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Design of Equiripple FIR Filters With Constraint Usinga  FIRfilters in unified framework. The proposed algorithm are described

Multiple Exchange Algorithm and discussed in Section Ill. Examples are provided in Section IV to
demonstrate the proposed method. Conclusions and remarks are given
Soo-Chang Pei and Peng-Hua Wang in Section V. Finally, in the Appendix we provide a proof to show that

a linearly transformed Tchebycheff set still forms a Tchebycheff set.

Abstract—We propose a method of designing equiripple linear-phase
FIR filters with linear constraint by carrying out the Reméz exchange al-
gorithm. A novel technique is derived to convert a linearly constrained The frequency response of a caudah-order FIR filter is expressed
problem into an equivalent unconstrained one. We proposed a technique to b
modify the original desired frequency response so that the original linear
constraint can be reduced to a simpler one (the null constraint) for the new

Il. PROBLEM FORMULATION

target frequency response. The filter with null constraint can be designed H(e?®) = N B i 1
without constraint by a transformation of the original basis functions. The (7)) = Z ne 1)
transformation is represented by a basis for the null space of the constraint. n=0

In this brief, we show that the set of transformed basis also forms a Tcheby- .
cheff set. This fact indicates the proposed design is optimal in Tchebycheff where the impulse responses may be complex numbers or real ones.

sense. The optimal filter is deigned by Reméz method according to the new IN this paper, we assume that the impulse responses are real. Since
target frequency response in transformed basis. Design examples suggesthe frequency responslé(e’*) is a complex-value function, it can be

that the proposed algorithm converges fast and stably. represented aB (¢’*) = ¢’*(*) A(w) where the amplitude response
Index Terms—Equiripple FIR filter, linear constraint, multiple exchange ~ A(w) is a real function ofv anda(w) is the corresponding phase re-
algorithm. sponse. If the impulse response sequéngcexhibits symmetric prop-

erties about the index, the phase response is a linear functionof
and H (¢’*) is called a linear-phase filter. The impulse responses are
symmetric ifh,, = £hn_, for0 < n < N. Real coefficient linear

Linear phase FIR filters with equiripple stopband and passhapbiase filters can be classified into four types that depend on symmetry
are important and have been investigated widely. The most importafif:» and on whethetV is even or odd [7]-[8]. For each type, we can
method of designing such filters is the Reméz exchange algorithm a@xpress the amplitude response as

|. INTRODUCTION

its variants. Based on the alternation theorem, these filters are optimal M
in the Tchebycheff or minimax sense [7]. The Parks—McClellan Alw) = Z W Dy (W) 2
algorithm makes use of the polynomial interpolation to calculate the m=1

frequency response [1], [2], [7], [8]. In [4] Shpak and Antioniou givevhere {4, ()} is a set of appropriate trigonometric functions and
a generalization of the Remeéz algorithm to eliminate the transitig)y, determined by filter ordetV, is the number of independent
band anomalies. Although the Parks—McClellan algorithm is powerfgbefficients in the filter. The value off and the relationship among
to design a wide class of FIR filters such as lowpass filters, differep;, 4,,, andé,,(w) are summarized and presented in [6]. We may
tiators, or Hilbert transformers, it is hard to design dlglta' filters Wiﬂéxpress the amp”tude response in matrix form. Let the coefficient
constraint by this algorithm. In [3] Vaidyanathan presents a meth@dctora = (a;, as, ..., axr)’ and the basis vectd® (w) = (¢ (w),
to design digital filters with flat passbands and equiripple stopbands,(.), ..., ¢/ (w))! where the superscriit)’ denotes the matrix
This method carries out the Remeéz algorithm based on a spegighsposition. The amplitude response in (2) is accordingly expressed
filter structure that guarantees flat passband. In fact, the requiremggt
of flat passband could be written as a set of linear equations of
the filter coefficients and solved by our proposed method. Linear Alw)=a'®(w) = ®'(w)a. 3)
constraint occurs to the other filters. For example, the FIR notch
filter is equivalent to an allpass filter with null constraint at the notcfthis matrix form will facilitate the derivation and discussion of our
frequency. In [5] Er presents a least squared design of the notch filspPosed algorithm.
with controlled null bandwidth. The bandwidth can be controlled by a The filter design problem is to find a set of impulse respofise}
set of linear equations established by posing the flat constraint at f#€h that the frequency responBige’) is approximated to a given
notch frequency. In [6], Tseng and Pei design an equiripple FIR notBgdquency response. Thatis, to find the coefficientsin (2) such that
filter by a Remeéz-like algorithm. Their proposed algorithm can b&e amplitude responsé(w) is close to a given amplitude response
used for efficiently designing single-notch and multiple-notch filters? (). If the performance of the filter has to be controlled precisely
However, such filters can be designed with specifications of suitad@ obtaining good approximation within some frequency bands or at
target frequency response. some frequency points, the coefficients may be restricted by linear
In this brief, we propose an algorithm to design linear phase Egenstraint. The linear constraint could be expressed in matrix form and
filters with constraint. The constraint is represented as a set of lind¥itten as
equations of the filter coefficients. The original constrained filter design
problem is converted to a new problem without constraint. We carry out
the Remeéz exchange algorithm to solve the new problem. In Sectior’tﬁl/\1
o)
f

Ca=b 4)

ere thel\’ x M constraint matrixC representdy linear equations
unknownsz,,, . In the following section, a multiple change algorithm
is used for solving the filter design problem.

we will formulate the filter design problem and put the four types
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Leta = a — x wherex is a vector that satisfie€x = b. A choice of

x isx = CTb whichC™ is the pseudo inverse 6 [9]. Let D' (w) =
D(w)—x'®(w).Itis easy for the following error function to show that
E(w) = D(w)—a'®(w) = D'(w)—4a'®(w). The constraint becomes
Ca = Ca — Cx = 0. That is, the original desired responBéw) is
equivalent to a new one db’(w) with a new constrain€a = 0.

The next key step is to transform the constrained problem to an t
constrained one. Let the/ x R matrix B denote the null space @1.
Supposeé = Bw wherew = (w;y, ws, ..., wg)' is a new set un-
knowns to be determined, the frequency response can be represe
by a'®(w) = w'B'®(w) = w'd'(w) whered®'(w) = B'®(w)
represents a new set of bases. Based on this transformation, the f
design problem is equivalent to finding the optinvalusing ®’(w).
Moreover, sincé represents a null space 6f, it is obvious to show
thatCa = CBw = 0. Hence, we convert the original problem into . L L L ! ! ! L L L

. . . o 0.1 0.2 03 0.4 05 06 07 08 09 1
an new one with desired frequency respofi¥éw) but without any Frequency in unit of 1
constraint onw,, .

The equiripple filter design problem for our new desired responggy 1. The amplitude response and associated error function of a 78th-order

Amplitude

D'(w) is to find a set of frequencies;,i = 1, 2, ..., R+ 1,and a FIR lowpass filter with passband edge of £.4nd stopband edge of 0453
set of coefficientss;, j = 1,2, ..., R+ 1 such thats; < w, <  degrees of flatness are set.at= 0. Convergence is achieved after 9 iterations
e < w ' - with peak error of 0.010 226.
JR+1 and
W (wi)(D'(wi) — w'®'(wi)) = (=1)'6 ®) wv—————————_——______

fori=1,2,.... R+ 1. )

According to the former description, we propose a multiple ex
change algorithm to design the equiripple linear-phase FIR filters 08
follows.

Step 1. Specify the filter ordefV, the type of filter, the desired
frequency response(w), and the weighting function
W (w). CalculateM according to the filter type. Rep-
resent constraint by constraint matfix

Step 2. Calculatex andD'(w). Calculate the null spadd of 02
C. Evaluate the new basiB’(w).

Step 3. Obtain a set of initial extremal frequencies. One
choice is to select the frequencies evenly on th
passbands and stopbands.

06

3
E
(=
Z

0.2 L L L 1 1 1 L 1 L

Repeat 0 0.1 0.2 03 0.4 0.5 06 07 0.8 0.9 1
Step 4. Calculate the intermediate filter coefficienis and Frequency in unit of
peak errorb by solving (5).
Step 5. Calculate the intermediate error functidi(w) = Fig. 2. The amplitude response and associated error function of a 78th-order

. ) FIR lowpass filter with passband edge of ©.4nd stopband edge of 0.45
W(w)(D'(w) = _Wt@l(”)) and search for the ex- 5 degregs of flatness a?e set.at= 09271 Convergenr():e is ach?eved after 7
tremal frequencies;. iterations with peak error of 0.013 161.
Until some criterion is satisfied. We use the rela-
tive difference between the maximal error and
the minimal error to test termination of the[0.45r, x]. Constraint of flatness on frequency response is represented
algorithm. The difference is represented byoy the equations of
Q = (max|E(w)| — min|E(w)|)/ max |E(w).

Steps 4 and 5 are repeated udlil< =. We choose i Alwm) = L D(wm) ©)
£ = 0.001 in this paper. dwk dwt "

Step 6. Calculate the coefficient vectar by a = Bw + x.  for & = 0,1,..., K — 1 at a given frequency point,, where K
Finally, obtain the impulse responseg. is called the degrees of flatness. Filters designed with such constraint

Remark: Itis well-known that the trigonometric basis (w) isaset  will obtain good approximation around,,. The results ofi’ = 3 and
of Tchebycheff basis for a suitable interval [10]. However, the transs,, = 0 is shown in Fig. 1. Fig. 2 shows the result &f = 3 and
formed basiss., (w) also forms Tchebycheff set. We provide a proof.,, = 0.2x.
for this property in the Appendix. Example 2: 78th-order linear phase digital differentiators with low-
pass frequency responses will be designed in this example. The lowpass
differentiators have ideal frequency respongedor lower frequency
band and null frequency response on higher band. The lower band edge
In this section, different kinds of FIR filters are to be designed bgf 0.8r and higher edge of 0.85are used for this example. 3 degrees
proposed method. of flatness constraint are setat, = 0 andw,, = /2, respectively.
Example 1: In this example, we design 78th-order linear phaskigs. 3 and 4 show the amplitude responses and associated error func-
lowpass FIR filters with flat passband of [0, @}4and stopband of tions of these two filters.

IV. DESIGN EXAMPLES
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Fig. 3. The amplitude response and associated error function of a 78th-ordig. 5. The amplitude response and associated error function of an 84th-order
FIR lowpass differentiator with passband edge ofi0sd stopband edge of FIR notch filter with notch frequency,, = 0.4%. Convergence is achieved
0.85r. 3 degrees of flatness are set.at= 0. Convergence is achieved after 15after 12 iterations with peak error of 0.002 944.

iterations with peak error of 0.028 057.
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Fig. 6. The amplitude response and associated error function of an 84th-order

Fig. 4. The amplitude response and associated error function of a 78th-ordER notch filter with notch frequency., = 0.4 3 degrees of flatness are set
FIR lowpass differentiator with passband edge ofi0shd stopband edge of at the notch frequency. Convergence is achieved after 12 iterations with peak
0.85r. 3 degrees of flatness are set.at= 7/2. Convergence is achieved aftererror of 0.038 875.

20 iterations with peak error of 0.032 853.

algorithm. A novel technique is derived to convert a linearly con-
strained problem to an equivalent unconstrained one. The key step
is to modify the original desired frequency response such that the
notch filter is expressed by constraint ofCa = b is reduced to a null constraint é€¢a = 0
for the new target frequency response. Then the filter constrained by
Dy (w) = { 1, such constraint can be designed without any constraint by a set of
" 0. bases obtained by transforming the original basis by the null space
’ of C. In the appendix, we show that this set of transformed bases
The frequency., is called the notch frequency. Hence, design of notclorms a Tchebycheff set. This fact indicates that our design is optimal
filter is equivalent to the problem of designing a filter with the dein Tchebycheff sense. Design examples suggest that the proposed
sired frequency responde(w) = 1 and the null constraint ow,,. algorithm converges quickly and stably.
84th-order linear phase FIR notch filters are designed with= 0.47
and different degrees of flatness on the notch frequency. Figs. 5 and 6
show the amplitude responses and associated error function of 1 and 3 i
degrees of flatness, respectively. Let®(w) = (01(w), 62(w), ..., du(w)) and®’(w) = (&1 (w).
Oh(w),y ..., ¢r(w))! satisfies®’(w) = B'®(w) whereB is a matrix
of M x R,R < M.
Property: Ifthe set{¢,(w)} forms a Tchebycheff setin an interval
In this brief, we propose a method to design equiripple linear-phadeand the rank oB is equal taR, {¢!, (w)} also forms a Tchebycheff
FIR filters with linear constraint by carrying out the Reméz exchangsst in X.

Example 3: FIR Notch filters with different null bandwidths will
be designed in this example. The ideal frequency respbnge ) of a

W 76 Wn

W= Wp.

APPENDIX

V. CONCLUSIONS
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Proof: According to [10],{#},(w)} forms a Tchebycheff set if Discretized Quadratic Optimal Control for
and only if the following matrix is nonsingular for every sgt;|i = Continuous-Time Two-Dimensional Systems
1, 2, ... R} of distinct points inX
Jason Sheng-Hong Tsai, Jimshone S. Li, and Leang-San Shieh
Gi(wn) dh(wa) o Ghwn) grond ?
dh(w1)  dhlwa) -+ dh{wr)
P= . (7) Abstract—in this brief, a discretized quadratic optimal control for
: : : continuous-time two-dimensional (2-D) system is newly proposed. It
introduces a new state vector (a new virtual control input) to directly
Pr(wi) Or(w) - Br(wr) convert the original continuous-time 2-D quadratic cost function into a
‘ - decoupled discretized form. As a result, a new virtual discrete-time 2-D
It is obvious to show thaP = B'Q where model with the new virtual control input is constructed for indirectly
finding the desired discretized quadratic optimal regulator for the con-
pr(wi)  di(wz2) - di(wr) tinuous-time 2-D system. The recently developed dynamic programming
in discrete-time 1-D descriptor form is utilized to determine the desired
d2(w1)  @a(w2) -0 P2(wr)

discretized quadratic optimal regulator. This method provides a novel
Q= . . . . . (8) approach for discretized quadratic optimal control of continuous-time
: : : : 2-D systems. An illustrative example is presented to demonstrate the
effectiveness of the proposed procedure.
drm(wi) damlwz) -+ ou(wr)
Index Terms—Digital design, optimal control, Roesser’'s model, two-di-
Because ¢, (w)} forms a Tchebycheff set, the rank 6§ is equal to  mensional systems.
R. Hence both the ranks & and ofB are equal td? and accordingly

P = B'Q is nonsingular.
. INTRODUCTION

REFERENCES The majority of distributed parameter systems, such as smart mate-

[1] T. W. Parks and J. H. McClellan, “Chebyshev approximation for nonfals, smart structure, heat flow, transmission lines, gas absorption, etc.,
recursive digital filters with linear phaseEEE Trans. Circuit Theory are formulated by continuous-time two-dimensional (2-D) framework.
vol. CT-19, pp. 189-194, Mar. 1972. However, little has been accomplished in the development of optimal

[2] —— "A program for the design of linear phase finite impulse responsgn 516 regulators for continuous-time 2-D systems. Motivated by the

filters,” IEEE Trans. Audio Ecectroacoyscol. AU-20, pp. 195-199, LS . L . . L .
Aug. 1972. applications in digital picture processing, seismic data processing,

[3] P. P. Vaidyanathan, “Optimal design of linear-phase FIR digital filter&X-ray image processing, etc., the continuous-time 2-D system is
with very flat passbands and equiripple stopbanis2E Trans. Circuits  often converted into an equivalent discrete-time 2-D system via some

" SY?]L \é%l CkAS-féZAPI% 204_—917“A59Pt- 19I§35-d - thod for ¢ hLta;npproximation methods, such as the first difference method [1] and
. J pak an . Antoniou, generalize emez method for ivhe : : : . :

design of FIR digital filters,"EEE Trans. Circuits Systvol. 37, no. 2, € hlgh order discretization methqd [2] with the a_s_sumptlons that the

pp. 161-174, February 1990. sampl_lng time and th_e sampl_lng dlste_mce are sufficiently small. Then,

[5] M. H. Er, “Designing notch filter with controlled null width,Signal by using the approximate discrete-time 2-D model together with a

Processingvol. 24, no. 3, pp. 319-329, 1991. discrete-time performance index suited to discrete-time 2-D systems,

[6] C.-C. Tseng and S.-C. Pei, “Design of an equiripple FIR notch filtegy5y digital linear quadratic regulators (LQRS) are developed for
using a multiple exchange algorithngignal Processingvol. 75, no. 3, . L . .
pp. 225-237, 1999. optimal digital control of discrete-time 2-D system [1], [3]-[7].

[7] A. V. Oppemheim and R. W. SchafeDiscrete-Time Signal Pro-  Inthis paper, we utilize the well-developed discrete-time 2-D model,
cessing Englewood Cliffs, NJ: Prentice-Hall, 1989. ' recently proposed by the authors [5] together with a continuous-time

[8] L. R. Rabiner and B. GoldTheory and Application of Digital Signal performance index suited to continuous-time 2-D system to design a

Processing Englewood Cliffs, NJ: Prentice-Hall, 1981. . . . . - . )
[9] B.Noble and J. W. DanieApplied Linear Algebra Englewood Cliffs, discretized quadratic optimal regulator for the continuous-time 2-D

NJ: Prentice-Hall, 1988. system. The well-developed discrete-time 2-D model [5] has capability
[10] J.R. RiceThe Approximation of Functions, Volumn 1Reading, MA:  of allowing the use of relatively long sampling time and long sampling
Addison-Wesley, 1964. distance. A new state vector is introduced in this paper to eliminate the

cross terms arisen in discretizing the pre-selected continuous perfor-
mance index. As a result, a new virtual discrete-time 2-D model suited

to the development of digital LQRs for discrete-time 2-D systems can

be established. The recently developed dynamic programming in dis-
crete-time 1-D descriptor form [6] is then applied to the new virtual
discrete-time 2-D model for indirectly determining the desired digital
LQR for the continuous-time 2-D system.

Manuscript received April 3, 2001; revised August 15 2001, September 6
2001, and September 8 2001. This work was supported in part by the National
Science Council of Republic of China under Contract NSC-89-2213-E-006-189
and in part by the Army Research Office under Grant DAAG-55-98-1-0198.
This paper was recommended by Associate Editor G. Chen.

J. S.-H. Tsai and J. S. Li are with the Control System Laboratory, Depart-
ment of Electrical Engineering, National Cheng Kung University, Tainan 701,
Taiwan, R.O.C. (e-mail: shtsai@mail.ncku.edu.tw).

L.-S. Shieh is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77204-4005 USA.

Publisher Item Identifier S 1057-7122(02)00295-7.

1057-7122/02$17.00 © 2002 IEEE



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


