hartley transform based approach. 

Theorem 2 :  Under the same conditions and assumptions in 
theorem 1, the Hartley transform magnitudes I H(w) I and the 
Q samples of x(n) in the interval [0, Q) will uniquely specify 
the entire sequence x(n), if and only if Q 2 1 .  
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Proof: Throughout this proof, the samples of x(n) for 
0 5 n < Q will be referred to as the initial Q samples of x(n). 
We first show that the unknown samples of x(n) are uniquely 
specified when Q = 1. Clearly, if uniqueness holds for Q = 1, 
uniqueness will also hold for Q z 1. From the Hartley trans- 
form magnitude \ H(w) \, the following function can be con- 
structed : 

(1) 

(2)  

D(n) = IHT {H2(w) - H2(-w)} 

= x(n)*x(n) - x( - n)*x( - n) 

= 1::; 1 x(m)x(n - m) 

n = O  

1 1 n 4 N  (3 )  

C x(m)x(n - m) N +  1 1 n < 2 N  
m = " - N  

where * denotes the operation of digital convolution and 
x( - n) and H( -U) are obtained from the time inversing of x(n) 
and H(w), respectively. It is obvious that D(n) is an odd func- 
tion of n and from eqn. 3, N equations with N unknowns, x(l), 
x(2), . . . , x ( N )  can be obtained. In matrix form, these equations 
can be written as 

2HO) W O )  ][I=[ ;] [ :;; x(1) WO) 

x(N - l)x(N - 2) ... W O )  x(N)  D(N) 

(4) 

The matrix of the left hand side of eqn. 4 is a lower triangular 
matrix with all nonzero diagonal elements 2x(O). It follows 
that a unique solution exists for each x(n), n = 1, 2, . . . , N ,  as 
long as D(n) are known. The general form of x(n) can be 
represented as 

(5)  

For Q = 0, i.e., no known samples, the following lemma states 
that the Hartley transform based extrapolation will fail: 

Lemma 1:  For N > 0, let x(n) and fin) be two finite extended 
sequences that are zero outside the interval CO, N I .  If the 
magnitudes of the Hartley transforms of x(n) and A n )  are 
equal, then fin) = &x(n). 

Lemma 1 coincides with the results obtained from the con- 
sideration of the 'Hartley phase problem' as stated in Refer- 
ence 6 and its proof is trivial. Lemma 1 and previous 
discussions complete the proof of theorem 2. 

Discussion and conclusion: The function D(n) is the only infor- 
mation derived from the Hartley transform magnitudes 
I H(w) 1 .  Since x(n) is N + 1 points long, D(n) is 4N + 1 points 
long and is an odd function of n. The entire sequence D(n) can 
be obtained without aliasing by using a 4N + 1 point inverse 
DHT of {Hz(w) - Hz(-w)}. Using a 4N point inverse DHT, 
the sample D(2N) is aliased with the sample D(-2N). Since 
D(2N) is not used in the extrapolation procedure, it follows 
that D(n) can be obtained through a 4N point inverse DHT of 
the 4N uniformly spaced samples of {HZ(w) - H 2 ( - o ) } .  Thus, 
the fast DHT algorithm developed in Reference 5 can be 
directly utilised if N is a power of two. Furthermore, since 
{ H 2 ( o )  - H2(-w)}  is an odd function, it can be easily seen 
that 4N uniformly spaced samples of { H 2 ( o )  - H2(-w)] over 
the frequency interval CO, 2n] are equivalent to 2N + 1 
samples in the interval CO, A]. It can also be shown that D(n) 
can be obtained even if the 2N + 1 samples of 
{ H z ( o )  - H2(-w)} in [0, n] are not uniformly sampled. 

Based on theorem 2, a novel signal extrapolating algorithm 
using Hartley transform magnitudes and only one known 
sample can now be derived. Fig. 1 shows the block diagram of 
the proposed algorithm. The proposed algorithm has been 
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implemented by using the C programming language to verify 
its correctness. 

Fig. 1 Extrapolation procedure (p44iil 

The proposed algorithm has also been successfully applied 
to the signal representation from short time Hartley transform 
magnitudes. A novel algorithm, based on theorem 2, for signal 
reconstruction from STHT magnitudes with minimal window 
overlap has been developed.’ 
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ANALYSIS OF ARBITRARILY SHAPED 

THICK SUBSTRATES 
COAX-FED MICROSTRIP ANTENNAS WITH 

Indexing terms: Antennas, Microstrip 

Arbitrarily shaped, coax-fed microstrip patch antennas with 
thick substrates are studied using a mixed-potential integral 
equation approach. This incorporates a triangle-element 
model of the patch and a rigorous treatment of the prohe-to- 
patch junction. Computed input impedance data are shown 
to agree well with measured results. 

Introduction: Considerable progress has been made in the 
numerical modelling of coax-fed microstrip patch antennas, 
both in the spectral and spatial domains.’,’ Spectral domain 
methods, which rely on Fourier-transformable entire-domain 
expansion functions, are limited to antennas of a few simple 
shapes. Space domain techniques using basis functions defined 
on rectangular or triangular subdomains are applicable to a 
much wider class of microstrip geometries. The triangle- 
element model employing the basis functions introduced by 
Rao et aL3 appears to be particularly attractive in this respect. 
Pichon et al.’ have used this approach in conjunction with the 
mixed-potential integral equation (MPIE) of Mosig and 
Gardio15 in the method of moments (MOM) analysis of a 
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coax-fed triangular patch microstrip antenna. To model the 
probe-to-patch junction, they introduced a simple attachment 
mode, which enforces the current continuity condition only in 
the average and does not attempt to model the singular 
behaviour of the patch current near the feed point. The 
coaxial probe current was assumed constant, which is a good 
approximation only for electrically thin substrates. In a recent 
study, Hall and Mosig’ eliminated this thin-substrate 
restriction and used the magnetic current frill to model the 
coax aperture. However, their analysis employed a rectangular 
cell model of the microstrip patch, which is not suited for 
arbitrarily shaped antennas. 

We propose an approach based on a recently developed 
MPIE.6 It incorporates the triangle-element patch model of 
Rao et al.,3 the coax probe model of Hall and Mosig,’ and the 
rigorous junction treatment introduced in a different context 
by Hwu et al.’ The HWU’ junction model accurately predicts 
the diverging behaviour of the patch current near the feed 
point and is applicable even for edge or comer fed microstrip 
antennas. 

Formulation: The MPIE for the surface current distribution J 
on the patch S ,  and the coax probe S,  has the form 

1 
= B x E ( r )  r e s  (1) 

where S = S, U S,, B is a unit vector normal to S, I? is the 
incident field caused by the magnetic current frill radiating in 
the grounded substrate environment and q is the charge 
density related to J by the continuity equation. The dyadic 
kernel G A  can be expressed as 

GA = (k.? + JJ)G:, + aiG:, + JiG;= 

+ %G:, + 3G:, + i iGiZ (2) 

where it is assumed that the dielectric/air interface is normal 
to the unit vector 2. The elements of this dyadic, as well as GO, 
have been derived by the authors? This formulation requires 
a single scalar potential kernel GO for both the horizontal and 
vertical components of J. In contrast to Hall and Mosig’s’ 
approach no additional point charges at the probe-to-patch 
junction are required. This advantage is partially offset by the 
appearance of two additional entries in eqn. 2. 

The MPIE in eqn. 1 is solved using the well-established 
MOM procedure3 utilising a triangleelement approximation 
of the arbitrarily shaped microstrip patch and the associated 
vector basis functions to represent 1. As in Hall and Mosig,’ 
the surface current on the probe and the coax aperture field 
are assumed to be azimuthally symmetric. The latter is taken 
to be that of a TEM coaxial transmission line mode with 
known voltage C;. The axial probe current is approximated in 
terms of piecewise linear, subsectional expansion functions. A 
special attachment mode, originally introduced by Hwu et 
al.,’ is used to model the current behaviour near the probe-to- 
patch junction. The resulting integral equation is then reduced 
to an algebraic system by a testing procedure.”’ Once this 
system is solved for the current expansion coeflicients, the 
antenna input impedance is found as VJI,, where I i  is the 
current at the base of the coax probe. 

Results: In Figs. 1 and 2, we compare computed and mea- 
sured input impedance data for triangular and rectangular 
patch antennas, respectively, on a substrate with e, = 2.484 
and tan 6 = 6 x driven by a coaxial cable with the inner 
and outer radii of 0.635 and 2.095mm, respectively. The 
former antenna was analysed by Pichon et al.: and the latter 
by Hall and Mosig,’ using a rectangular mesh model. In the 
numerical analysis, the triangular and rectangular antennas 
were modelled by 144 and 160 triangular elements, respec- 
tively. For the triangular antenna, which had a moderately 
thick substrate, only one basis function (in addition to the 
attachment mode) was placed on the coax probe. The rec- 
tangular antenna, which had a thicker substrate, required two 

ELECTRONICS LElTERS 7th June 1990 Vol. 26 No. 12 


