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Abstract 
This paper proposes two types of new auziliary 

ory. The first t y p e  of the auxiliary matching store 
achieves high matching rate b y  combining the LRU 
replacement algorithm and a simple match structure 
together. The second one achieves high match rate b y  
controlling strictly the number of active processes with 
an explicit hardware. Owing to some special character- 
istics of dynamic dataflow computing, this temporary 
storage must be designed based on the following prin- 
ciples: (a The number of the active processes must be 
limited. A) The related instructions must be arranged 
nearby. (c )  The replacement of the match slot must 
be deterministic. 

can be applied to dynam- 
a frame-stnrctured mem- 

1 Introduction 
The most recent generation of dataflow machines 

( e . g . ,  MIT’s Monsoon, ETL’s EM-4[2], and Sandia’s 
Epsilon-2 [3]) have shown how operands match can be 
accomplished with a simple hardware structure in two 
machine cycles. In Monsoon, the explicit storage for 
operands match is decided by the complier. It elim- 
inates the associative matching and implicit storage 
allocation which are used by previous work [4]. How- 
ever, this mechanism still incurs some pipeline bub- 
bles. For each dyadic (two-operands) instruction, the 
memory slot for matching must be accessed twice. On- 
ly the second memory access can get the instruction 
fired because the first one will do nothing and leave 
the pipeline a bubble. As shown in [l], the possibility 
of the pipeline bubbles is 28.75%. 

From the preceding discussion, it is quite obvious 
that reducing the pipeline bubbles needs an addition- 
al unit to share the burden of matching operations of 
the CPU. Here we use a fundamental property of the 
program behavior to gain the speedup. The funda- 
mental property is the locality.  We can futher divide 
the locality into two aspects; spatial and temporal[5]. 
Thoreson et al.[6] proposed models of instruction ref- 
erence patterns in dataflow programs, and suggested 
potential spatial and temporal localities in dataflow 
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environments. Tokoro et uZ.[7] presented a definition 
of the working set for dataflow machines based on si- 
multaneous execution and the principle of (temporal) 
locality, and evaluated various combinations of fetch 
policies and replacement policies. 

In dynamic dataflow computing, data  dependency 
produces potential spatial localities. Specially, for ef- 
ficiency, there are now many researches trying to get 
a sequence of instructions executed in order, even in 
the dataflow environment[& 2, 31 which further en- 
hances the potential spatial localities. However, tem- 
poral locality is not produced in the frame-structured 
operands memory. This is because an  activity frame 
is allocated for each iteration of a loop or for a recur- 
rence of a recurrent construct. In other words, a frame 
corresponds to  a code block (process) such ,as one it- 
eration of a loop or a function call. In the traditional 
imperative language, temporary locality comes from 
iterations of a loop or recalls of a function by using 
the same storages. However, in dynamic dataflow ma- 
chine like Monsoon, many active processes can exist 
concurrently, either active or inactive therefore even 
spatial localities cannot be assured. 

The study [lo] on the cache memory for data  flow 
machines is quite similar to our work. Although the 
ideas were applied on the dataflow cache implementa- 
tion, many ideas can also be applied to the matching 
store. In our method, we use a less complicated mech- 
anism and a simpler structure to  implement. In the 
first type of the auxiliary matching store, we uses an 
easy replacement algorithm, a simple structure and 
several prioritized token queues. In this type of the 
matching store, we assume that  the resource manag- 
er is capable of controlling the number of the activity 
frame dispatched. Our architecture can tolerate a s- 
light variance in the number of the active processes. 

The circuits of the second type are a little bit com- 
plicated. There is an explicit circuit to  control the 
number of active processes, several matching blocks 
and prioritized token queue. In this type, we assume 
the instructions for interprocess parameter/return- 
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value passing (linking instructions) have a special field 
to indicate if they are to be pushed into the control- 
ling process queue (CPQ). We will present the rest 
of paper as follows. In section 2, we will take a look 
at Monsoon. In section 3, we will describe the design 
principles of an AMS in the dynamic dataflow environ- 
ment. In section 4, our architectures will be presented 
in detail. In section 5, we will make a conclusion. 

2 Monsoon 
In order to get a general picture, dynamic dataflow 

execution will be described first, then, the whole ar- 
chitecture of Monsoon will be presented. 

2.1  Dynamic Dataflow Execution 
Dynamic dataflow execution is characterized by 

three properties: (1) the program presentation is a 
partial order of essential dependences, (2) instruc- 
tions are scheduled based on availability of operand- 
s, and (3) iteration and recursion are supported in 
full generality. Dynamic dataflow execution is for- 
malized as rules for propagating tagged data token- 
s through dataflow graphs[ll]. A node fires when 
tokens with identical tags are present on the input 
arcs and produces result tokens on the output arc- 
s. The tagged-token instruction scheduling paradig- 
m supports a nonblocking processor pipeline that can 
overlap instructions with closely related or complete- 
ly unrelated computations. Thus, parallelism can 
be exploited at all levels. It also provides a grace- 
ful means of integrating asynchronous and poten- 
tially out-of-order memory response and synchroniza- 
tion events into the normal flow of execution, allow- 
ing communication latency to be masked by excess 
parallelism[l5]. Tag ed-token dataflow architectures, 
developed at MIT[4f Manchester University[l2], and 
the Electrotechnical Laboratory[l3, 141, approximate 
this model quite closely. In these machines, the 
dataflow firing rule is realized by a sophisticated hard- 
ware matching store, essentially a large associative 
memory. When a token arrives a t  a processor, the 
tag it carries is compared against the tags of tokens 
in the matching store. If no match is found, the in- 
coming token is added to the store. If one is found, 
the matching token is extracted and the corresponding 
instruction is enabled for execution, eventually pro- 
ducing new tagged tokens. The tag serves as a name 
for the synchronization point of two values destined 
for the same instance of the same instruction. Each 
loop iteration or function invocation must be provid- 
ed with a new set of synchronization names. However, 
the matching operation places considerable complexi- 
ty on the critical path of instruction processing. 

Owing to the matchingstore problemin the tagged- 
token architecture, it inspires the development of the 
ETS (Explicit Token Store). The ETS approach shift- 
s much of the low-level storage management burden 
associated with dataflow execution to the complier in 
order to simplify the hardware system. The arcs in 
the code block, (i.e., the local variables of the func- 
tion) are statically mapped onto slots in the frame by 
coloring the graph[l7]. Each instruction specifies the 

Figure 1: Explicit dyadic matching operation. 

Token p - r - q ~ l  
I TAG 

Figure 2: The format of the token. 

location of its operands, as a simple effective address 
calculation, so no matching is required. When a code 
block is invoked, the caller dynamically allocates an 
activation frame, thereby providing local storage for 
the activation. 

Each frame slot has associated presence bits speci- 
fying the disposition of the slot. The dynamic dataflow 
firing rule is realized by a simple state transition on 
these presence bits, as illustrated in Figure 1. At time 
t, the first token with data a arrives at the address 
FP+x. The slot is found empty, so the value on the 
token is deposited in the slot (making it full) and no 
further processing of the instruction takes place. At 
time t+n, the second token with data b arrives and the 
slot is full, so the value is extracted (leaving the slot 
empty) and the corresponding instruction, sub, exe- 
cutes and produce one or more new tokens. In general, 
the order of arrival of tokens is indeterminate, so the 
first token may be destined for either port. Initially, 
all slots in a frame are empty and upon completion of 
the activation they will return to that state. 
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Figure 3: The Monsoon pipeline. 

2.2 Architecture 
Monsoon is a general purpose multiprocessors sys- 

tem which incorporates an explicit token store. A 
Monsoon machine comprises a collection of highly 
pipeline processing elements (PE’s) connected via a 
multistage packet switch network to each other and 
to a set of interleaved memory modules (IS’S) that 
support I-structure storage[l6] as well as imperative 
storage. Messages in the interprocessor network are 
tokens and request tokens -precisely the same format 
used within the PE and IS. Thus, the hardware makes 
no distinction between interprocessor and intraproces- 
sor communication. 

2.3 Token 
The Monsoon tags and values are 72-bit quantities 

comprising 8 bits of hardware type information and 
64 bits of data, as shown in Figure 2. A token is a 
tag-value pair, 144 bits in size. A value can be a 6 4  
bit signed integer, an IEEE double precision floating- 
point number, a bit field or a boolean, a data memory 
pointer, of course, a tag. A tag encodes two pointers: 
a pointer to the next instruction to execute, IP, and a 
pointer to the activation frame, FP, that provides the 
context in which the next instruction is executed. On 
Monsoon, a given activation frame resides entirely on 
a single processing element. 

2.4 Pipeline Operation 

pipeline stages. 
pipeline every cycle. 

Figure 3 is a detailed view of the eight-processor 
A token can be inserted into the 

After a delay of eight cycles, 

zero, one, or two tokens emerge from the bottom. 

3 Design Principle 
In a dynamic machine like Monsoon, many code 

blocks can exist concurrently, either active or inactive 
therefore even spatial localities cannot be assured. To 
cope with this problem, there are several design prin- 
ciples to be followed. Prior to  discussing the details 
of design principles, several basic ideas and possible 
implementations of the auxiliary matching stores are 
presented. 

The first idea is instruction space. Here, we build a 
control flow model which constructs a traditional pro- 
gram or a d a t d o w  graph which constructs a dataflow 
program as a continuous space. Each instruction will 
occupy one piece of the space called a slot. A pro- 
gram can comprise many subprograms subroutines). 
For convenience, a subprogram can be a 6 breviated as 
PI see Figure 4. 

In this paper, we consider a process as a code block 
and vice versa, where a process could be a subroutine 
or an iteration of a loop. 

The primary difference of the working space, gray 
areas shown in Figure 4, between traditional program 
s and dataflow program is that  the working space of 
traditional programs is continuous while in dataflow 
programs is fragmentary as shown in Figure 4. If the 
loop is considered, the situation of the working space 
of dataflow programs will become more complicated, 
as shown in Figure 5. In Figure 5, P3 corresponds to 
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Figure 4: The instruction space. 
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Figure 5: The loop mapping in dynamic dataflow pro- 
gram. 

- ~ ~ c u u l  
ilamnion poi- 

Figure 6: Several implementations of auxiliary match- 
ing store. 

a loop consisting of i iterations. Each iteration can 
have different working space. 

Figure 6 shows four types of the auxiliary match- 
ing store (AMs). An access into a slot of the AMS is 
addressed by the instruction pointer. 

In TYPE 1, the lower part of an instruction point- 
er is used to  access the AMS, in which each slot is 
mapped into an address and considered as a set. 
In TYPE 2, the lower part of an instruction point- 
er is used to  access the AMS but one set comprises 
n slots. For example, in Figure 6, n is equal to 4. 
All tokens with the same low part of an instruc- 
tion pointer will be mapped to the same net. 
In TYPE 3, the middle part of an instruction 
pointer is used to access a set and all tokens with 
the same range of the low part of an instruction 
pointer will be mapped to the same set. In Figure 
6, the lower addresses 0 to  3 are mapped to set 
0. 
In TYPE 4, the AMS is implemented as a fully 
associative memory. That is, an instruction can 
be stored in any slot of the AMs. 

Based on the behavior of dynamic programs and 
the limitation of an AMS space, several design prin- 
ciples must be followed. So, the efficiency of an AMS 
can be achieved. Some design principles are listed as 
follows: 

0 The number of active code blocks must be limited. 

0 The related instructions must be arranged nearby. 

0 The replacement of the matching slot must be 
deterministic. 
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Figure 7: The relation between iterations and the s- 
pace of the AMs. 

3.1 The number of active code blocks 

A program spends most of the executing time in 
loops and function calls. When a loop is processed, 
many iterations can exist concurrently. All these iter- 
ations have the same IP (instruction pointer). 

must be limited. 

In TYPE 1, a set consists of one slot and a slot can 
only hold a token. For a loop, all of the iterations will 
be mapped to the same area. If too many iterations 
are active, spillings will happen frequently because to- 
kens belonging to different iterations but to the same 
IP possibly enter the AMS simultanously. Figure 7 
illustrates the relation between iterations and the AM- 
S. In TYPE 2, one set consists of n slots and different 
IPS are mapped to different sets. Therefore, we can 
roughly estimate that n iterations can be active con- 
currently and the spilling rate will not be high. But 
once the number of active iterations exceeds n, then, 
the spilling rate will raise up because more instruc- 
tions compete for the n slots in the AMS. When more 
than one iteration are active, we can predicate that 
TYPE 3 has less spilling rate than TYPE 1 does. In 
TYPE 4, there is not fixed relation between IP  and 
the slot in a set. Therefore, it will have the greatest 
ability in accumulation of the number of active itera- 
tions among the four types. 

After investigating the relation between the 
iterationsa and the space of the AMs. We conclude 
that the more code blocks are active, the more miss- 
ings happen. 

To limit the number of active code blocks, some ap- 
proaches can be applied. The first approach is to limit 
the number of iterations in a loop to K [MI. Assume 
that the number of active iterations is approximately 
equal to the number of active code blocks. The second 
approach is that the resource manager puts the limi- 
tation on the maximum number of the activity frames 
dispatched. The last approach is to use explicit hard- 
wares controlling the number of active code blocks. 

'Here, we make the assumption that the instruction space of 
a loop is equal to the size of the AMS so different instructions 
a n  mapped to different slots of the AMS with the exception of 
the ones with the same destinations. 

'Each iteration can be considered as a code block or a 
process. 

(b) 

Figure 8: The illustration of nearby arrangement. 

3.2 The related instructions must be ar- 
ranged nearby. 

Addresses of instructions in dataflow program can 
be assigned randomly without affecting the result of 
executions, because instructions are fired by the da- 
ta synchronization principle. This property should be 
exploited to enhance localities and to reduce missing 
rate. 

In TYPE 1 of the AMs, if the related instructions 
arranged like (a of Figure 8, it is perfectly possible 

eration of other instructions, the (a) arrangement can 
be tolerated because of R slots in one set. However, 
the (b) of Figure 8 will map A and B into different 
sets. In TYPE 3, the (a) and (b  arrangements cause 

the first set. When processes concurrently executed 
are considered, we will favour TYPE 2 because it can 
tolerate more concurrent iterations. In TYPE 4, the 
(a) and (b) arrangements make no difference. 

After examining the relation between instruction 
sequence and spilling, we are concerned how instruc- 
tions can be arranged nearby. Two properties are dis- 
cussed first. 

for a spilling to  h appen. In TYPE 2, without consid- 

the same result. Both (a) and ( t ) map A and B into 

0 Dlevel[7]. 

0 Elevel[7]. 

In fact, a dataflow program is a dataflow graph. An 
instruction can be considered as a node in the graph. 
Then, D-level is the minimum number of spanning 
from the root level. The Dlevel of an instruction can 
be referred to as the level (or timing) at which at least 
one of its inputs becomes available. Elevel is the max- 
imum number of spanning from the root level. The 
Elevel of an instruction can be referred to  as the level 
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k : is equal to the size of the frame store. 
pb : presence bit. 
uc : usage count. 
cf : content field 

set k 

A u s  

- : means the critical pnth. (,I;) : means the bnsic block. 

IY : means nn instruction. 

Figure 9: The waiting time on the critical path. 

IP 

Figure 10: The mapping of the critical blocks. 

Figure 11: The FOSS structure. 

or timing) at which all of its inputs become available. I he Dlevel and Elevel algorithms are shown in a p  
pendix A . l  and appendix A.2. tuai t ing is defined as 
the difference between Elevel and Dlevel. 

tWaiting=Elevel - Dlevel. 

In Figure 9, if an instruction is in basic block 4, its 
waiting time will have two possible values because of 
the two possible paths from block 1 to  block 4. Here, 
the one passing through the critical path is our choice. 

We assume that twaiting is quite small. By setting 
the node addresses in ascending order of Dlevel along 
the critical path, spatial localities can be enhanced. 
For example, in Figure 10, we list two possible assign- 
ments of the data flow graph in Figure 9. We prefer 
part (b to  part (a because the path 1-3-4 has higher 

blocks which will be executed frequently are assigned 
together, then, spilling will not happen frequently. 

possibidty to be t a  k en than the path 1-24. In (b) , the 

3.3 The replacement of the AMS must be 
deterministic. 

The objective of the replacement is to spill out i- 
nactive code blocks and to hold active code blocks. 
Several approaches are provided as follows: 

LRU (Least Recently Used). 

0 LIFO (Last-In First-out). 

maximum t, siting. 

Based on three reasons, LRU is chosen when a to- 
ken has been staying in a slot for a long time. First, 
the partner is the result of a remote request. We as- 
sume the latency is quite long so that it is not worth 
waiting for response. Second, the partner has been 
thrown out of the AMS because of spilling or other 
reasons so it is impossible to be matched. Third, the 
code block including this token has been temporarily 
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Figure 12: Monsoon architecture and FOSS. 

inactive. In these three cases, old token should be sub- 
stituted by a new one. LIFO can be applied in which 
a token has been waiting for a long time so its partner 
should arrive soon or in which the number of active 
code blocks will not increase. Why will LIFO not in- 
crease the number of active code blocks? Because in 
our design a token thrown out of the AMS means that 
the block including this token will not be active for 
a while. Therefore, if a last-in token is thrown out 
first, the corresponding code block will be inactive 
so that the number of active code blocks will not in- 
crease. The token with maximum twcr;ting should be 
spilled out because it wastes too much time in the slot 
and still cannot be matched. To spill out the token 
with maximum ttue;~ing, we need some extra circuits 
to support this function. 

4 Architecture 
In this section, there are two kind of AMS (auxil- 

iary matching store) to be discussed. Both of them are 
used to reduce the number of pipeline bubbles. The 
first one called (FOSS) has a simple structure where- 
as the second one called (SOCS) has a complicated 
structure. Both kinds of AMS can limit the number 
of active code blocks but the first one needs the sup- 
port of the resource manager. 

'If a tokm is held in the AMS, the code block including that 
token is active. 

4.1 FOSS 
In a slot of AMs, there are three fields, PB, UC, 

and CF, respectively, as shown in Figure 11. Presence 
bits are used to  indicate whether a slot ia full or not. 
Initially, PB (presence bits is set to empty because the 
token will be spilled out. h h e n  a token is put into a 
slot, its presence bit will be set to fuZf.  After matching 
or spilling happens and a token is spilled out, presence 
bit will be set to empty. Initially, UC (usage count) 
will be set to 0 which means no token is in that slot, 
while 1 means this token is the newest one. When a 
token enters, the UC associated with that slot will be 
set to 1 and the others will be increased by 1 except 
those ones with UC equal to 0. In fact, UC record- 
s how long a token has been staying in a slot. UC 
is used to  support the LRU or FILO algorithm. CF 
content field) is employed to hold a token. In our 6 esign, there are eight slots in a set because of eight 

stages in the pipeline of Monsoon. To fill up the eight 
stages of the pipeline, eight code blocks are allowed 
to  be active. Ideally, each code block can occupy one 
stage. Therefore, there are eight slots in a set. The 
siee of the AMS is equal to the size of the activity 
frame, k. That is because at  any time the number of 
tokens which needs to match will not exceed the sire 
of the activity frame. 

When two result tokens are produced, shown in Fig- 
ure 12, the one with IP+S) index will be sent into the 

of the frame store, and S is the offset between the cur- 
rent instruction and the destination), and the other 
with (IP+l) index directly passes into the pipeline. 

set of AMS indexed b y IP mod k (where k is the size 
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Figure 13: 

auxiliary matching store 

The illustration of in, out and passing. 

The token with (IP+l)  index always has higher pri- 
ority than the one coming from the matchin token 
queue (MTQ) or the unmatching token queue $UTQ). 
Similarly, the priority of MTQ is higher than UTQ. 

After the access address is computed, a token ia 
compared to  the slots with presence bit full. If match 
happens, the result package is put into MTQ. Other- 
wise, find an empty slot in the set to save this token. 
If eight slots are all full, then, spilling action become 
true. When both of MTQ and UTQ are empty, the 
tokens in AMS will be put into UTQ. 

By the assignment of priority and the usage of the 
LRU algorithm, our AMS can automatically limit the 
number of active code blocks and keep the code blocks 
active longer. By assigning the token with IP+1 index 
to the highest priority, we make sure that the fired in- 
structions are more closely related and the same code 
block can be active longer. The token coming from 
MTQ has the second highest priority because we wan- 
t to assure that there are less pipeline bubbles and less 
new active code blocks. By assignment of the lowest 
priority to  a token from UTQ, the number of active 
code blocks can be limited. 

When spilling happens, it means that the number 
of the active code blocks exceeds the limitation. So 
one inactive code block should be thrown out of the 
AMs4 and it would not get active again soon. If many 
code blocks become active or inactive shortly and fre- 
quently, the locality will be dramatically destroyed. 

The operations of the AMS are expressed below. 
We use the grammar of C language to define each for- 
mula. 

The condition for in, out and passing are described 
as following, see Figure 13 

'In practice, only one token will be thrownout of the match- 
ing slot. If we can make sure that this token will not be d i v e  
in the short time, then, in turn, it will limit the other toke- 
belonging to the same block to be fired because of the data de- 
pendency. In consequence, throwing out a token can be thought 
of as throwing out a block. 

in 

out if(matchl1 spillll fresh) 

if( MTQ&&UTQ!=empty)&&(token.type== 
dyadic) 

passing 
if( (MTQ&&UTQ==Empt y ) I I (token.type== 

monadic), 

The action of the auxiliary matching store E {match, 
spill, fill, fresh}. 

match 3 j E set i) slot PB==full) 
3 (set{i).hot(j).gk.FP==token.FP) 
then 
out-to-MTQ(set(i).slot(j).CF, token); 
set i slot .PB=empty; 
set ti{ :slot 81. u c = o ;  

3 (set(i).s I' ot(j).CF.FP!=token.FP) 
then 
if(set(i).slot(j).UC==MAX) 
out-to-UTQ(set(i).slot(j).CF). 

fill 3 j E set(i).slot(j).PB==empty 
then 
set 1 slot .CF=token; 
set&] :slo$]. PB=full; 

V i, j 3 set(i).slot(j).PB==full 
then 
out-to-UTQ set(i).slot(j).CF); 

Here, i = IP mod k, k = activity frame size, j € ( l ,  2, 

out-to-MTQ is a function which puts its pair of p" 
rameters into MTQ. 
out-to-UTQ is a function which puts its parameter in- 
to UTQ. 
We assume that it is possible t o  know in advance that 
a token will be sent to  a dyadic or a monodic instruc- 
tion. Using the combination of the LRU algorithm 
and the assignment of the priority to the code blocks 
we can control the number of active code blocks and 
keep the locality. 
4.2 SOCS 

As shown in Figure 14, the SOCS architecture is 
very similar to  FOSS. However, the eight slots of a set 
in FOSS are divided into eight AMS banks. One bank 
is for a code block. A token that  belongs to  the s a m e  
code block will be put in the same AMS bank. Every 
bank has k sets and k slots where each set compris- 
es one slot. Each slot is same as the one in FOSS 
with exception of UC. In SOCS, each slot only has t- 
wo fields, PB and CF. ITB (instruction transfer buffer 

T C  (token count . VB specifies the slot of ITB full or 
empty. A slot o d the ITB is allocated to  an activity 

spill V j E  (set(i .slot(j).PB==full) 

fresh 

set (i).slot (j). b B=empty; 

* * e, 8). 

has three fields VB (valid bit), FP (frame pointer) an d 
6 k  is equal to the size of the activity frame siee. 
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T O W  - 

Figure 14: The structure of the SOCS 

frame, Initially, VB is available and set to empty. If a 
slot is assigned to a code block6, then, VB associated 
with that slot will be set to full. TC (token count) 
serves as a counter to count how many instructions in 
an AMS bank. Whenever a token accesses an AMS 
bank, then, the T C  corresponding to that bank will 
be increased by 1. After spilling, matching or refresh- 
ing happens, T C  will be decreased. The mechanism 
is that every token sent to MTQ or UTQ will pass 
through TCD (token count decrementor), and then 
TCD can decrease T C  by 1 or 2. 

When a token is produced, it7 needs to be put into 
AMS banks. First, its F P  will be compared against 
the FPs in the slots of the ITB, which VB are equal 
to full. If the equivalent one is found, this token will 
be put into the corresponding AMs bank, and then 
the corresponding TC increased by 1. Otherwise, find 
an available slot and then put the FP of the token into 
its F P  field and set its VB field to full and increase 
the TC field by 1, and then put this token into the 
corresponding AMS bank. If there is no available slot, 
this token will be deposited into the CPQ (controlling 
process queue). 

After this token is put into the AMS bank, in turn, 
the IP of this token is used to access4he slot of the 
AMS bank addressed by IP mod k. If another token 
has the same IPS, then match occurs and the result 
package will be sent to the MTQ. TCD will decrease 
the corresponding T C  by 2. If no one is found, sp-illing 
will happen and the one originally in the slot will be 
sent to UTQ. Also, TCD will decrease the correspond- 
ing TC by 1. If no other token in the slot, this token 
will be deposited into the slot and PB (presence bit), 

61t means that the FP field of the slot is allocated a frame 

'It is not the token with IP+1 index. 
pointer. 
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originally empty, will be set to full. If a T C  becomes 
0, then a token will be taken from the CPQ, in turn, 
the process is alike to  a new token put into ITB. When 
a token is taken from the CPQ, in effect, a new code 
block becomes active. In the opposite, if a token is 
put into CPQ, one code block is inactive. 

The CPQ is employed to control the number of ac- 
tive code blocks. If there are no available slots in ITB, 
it means that the number of the active code blocks is 
exactly eight which is the maximum number of code 
blocks allowed to  be active. Therefore, if a token is 
going to enter the AMs,  it will be excluded into the 
CPQ. When a token is sent to the CPQ, it denotes that 
a code block is suspended. Only instructions about in- 
terblock (interprocess) parameter/return-value pas s  
ing could be put into CPQ. If these kinds of instruc- 
tions are suspended, then, there are no other instruc- 
tions of the same block can be executed because of d s  
ta  dependency. Using this mechanism, we can strictly 
control the number of code blocks a t  eight. 

5 Conclusion 
In this paper, we first described the problem of 

pipeline bubbles. Then, we made an analysis about 
the behavior of dynamic dataflow programs, and con- 
cluded that the number of active code blocks must be 
limited and the related instructions must be arranged 
nearby. We also discussed the approaches to limiting 
active code blocks and arranging related instruction- 
s. Finally, we proposed two structures t o  overcome 
the problems of dynamic dataflow programs and to 
achieve a high matching rate. 

A Appendix 
A.l  D-level 

Nj of an acyclic graph G(N, A) are as follows; 

D(N.): Dlevel for each node Nj of a graph G(N,A) 
( for all N,  of^ { D ( N ~ )  := infinite 1; 

The rules for determining the Dlevel for each node 

V :=empty; 
for all Nj of N where Nj has input arcs 
{ D(Nj) := 0; V = V + Nj }; 
1 := 0; 
while V # empty; 
{ W := empty; i:=i+I; 

for all N. of V 
for d l  Nk which has an arc Ajk 

ifD(Nk) > i then 

A.2 E-level 

Nj of an acyclic graph G(N, A) are as follows; 

E(Nj): E-level for each node Nj of a graph G(N,A) 

The rules for determining the Elevel for each node 

{ for all Nj of N { E(Nj) := 0 }; 



V :=empty; 
for all N j  of N where Nj has input arcs 
{ E(Nj) := 0; V = V + Nj }; 
1 := 0; 
while V # empty; 
{ W := empty; i:=i+1; 

for all N. of V 
for ah Nk which has an arc Ajk 

if E Nk) < i then 
{ E I Nk) := i; w = w + N k  }; 

v := w; 
h 

1 
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