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Design of Equiripple FIR Filters With Constraint Using a
Multiple Exchange Algorithm

Soo-Chang Pei and Peng-Hua Wang

Abstract—We propose a method of designing equiripple linear-phase
FIR filters with linear constraint by carrying out the Remèz exchange al-
gorithm. A novel technique is derived to convert a linearly constrained
problem into an equivalent unconstrained one. We proposed a technique to
modify the original desired frequency response so that the original linear
constraint can be reduced to a simpler one (the null constraint) for the new
target frequency response. The filter with null constraint can be designed
without constraint by a transformation of the original basis functions. The
transformation is represented by a basis for the null space of the constraint.
In this brief, we show that the set of transformed basis also forms a Tcheby-
cheff set. This fact indicates the proposed design is optimal in Tchebycheff
sense. The optimal filter is deigned by Remèz method according to the new
target frequency response in transformed basis. Design examples suggest
that the proposed algorithm converges fast and stably.

Index Terms—Equiripple FIR filter, linear constraint, multiple exchange
algorithm.

I. INTRODUCTION

Linear phase FIR filters with equiripple stopband and passband
are important and have been investigated widely. The most important
method of designing such filters is the Remèz exchange algorithm and
its variants. Based on the alternation theorem, these filters are optimal
in the Tchebycheff or minimax sense [7]. The Parks–McClellan
algorithm makes use of the polynomial interpolation to calculate the
frequency response [1], [2], [7], [8]. In [4] Shpak and Antioniou give
a generalization of the Remèz algorithm to eliminate the transition
band anomalies. Although the Parks–McClellan algorithm is powerful
to design a wide class of FIR filters such as lowpass filters, differen-
tiators, or Hilbert transformers, it is hard to design digital filters with
constraint by this algorithm. In [3] Vaidyanathan presents a method
to design digital filters with flat passbands and equiripple stopbands.
This method carries out the Remèz algorithm based on a special
filter structure that guarantees flat passband. In fact, the requirement
of flat passband could be written as a set of linear equations of
the filter coefficients and solved by our proposed method. Linear
constraint occurs to the other filters. For example, the FIR notch
filter is equivalent to an allpass filter with null constraint at the notch
frequency. In [5] Er presents a least squared design of the notch filter
with controlled null bandwidth. The bandwidth can be controlled by a
set of linear equations established by posing the flat constraint at the
notch frequency. In [6], Tseng and Pei design an equiripple FIR notch
filter by a Remèz-like algorithm. Their proposed algorithm can be
used for efficiently designing single-notch and multiple-notch filters.
However, such filters can be designed with specifications of suitable
target frequency response.

In this brief, we propose an algorithm to design linear phase FIR
filters with constraint. The constraint is represented as a set of linear
equations of the filter coefficients. The original constrained filter design
problem is converted to a new problem without constraint. We carry out
the Remèz exchange algorithm to solve the new problem. In Section II,
we will formulate the filter design problem and put the four types of
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FIR filters in unified framework. The proposed algorithm are described
and discussed in Section III. Examples are provided in Section IV to
demonstrate the proposed method. Conclusions and remarks are given
in Section V. Finally, in the Appendix we provide a proof to show that
a linearly transformed Tchebycheff set still forms a Tchebycheff set.

II. PROBLEM FORMULATION

The frequency response of a causalN th-order FIR filter is expressed
by

H(ej!) =

N

n=0

hne
�jn! (1)

where the impulse responseshn may be complex numbers or real ones.
In this paper, we assume that the impulse responses are real. Since
the frequency responseH(ej!) is a complex-value function, it can be
represented asH(ej!) = ej�(!)A(!) where the amplitude response
A(!) is a real function of! and�(!) is the corresponding phase re-
sponse. If the impulse response sequencehn exhibits symmetric prop-
erties about the indexn, the phase response is a linear function of!,
andH(ej!) is called a linear-phase filter. The impulse responses are
symmetric ifhn = �hN�n for 0 � n � N . Real coefficient linear
phase filters can be classified into four types that depend on symmetry
of hn and on whetherN is even or odd [7]–[8]. For each type, we can
express the amplitude response as

A(!) =

M

m=1

am�m(!) (2)

wheref�m(!)g is a set of appropriate trigonometric functions and
M , determined by filter orderN , is the number of independent
coefficients in the filter. The value ofM and the relationship among
hn, am, and�m(!) are summarized and presented in [6]. We may
express the amplitude response in matrix form. Let the coefficient
vectora = (a1; a2; . . . ; aM )t and the basis vector�(!) = (�1(!),
�2(!); . . . ; �M (!))t where the superscript(�)t denotes the matrix
transposition. The amplitude response in (2) is accordingly expressed
as

A(!) = a
t
�(!) = �

t(!)a: (3)

This matrix form will facilitate the derivation and discussion of our
proposed algorithm.

The filter design problem is to find a set of impulse responsefhng
such that the frequency responseH(ej!) is approximated to a given
frequency response. That is, to find the coefficientsam in (2) such that
the amplitude responseA(!) is close to a given amplitude response
D(!). If the performance of the filter has to be controlled precisely
for obtaining good approximation within some frequency bands or at
some frequency points, the coefficientsam may be restricted by linear
constraint. The linear constraint could be expressed in matrix form and
written as

Ca = b (4)

where theK �M constraint matrixC representsK linear equations
of unknownsam. In the following section, a multiple change algorithm
is used for solving the filter design problem.

III. FILTER DESIGN WITH CONSTRAINT

In this section, we will describe the proposed algorithm to solve the
filter design problem with linear constraint on the filter coefficients.
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Let ~a = a� x wherex is a vector that satisfiesCx = b. A choice of
x isx = C

+
b whichC+ is the pseudo inverse ofC [9]. LetD0(!) =

D(!)�xt�(!). It is easy for the following error function to show that
E(!) = D(!)�at�(!) =D0(!)�~at�(!). The constraint becomes
C~a = Ca �Cx = 0. That is, the original desired responseD(!) is
equivalent to a new one ofD0(!) with a new constraintC~a = 0.

The next key step is to transform the constrained problem to an un-
constrained one. Let theM �R matrixB denote the null space ofC.
Suppose~a = Bw wherew = (w1; w2; . . . ; wR)

t is a new set un-
knowns to be determined, the frequency response can be represented
by ~at�(!) = w

t
B
t
�(!) = w

t
�

0(!) where�0(!) = B
t
�(!)

represents a new set of bases. Based on this transformation, the filter
design problem is equivalent to finding the optimalw using�0(!).
Moreover, sinceB represents a null space ofC, it is obvious to show
thatC~a = CBw = 0. Hence, we convert the original problem into
an new one with desired frequency responseD0(!) but without any
constraint onwn.

The equiripple filter design problem for our new desired response
D0(!) is to find a set of frequencies!i, i = 1; 2; . . . ; R + 1, and a
set of coefficientswj , j = 1; 2; . . . ; R + 1 such that!1 < !2 <
� � � < !R+1 and

W (!i)(D
0(!i)�w

t
�

0(!i)) = (�1)i� (5)

for i = 1; 2; . . . ; R + 1.
According to the former description, we propose a multiple ex-

change algorithm to design the equiripple linear-phase FIR filters as
follows.

Step 1. Specify the filter orderN , the type of filter, the desired
frequency responseD(!), and the weighting function
W (!). CalculateM according to the filter type. Rep-
resent constraint by constraint matrixC.

Step 2. Calculatex andD0(!). Calculate the null spaceB of
C. Evaluate the new basis�0(!).

Step 3. Obtain a set of initial extremal frequencies. One
choice is to select the frequencies evenly on the
passbands and stopbands.

Repeat
Step 4. Calculate the intermediate filter coefficientswj and

peak error� by solving (5).
Step 5. Calculate the intermediate error functionE(!) =

W (!)(D0(!) � w
t
�

0(!)) and search for the ex-
tremal frequencies!i.

Until some criterion is satisfied. We use the rela-
tive difference between the maximal error and
the minimal error to test termination of the
algorithm. The difference is represented by
Q = (max jE(!)j � min jE(!)j)=max jE(!).
Steps 4 and 5 are repeated untilQ < ". We choose
" = 0:001 in this paper.

Step 6. Calculate the coefficient vectora by a = Bw + x.
Finally, obtain the impulse responsehn.

Remark: It is well-known that the trigonometric basis�n(!) is a set
of Tchebycheff basis for a suitable interval [10]. However, the trans-
formed basis�0

n(!) also forms Tchebycheff set. We provide a proof
for this property in the Appendix.

IV. DESIGN EXAMPLES

In this section, different kinds of FIR filters are to be designed by
proposed method.

Example 1: In this example, we design 78th-order linear phase
lowpass FIR filters with flat passband of [0, 0.4�] and stopband of

Fig. 1. The amplitude response and associated error function of a 78th-order
FIR lowpass filter with passband edge of 0.4� and stopband edge of 0.45�. 3
degrees of flatness are set at! = 0. Convergence is achieved after 9 iterations
with peak error of 0.010 226.

Fig. 2. The amplitude response and associated error function of a 78th-order
FIR lowpass filter with passband edge of 0.4� and stopband edge of 0.45�.
3 degrees of flatness are set at! = 0:2�. Convergence is achieved after 7
iterations with peak error of 0.013 161.

[0.45�; �]. Constraint of flatness on frequency response is represented
by the equations of

dk

d!k
A(!m) =

dk

d!k
D(!m) (6)

for k = 0; 1; . . . ; K � 1 at a given frequency point!m whereK
is called the degrees of flatness. Filters designed with such constraint
will obtain good approximation around!m. The results ofK = 3 and
!m = 0 is shown in Fig. 1. Fig. 2 shows the result ofK = 3 and
!m = 0:2�.

Example 2: 78th-order linear phase digital differentiators with low-
pass frequency responses will be designed in this example. The lowpass
differentiators have ideal frequency responsesj! for lower frequency
band and null frequency response on higher band. The lower band edge
of 0.8� and higher edge of 0.85� are used for this example. 3 degrees
of flatness constraint are set at!m = 0 and!m = �/2, respectively.
Figs. 3 and 4 show the amplitude responses and associated error func-
tions of these two filters.
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Fig. 3. The amplitude response and associated error function of a 78th-order
FIR lowpass differentiator with passband edge of 0.8� and stopband edge of
0.85�. 3 degrees of flatness are set at! = 0. Convergence is achieved after 15
iterations with peak error of 0.028 057.

Fig. 4. The amplitude response and associated error function of a 78th-order
FIR lowpass differentiator with passband edge of 0.8� and stopband edge of
0.85�. 3 degrees of flatness are set at! = �/2. Convergence is achieved after
20 iterations with peak error of 0.032 853.

Example 3: FIR Notch filters with different null bandwidths will
be designed in this example. The ideal frequency responseDn(!) of a
notch filter is expressed by

Dn(!) =
1; ! 6= !n

0; ! = !n.

The frequency!n is called the notch frequency. Hence, design of notch
filter is equivalent to the problem of designing a filter with the de-
sired frequency responseD(!) = 1 and the null constraint on!n.
84th-order linear phase FIR notch filters are designed with!n = 0:4�
and different degrees of flatness on the notch frequency. Figs. 5 and 6
show the amplitude responses and associated error function of 1 and 3
degrees of flatness, respectively.

V. CONCLUSIONS

In this brief, we propose a method to design equiripple linear-phase
FIR filters with linear constraint by carrying out the Remèz exchanges

Fig. 5. The amplitude response and associated error function of an 84th-order
FIR notch filter with notch frequency! = 0:4�. Convergence is achieved
after 12 iterations with peak error of 0.002 944.

Fig. 6. The amplitude response and associated error function of an 84th-order
FIR notch filter with notch frequency! = 0:4�. 3 degrees of flatness are set
at the notch frequency. Convergence is achieved after 12 iterations with peak
error of 0.038 875.

algorithm. A novel technique is derived to convert a linearly con-
strained problem to an equivalent unconstrained one. The key step
is to modify the original desired frequency response such that the
constraint ofCa = b is reduced to a null constraint ofC~a = 0

for the new target frequency response. Then the filter constrained by
such constraint can be designed without any constraint by a set of
bases obtained by transforming the original basis by the null space
of C. In the appendix, we show that this set of transformed bases
forms a Tchebycheff set. This fact indicates that our design is optimal
in Tchebycheff sense. Design examples suggest that the proposed
algorithm converges quickly and stably.

APPENDIX

Let�(!) = (�1(!); �2(!); . . . ; �M (!))t and�0(!) = (�0

1(!);
�0

2(!); . . . ; �
0

R(!))
t satisfies�0(!) = B

t
�(!) whereB is a matrix

of M � R, R � M .
Property: If the setf�n(!)g forms a Tchebycheff set in an interval

X and the rank ofB is equal toR, f�0

n(!)g also forms a Tchebycheff
set inX.
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Proof: According to [10],f�0

n(!)g forms a Tchebycheff set if
and only if the following matrix is nonsingular for every setf!iji =
1; 2; . . .Rg of distinct points inX

P =

�0

1(!1) �0

1(!2) � � � �0

1(!R)

�0

2(!1) �0

2(!2) � � � �0

2(!R)

...
...

. . .
...

�0

R(!1) �0

R(!2) � � � �0

R(!R)

: (7)

It is obvious to show thatP = BtQ where

Q =

�1(!1) �1(!2) � � � �1(!R)

�2(!1) �2(!2) � � � �2(!R)

...
...

. . .
...

�M (!1) �M(!2) � � � �M(!R)

: (8)

Because {�n(!)} forms a Tchebycheff set, the rank ofQ is equal to
R. Hence both the ranks ofP and ofB are equal toR and accordingly
P = BtQ is nonsingular.
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Discretized Quadratic Optimal Control for
Continuous-Time Two-Dimensional Systems

Jason Sheng-Hong Tsai, Jimshone S. Li, and Leang-San Shieh

Abstract—In this brief, a discretized quadratic optimal control for
continuous-time two-dimensional (2-D) system is newly proposed. It
introduces a new state vector (a new virtual control input) to directly
convert the original continuous-time 2-D quadratic cost function into a
decoupled discretized form. As a result, a new virtual discrete-time 2-D
model with the new virtual control input is constructed for indirectly
finding the desired discretized quadratic optimal regulator for the con-
tinuous-time 2-D system. The recently developed dynamic programming
in discrete-time 1-D descriptor form is utilized to determine the desired
discretized quadratic optimal regulator. This method provides a novel
approach for discretized quadratic optimal control of continuous-time
2-D systems. An illustrative example is presented to demonstrate the
effectiveness of the proposed procedure.

Index Terms—Digital design, optimal control, Roesser’s model, two-di-
mensional systems.

I. INTRODUCTION

The majority of distributed parameter systems, such as smart mate-
rials, smart structure, heat flow, transmission lines, gas absorption, etc.,
are formulated by continuous-time two-dimensional (2-D) framework.
However, little has been accomplished in the development of optimal
analog regulators for continuous-time 2-D systems. Motivated by the
applications in digital picture processing, seismic data processing,
X-ray image processing, etc., the continuous-time 2-D system is
often converted into an equivalent discrete-time 2-D system via some
approximation methods, such as the first difference method [1] and
the high-order discretization method [2] with the assumptions that the
sampling time and the sampling distance are sufficiently small. Then,
by using the approximate discrete-time 2-D model together with a
discrete-time performance index suited to discrete-time 2-D systems,
many digital linear quadratic regulators (LQRs) are developed for
optimal digital control of discrete-time 2-D system [1], [3]–[7].

In this paper, we utilize the well-developed discrete-time 2-D model,
recently proposed by the authors [5] together with a continuous-time
performance index suited to continuous-time 2-D system to design a
discretized quadratic optimal regulator for the continuous-time 2-D
system. The well-developed discrete-time 2-D model [5] has capability
of allowing the use of relatively long sampling time and long sampling
distance. A new state vector is introduced in this paper to eliminate the
cross terms arisen in discretizing the pre-selected continuous perfor-
mance index. As a result, a new virtual discrete-time 2-D model suited
to the development of digital LQRs for discrete-time 2-D systems can
be established. The recently developed dynamic programming in dis-
crete-time 1-D descriptor form [6] is then applied to the new virtual
discrete-time 2-D model for indirectly determining the desired digital
LQR for the continuous-time 2-D system.
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