
A pipeline bubbles reduction technique for the Monsoon dataflow
architecture

Feipei Lai AND Fong-chou Tsai

Department of Electrical Engineering &
Department of Computer Science and Information Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.
E-mail:flaiQcad.ee.ntu.edu. tw

Abstract
This paper proposes two types of new auziliary

ory. The first t y p e of the auxiliary matching store
achieves high matching rate b y combining the LRU
replacement algorithm and a simple match structure
together. The second one achieves high match rate b y
controlling strictly the number of active processes with
an explicit hardware. Owing to some special character-
istics of dynamic dataflow computing, this temporary
storage must be designed based on the following prin-
ciples: (a The number of the active processes must be
limited. A) The related instructions must be arranged
nearby. (c) The replacement of the match slot must
be deterministic.

can be applied to dynam-
a frame-stnrctured mem-

1 Introduction
The most recent generation of dataflow machines

(e . g . , MIT’s Monsoon, ETL’s EM-4[2], and Sandia’s
Epsilon-2 [3]) have shown how operands match can be
accomplished with a simple hardware structure in two
machine cycles. In Monsoon, the explicit storage for
operands match is decided by the complier. It elim-
inates the associative matching and implicit storage
allocation which are used by previous work [4]. How-
ever, this mechanism still incurs some pipeline bub-
bles. For each dyadic (two-operands) instruction, the
memory slot for matching must be accessed twice. On-
ly the second memory access can get the instruction
fired because the first one will do nothing and leave
the pipeline a bubble. As shown in [l], the possibility
of the pipeline bubbles is 28.75%.

From the preceding discussion, it is quite obvious
that reducing the pipeline bubbles needs an addition-
al unit to share the burden of matching operations of
the CPU. Here we use a fundamental property of the
program behavior to gain the speedup. The funda-
mental property is the locality. We can futher divide
the locality into two aspects; spatial and temporal[5].
Thoreson et al.[6] proposed models of instruction ref-
erence patterns in dataflow programs, and suggested
potential spatial and temporal localities in dataflow

1060-3425/94 $3.00 0 1994 IEEE

environments. Tokoro et uZ.[7] presented a definition
of the working set for dataflow machines based on si-
multaneous execution and the principle of (temporal)
locality, and evaluated various combinations of fetch
policies and replacement policies.

In dynamic dataflow computing, data dependency
produces potential spatial localities. Specially, for ef-
ficiency, there are now many researches trying to get
a sequence of instructions executed in order, even in
the dataflow environment[& 2, 31 which further en-
hances the potential spatial localities. However, tem-
poral locality is not produced in the frame-structured
operands memory. This is because an activity frame
is allocated for each iteration of a loop or for a recur-
rence of a recurrent construct. In other words, a frame
corresponds to a code block (process) such ,as one it-
eration of a loop or a function call. In the traditional
imperative language, temporary locality comes from
iterations of a loop or recalls of a function by using
the same storages. However, in dynamic dataflow ma-
chine like Monsoon, many active processes can exist
concurrently, either active or inactive therefore even
spatial localities cannot be assured.

The study [lo] on the cache memory for data flow
machines is quite similar to our work. Although the
ideas were applied on the dataflow cache implementa-
tion, many ideas can also be applied to the matching
store. In our method, we use a less complicated mech-
anism and a simpler structure to implement. In the
first type of the auxiliary matching store, we uses an
easy replacement algorithm, a simple structure and
several prioritized token queues. In this type of the
matching store, we assume that the resource manag-
er is capable of controlling the number of the activity
frame dispatched. Our architecture can tolerate a s-
light variance in the number of the active processes.

The circuits of the second type are a little bit com-
plicated. There is an explicit circuit to control the
number of active processes, several matching blocks
and prioritized token queue. In this type, we assume
the instructions for interprocess parameter/return-

388 Proceedings of the Twenty-Seventh Annual Hawaii
International Conference on System Sciences, 1994

http://E-mail:flaiQcad.ee.ntu.edu

value passing (linking instructions) have a special field
to indicate if they are to be pushed into the control-
ling process queue (CPQ). We will present the rest
of paper as follows. In section 2, we will take a look
at Monsoon. In section 3, we will describe the design
principles of an AMS in the dynamic dataflow environ-
ment. In section 4, our architectures will be presented
in detail. In section 5, we will make a conclusion.

2 Monsoon
In order to get a general picture, dynamic dataflow

execution will be described first, then, the whole ar-
chitecture of Monsoon will be presented.

2.1 Dynamic Dataflow Execution
Dynamic dataflow execution is characterized by

three properties: (1) the program presentation is a
partial order of essential dependences, (2) instruc-
tions are scheduled based on availability of operand-
s, and (3) iteration and recursion are supported in
full generality. Dynamic dataflow execution is for-
malized as rules for propagating tagged data token-
s through dataflow graphs[ll]. A node fires when
tokens with identical tags are present on the input
arcs and produces result tokens on the output arc-
s. The tagged-token instruction scheduling paradig-
m supports a nonblocking processor pipeline that can
overlap instructions with closely related or complete-
ly unrelated computations. Thus, parallelism can
be exploited at all levels. It also provides a grace-
ful means of integrating asynchronous and poten-
tially out-of-order memory response and synchroniza-
tion events into the normal flow of execution, allow-
ing communication latency to be masked by excess
parallelism[l5]. Tag ed-token dataflow architectures,
developed at MIT[4f Manchester University[l2], and
the Electrotechnical Laboratory[l3, 141, approximate
this model quite closely. In these machines, the
dataflow firing rule is realized by a sophisticated hard-
ware matching store, essentially a large associative
memory. When a token arrives a t a processor, the
tag it carries is compared against the tags of tokens
in the matching store. If no match is found, the in-
coming token is added to the store. If one is found,
the matching token is extracted and the corresponding
instruction is enabled for execution, eventually pro-
ducing new tagged tokens. The tag serves as a name
for the synchronization point of two values destined
for the same instance of the same instruction. Each
loop iteration or function invocation must be provid-
ed with a new set of synchronization names. However,
the matching operation places considerable complexi-
ty on the critical path of instruction processing.

Owing to the matchingstore problemin the tagged-
token architecture, it inspires the development of the
ETS (Explicit Token Store). The ETS approach shift-
s much of the low-level storage management burden
associated with dataflow execution to the complier in
order to simplify the hardware system. The arcs in
the code block, (i.e., the local variables of the func-
tion) are statically mapped onto slots in the frame by
coloring the graph[l7]. Each instruction specifies the

Figure 1: Explicit dyadic matching operation.

Token p - r - q ~ l
I TAG

Figure 2: The format of the token.

location of its operands, as a simple effective address
calculation, so no matching is required. When a code
block is invoked, the caller dynamically allocates an
activation frame, thereby providing local storage for
the activation.

Each frame slot has associated presence bits speci-
fying the disposition of the slot. The dynamic dataflow
firing rule is realized by a simple state transition on
these presence bits, as illustrated in Figure 1. At time
t, the first token with data a arrives at the address
FP+x. The slot is found empty, so the value on the
token is deposited in the slot (making it full) and no
further processing of the instruction takes place. At
time t+n, the second token with data b arrives and the
slot is full, so the value is extracted (leaving the slot
empty) and the corresponding instruction, sub, exe-
cutes and produce one or more new tokens. In general,
the order of arrival of tokens is indeterminate, so the
first token may be destined for either port. Initially,
all slots in a frame are empty and upon completion of
the activation they will return to that state.

389

<PE:(FF’.IP),V>

- _ _ - -
Sys. User

ueue queue

Figure 3: The Monsoon pipeline.

2.2 Architecture
Monsoon is a general purpose multiprocessors sys-

tem which incorporates an explicit token store. A
Monsoon machine comprises a collection of highly
pipeline processing elements (PE’s) connected via a
multistage packet switch network to each other and
to a set of interleaved memory modules (IS’S) that
support I-structure storage[l6] as well as imperative
storage. Messages in the interprocessor network are
tokens and request tokens -precisely the same format
used within the PE and IS. Thus, the hardware makes
no distinction between interprocessor and intraproces-
sor communication.

2.3 Token
The Monsoon tags and values are 72-bit quantities

comprising 8 bits of hardware type information and
64 bits of data, as shown in Figure 2. A token is a
tag-value pair, 144 bits in size. A value can be a 6 4
bit signed integer, an IEEE double precision floating-
point number, a bit field or a boolean, a data memory
pointer, of course, a tag. A tag encodes two pointers:
a pointer to the next instruction to execute, IP, and a
pointer to the activation frame, FP, that provides the
context in which the next instruction is executed. On
Monsoon, a given activation frame resides entirely on
a single processing element.

2.4 Pipeline Operation

pipeline stages.
pipeline every cycle.

Figure 3 is a detailed view of the eight-processor
A token can be inserted into the

After a delay of eight cycles,

zero, one, or two tokens emerge from the bottom.

3 Design Principle
In a dynamic machine like Monsoon, many code

blocks can exist concurrently, either active or inactive
therefore even spatial localities cannot be assured. To
cope with this problem, there are several design prin-
ciples to be followed. Prior to discussing the details
of design principles, several basic ideas and possible
implementations of the auxiliary matching stores are
presented.

The first idea is instruction space. Here, we build a
control flow model which constructs a traditional pro-
gram or a d a t d o w graph which constructs a dataflow
program as a continuous space. Each instruction will
occupy one piece of the space called a slot. A pro-
gram can comprise many subprograms subroutines).
For convenience, a subprogram can be a 6 breviated as
PI see Figure 4.

In this paper, we consider a process as a code block
and vice versa, where a process could be a subroutine
or an iteration of a loop.

The primary difference of the working space, gray
areas shown in Figure 4, between traditional program
s and dataflow program is that the working space of
traditional programs is continuous while in dataflow
programs is fragmentary as shown in Figure 4. If the
loop is considered, the situation of the working space
of dataflow programs will become more complicated,
as shown in Figure 5. In Figure 5, P3 corresponds to

390

instruction space
m

p l l I
I

P2

P3

P4

P5

instruction space

P1

P2

P3
TYPE 1 TYPE 2

P4

P5

(a) The traditional program.(b) The dataflow program

Figure 4: The instruction space.

PI

p1

P3 ...
P I

PS

Figure 5: The loop mapping in dynamic dataflow pro-
gram.

- ~ ~ c u u l
ilamnion poi-

Figure 6: Several implementations of auxiliary match-
ing store.

a loop consisting of i iterations. Each iteration can
have different working space.

Figure 6 shows four types of the auxiliary match-
ing store (AMs). An access into a slot of the AMS is
addressed by the instruction pointer.

In TYPE 1, the lower part of an instruction point-
er is used to access the AMS, in which each slot is
mapped into an address and considered as a set.
In TYPE 2, the lower part of an instruction point-
er is used to access the AMS but one set comprises
n slots. For example, in Figure 6, n is equal to 4.
All tokens with the same low part of an instruc-
tion pointer will be mapped to the same net.
In TYPE 3, the middle part of an instruction
pointer is used to access a set and all tokens with
the same range of the low part of an instruction
pointer will be mapped to the same set. In Figure
6, the lower addresses 0 to 3 are mapped to set
0.
In TYPE 4, the AMS is implemented as a fully
associative memory. That is, an instruction can
be stored in any slot of the AMs.

Based on the behavior of dynamic programs and
the limitation of an AMS space, several design prin-
ciples must be followed. So, the efficiency of an AMS
can be achieved. Some design principles are listed as
follows:

0 The number of active code blocks must be limited.

0 The related instructions must be arranged nearby.

0 The replacement of the matching slot must be
deterministic.

391

Figure 7: The relation between iterations and the s-
pace of the AMs.

3.1 The number of active code blocks

A program spends most of the executing time in
loops and function calls. When a loop is processed,
many iterations can exist concurrently. All these iter-
ations have the same IP (instruction pointer).

must be limited.

In TYPE 1, a set consists of one slot and a slot can
only hold a token. For a loop, all of the iterations will
be mapped to the same area. If too many iterations
are active, spillings will happen frequently because to-
kens belonging to different iterations but to the same
IP possibly enter the AMS simultanously. Figure 7
illustrates the relation between iterations and the AM-
S. In TYPE 2, one set consists of n slots and different
IPS are mapped to different sets. Therefore, we can
roughly estimate that n iterations can be active con-
currently and the spilling rate will not be high. But
once the number of active iterations exceeds n, then,
the spilling rate will raise up because more instruc-
tions compete for the n slots in the AMS. When more
than one iteration are active, we can predicate that
TYPE 3 has less spilling rate than TYPE 1 does. In
TYPE 4, there is not fixed relation between IP and
the slot in a set. Therefore, it will have the greatest
ability in accumulation of the number of active itera-
tions among the four types.

After investigating the relation between the
iterationsa and the space of the AMs. We conclude
that the more code blocks are active, the more miss-
ings happen.

To limit the number of active code blocks, some ap-
proaches can be applied. The first approach is to limit
the number of iterations in a loop to K [MI. Assume
that the number of active iterations is approximately
equal to the number of active code blocks. The second
approach is that the resource manager puts the limi-
tation on the maximum number of the activity frames
dispatched. The last approach is to use explicit hard-
wares controlling the number of active code blocks.

'Here, we make the assumption that the instruction space of
a loop is equal to the size of the AMS so different instructions
a n mapped to different slots of the AMS with the exception of
the ones with the same destinations.

'Each iteration can be considered as a code block or a
process.

(b)

Figure 8: The illustration of nearby arrangement.

3.2 The related instructions must be ar-
ranged nearby.

Addresses of instructions in dataflow program can
be assigned randomly without affecting the result of
executions, because instructions are fired by the da-
ta synchronization principle. This property should be
exploited to enhance localities and to reduce missing
rate.

In TYPE 1 of the AMs, if the related instructions
arranged like (a of Figure 8, it is perfectly possible

eration of other instructions, the (a) arrangement can
be tolerated because of R slots in one set. However,
the (b) of Figure 8 will map A and B into different
sets. In TYPE 3, the (a) and (b arrangements cause

the first set. When processes concurrently executed
are considered, we will favour TYPE 2 because it can
tolerate more concurrent iterations. In TYPE 4, the
(a) and (b) arrangements make no difference.

After examining the relation between instruction
sequence and spilling, we are concerned how instruc-
tions can be arranged nearby. Two properties are dis-
cussed first.

for a spilling to h appen. In TYPE 2, without consid-

the same result. Both (a) and (t) map A and B into

0 Dlevel[7].

0 Elevel[7].

In fact, a dataflow program is a dataflow graph. An
instruction can be considered as a node in the graph.
Then, D-level is the minimum number of spanning
from the root level. The Dlevel of an instruction can
be referred to as the level (or timing) at which at least
one of its inputs becomes available. Elevel is the max-
imum number of spanning from the root level. The
Elevel of an instruction can be referred to as the level

392

k : is equal to the size of the frame store.
pb : presence bit.
uc : usage count.
cf : content field

set k

A u s

- : means the critical pnth. (,I;) : means the bnsic block.

IY : means nn instruction.

Figure 9: The waiting time on the critical path.

IP

Figure 10: The mapping of the critical blocks.

Figure 11: The FOSS structure.

or timing) at which all of its inputs become available. I he Dlevel and Elevel algorithms are shown in a p
pendix A . l and appendix A.2. tuai t ing is defined as
the difference between Elevel and Dlevel.

tWaiting=Elevel - Dlevel.

In Figure 9, if an instruction is in basic block 4, its
waiting time will have two possible values because of
the two possible paths from block 1 to block 4. Here,
the one passing through the critical path is our choice.

We assume that twaiting is quite small. By setting
the node addresses in ascending order of Dlevel along
the critical path, spatial localities can be enhanced.
For example, in Figure 10, we list two possible assign-
ments of the data flow graph in Figure 9. We prefer
part (b to part (a because the path 1-3-4 has higher

blocks which will be executed frequently are assigned
together, then, spilling will not happen frequently.

possibidty to be t a k en than the path 1-24. In (b) , the

3.3 The replacement of the AMS must be
deterministic.

The objective of the replacement is to spill out i-
nactive code blocks and to hold active code blocks.
Several approaches are provided as follows:

LRU (Least Recently Used).

0 LIFO (Last-In First-out).

maximum t, siting.

Based on three reasons, LRU is chosen when a to-
ken has been staying in a slot for a long time. First,
the partner is the result of a remote request. We as-
sume the latency is quite long so that it is not worth
waiting for response. Second, the partner has been
thrown out of the AMS because of spilling or other
reasons so it is impossible to be matched. Third, the
code block including this token has been temporarily

393

MIp : nutching aken qucuc

UTQ wvlvahingtotenqucuc

Figure 12: Monsoon architecture and FOSS.

inactive. In these three cases, old token should be sub-
stituted by a new one. LIFO can be applied in which
a token has been waiting for a long time so its partner
should arrive soon or in which the number of active
code blocks will not increase. Why will LIFO not in-
crease the number of active code blocks? Because in
our design a token thrown out of the AMS means that
the block including this token will not be active for
a while. Therefore, if a last-in token is thrown out
first, the corresponding code block will be inactive
so that the number of active code blocks will not in-
crease. The token with maximum twcr;ting should be
spilled out because it wastes too much time in the slot
and still cannot be matched. To spill out the token
with maximum ttue;~ing, we need some extra circuits
to support this function.

4 Architecture
In this section, there are two kind of AMS (auxil-

iary matching store) to be discussed. Both of them are
used to reduce the number of pipeline bubbles. The
first one called (FOSS) has a simple structure where-
as the second one called (SOCS) has a complicated
structure. Both kinds of AMS can limit the number
of active code blocks but the first one needs the sup-
port of the resource manager.

'If a tokm is held in the AMS, the code block including that
token is active.

4.1 FOSS
In a slot of AMs, there are three fields, PB, UC,

and CF, respectively, as shown in Figure 11. Presence
bits are used to indicate whether a slot ia full or not.
Initially, PB (presence bits is set to empty because the
token will be spilled out. h h e n a token is put into a
slot, its presence bit will be set to fuZf. After matching
or spilling happens and a token is spilled out, presence
bit will be set to empty. Initially, UC (usage count)
will be set to 0 which means no token is in that slot,
while 1 means this token is the newest one. When a
token enters, the UC associated with that slot will be
set to 1 and the others will be increased by 1 except
those ones with UC equal to 0. In fact, UC record-
s how long a token has been staying in a slot. UC
is used to support the LRU or FILO algorithm. CF
content field) is employed to hold a token. In our 6 esign, there are eight slots in a set because of eight

stages in the pipeline of Monsoon. To fill up the eight
stages of the pipeline, eight code blocks are allowed
to be active. Ideally, each code block can occupy one
stage. Therefore, there are eight slots in a set. The
siee of the AMS is equal to the size of the activity
frame, k. That is because at any time the number of
tokens which needs to match will not exceed the sire
of the activity frame.

When two result tokens are produced, shown in Fig-
ure 12, the one with IP+S) index will be sent into the

of the frame store, and S is the offset between the cur-
rent instruction and the destination), and the other
with (IP+l) index directly passes into the pipeline.

set of AMS indexed b y IP mod k (where k is the size

394

Figure 13:

auxiliary matching store

The illustration of in, out and passing.

The token with (IP+l) index always has higher pri-
ority than the one coming from the matchin token
queue (MTQ) or the unmatching token queue $UTQ).
Similarly, the priority of MTQ is higher than UTQ.

After the access address is computed, a token ia
compared to the slots with presence bit full. If match
happens, the result package is put into MTQ. Other-
wise, find an empty slot in the set to save this token.
If eight slots are all full, then, spilling action become
true. When both of MTQ and UTQ are empty, the
tokens in AMS will be put into UTQ.

By the assignment of priority and the usage of the
LRU algorithm, our AMS can automatically limit the
number of active code blocks and keep the code blocks
active longer. By assigning the token with IP+1 index
to the highest priority, we make sure that the fired in-
structions are more closely related and the same code
block can be active longer. The token coming from
MTQ has the second highest priority because we wan-
t to assure that there are less pipeline bubbles and less
new active code blocks. By assignment of the lowest
priority to a token from UTQ, the number of active
code blocks can be limited.

When spilling happens, it means that the number
of the active code blocks exceeds the limitation. So
one inactive code block should be thrown out of the
AMs4 and it would not get active again soon. If many
code blocks become active or inactive shortly and fre-
quently, the locality will be dramatically destroyed.

The operations of the AMS are expressed below.
We use the grammar of C language to define each for-
mula.

The condition for in, out and passing are described
as following, see Figure 13

'In practice, only one token will be thrownout of the match-
ing slot. If we can make sure that this token will not be d i v e
in the short time, then, in turn, it will limit the other toke-
belonging to the same block to be fired because of the data de-
pendency. In consequence, throwing out a token can be thought
of as throwing out a block.

in

out if(matchl1 spillll fresh)

if(MTQ&&UTQ!=empty)&&(token.type==
dyadic)

passing
if((MTQ&&UTQ==Empt y) I I (token.type==

monadic),

The action of the auxiliary matching store E {match,
spill, fill, fresh}.

match 3 j E set i) slot PB==full)
3 (set{i).hot(j).gk.FP==token.FP)
then
out-to-MTQ(set(i).slot(j).CF, token);
set i slot .PB=empty;
set ti{ :slot 81. u c = o ;

3 (set(i).s I' ot(j).CF.FP!=token.FP)
then
if(set(i).slot(j).UC==MAX)
out-to-UTQ(set(i).slot(j).CF).

fill 3 j E set(i).slot(j).PB==empty
then
set 1 slot .CF=token;
set&] :slo$]. PB=full;

V i, j 3 set(i).slot(j).PB==full
then
out-to-UTQ set(i).slot(j).CF);

Here, i = IP mod k, k = activity frame size, j € (l , 2,

out-to-MTQ is a function which puts its pair of p"
rameters into MTQ.
out-to-UTQ is a function which puts its parameter in-
to UTQ.
We assume that it is possible t o know in advance that
a token will be sent to a dyadic or a monodic instruc-
tion. Using the combination of the LRU algorithm
and the assignment of the priority to the code blocks
we can control the number of active code blocks and
keep the locality.
4.2 SOCS

As shown in Figure 14, the SOCS architecture is
very similar to FOSS. However, the eight slots of a set
in FOSS are divided into eight AMS banks. One bank
is for a code block. A token that belongs to the s a m e
code block will be put in the same AMS bank. Every
bank has k sets and k slots where each set compris-
es one slot. Each slot is same as the one in FOSS
with exception of UC. In SOCS, each slot only has t-
wo fields, PB and CF. ITB (instruction transfer buffer

T C (token count . VB specifies the slot of ITB full or
empty. A slot o d the ITB is allocated to an activity

spill V j E (set(i .slot(j).PB==full)

fresh

set (i).slot (j). b B=empty;

* * e, 8).

has three fields VB (valid bit), FP (frame pointer) an d
6 k is equal to the size of the activity frame siee.

395

T O W -

Figure 14: The structure of the SOCS

frame, Initially, VB is available and set to empty. If a
slot is assigned to a code block6, then, VB associated
with that slot will be set to full. TC (token count)
serves as a counter to count how many instructions in
an AMS bank. Whenever a token accesses an AMS
bank, then, the T C corresponding to that bank will
be increased by 1. After spilling, matching or refresh-
ing happens, T C will be decreased. The mechanism
is that every token sent to MTQ or UTQ will pass
through TCD (token count decrementor), and then
TCD can decrease T C by 1 or 2.

When a token is produced, it7 needs to be put into
AMS banks. First, its F P will be compared against
the FPs in the slots of the ITB, which VB are equal
to full. If the equivalent one is found, this token will
be put into the corresponding AMs bank, and then
the corresponding TC increased by 1. Otherwise, find
an available slot and then put the FP of the token into
its F P field and set its VB field to full and increase
the TC field by 1, and then put this token into the
corresponding AMS bank. If there is no available slot,
this token will be deposited into the CPQ (controlling
process queue).

After this token is put into the AMS bank, in turn,
the IP of this token is used to access4he slot of the
AMS bank addressed by IP mod k. If another token
has the same IPS, then match occurs and the result
package will be sent to the MTQ. TCD will decrease
the corresponding T C by 2. If no one is found, sp-illing
will happen and the one originally in the slot will be
sent to UTQ. Also, TCD will decrease the correspond-
ing TC by 1. If no other token in the slot, this token
will be deposited into the slot and PB (presence bit),

61t means that the FP field of the slot is allocated a frame

'It is not the token with IP+1 index.
pointer.

396

originally empty, will be set to full. If a T C becomes
0, then a token will be taken from the CPQ, in turn,
the process is alike to a new token put into ITB. When
a token is taken from the CPQ, in effect, a new code
block becomes active. In the opposite, if a token is
put into CPQ, one code block is inactive.

The CPQ is employed to control the number of ac-
tive code blocks. If there are no available slots in ITB,
it means that the number of the active code blocks is
exactly eight which is the maximum number of code
blocks allowed to be active. Therefore, if a token is
going to enter the AMs, it will be excluded into the
CPQ. When a token is sent to the CPQ, it denotes that
a code block is suspended. Only instructions about in-
terblock (interprocess) parameter/return-value pas s
ing could be put into CPQ. If these kinds of instruc-
tions are suspended, then, there are no other instruc-
tions of the same block can be executed because of d s
ta dependency. Using this mechanism, we can strictly
control the number of code blocks a t eight.

5 Conclusion
In this paper, we first described the problem of

pipeline bubbles. Then, we made an analysis about
the behavior of dynamic dataflow programs, and con-
cluded that the number of active code blocks must be
limited and the related instructions must be arranged
nearby. We also discussed the approaches to limiting
active code blocks and arranging related instruction-
s. Finally, we proposed two structures t o overcome
the problems of dynamic dataflow programs and to
achieve a high matching rate.

A Appendix
A.l D-level

Nj of an acyclic graph G(N, A) are as follows;

D(N.): Dlevel for each node Nj of a graph G(N,A)
(for all N, of^ { D (N ~) := infinite 1;

The rules for determining the Dlevel for each node

V :=empty;
for all Nj of N where Nj has input arcs
{ D(Nj) := 0; V = V + Nj };
1 := 0;
while V # empty;
{ W := empty; i:=i+I;

for all N. of V
for d l Nk which has an arc Ajk

ifD(Nk) > i then

A.2 E-level

Nj of an acyclic graph G(N, A) are as follows;

E(Nj): E-level for each node Nj of a graph G(N,A)

The rules for determining the Elevel for each node

{ for all Nj of N { E(Nj) := 0 };

V :=empty;
for all N j of N where Nj has input arcs
{ E(Nj) := 0; V = V + Nj };
1 := 0;
while V # empty;
{ W := empty; i:=i+1;

for all N. of V
for ah Nk which has an arc Ajk

if E Nk) < i then
{ E I Nk) := i; w = w + N k };

v := w;
h

1

References
[l] G. M. Papadopoulos and D. E. Culler, “Monsoon:

an Explicit Token-Store Architecture,” In Proceed-
ings of the 17th Annual International Symposium
on Computer Architecture, pp.82-91, 1990.

[2] S. Sakai, Y. Yamaguchi, K. Hiraki, Y. Kodama.,
and T. Yuba. “An Architecture of a Dataflow Sin-
gle Chip Processor,” In Proceedings of the 16th An-
nual International Symposium on Computer Ar-
chitecture, pp.46-53, 1989.

[3] V. G. Grafe and J. E. Hoch, “The Epsilon-2 Hybrid
Dataflow Architecture,” In Proceeding of Comp-
congU, pp. 88-93, March 1990.

[4] Arvind and Culler, D. E. dataflow architectures.
In Annual Reviews in Computer Science, Annual
Reviews Inc., Palo Alto, CA, 1986, vol. 1, pp. 225-
253; Reprinted in Thakker, S. S.(Ed.). “Dataflow
and reduction Architectures, ” IEEE Computer So-
ciety Press, 1987.

[5] A. J . Smith, “Cache memories,” Comput. Survey,

[6] S . A. Thorenson and A. E. Oldehoeft, “Instruction
reference patterns in dataflow programs,” in Proc.
ACMAnnu. Conf., pp. 211-217, Oct. 1980.

vol. 14, no. 3, pp. 473-530, Sept. 1982.

[7] M. Tokoro, J . R. Jagannathan, and H. Sunahara,
“On the working set concept for dataflow ma-
chines,” In Proceedings of the lUth Annual Interna-
tional Symposium on Computer Architecture, pp.
90-97, July 1983.

[B] G. M. Papadopoulos and K. R. Traub, “Multi-
threading: A Revisionist View of Dataflow Archi-
tectures,” In Proceedings of the 18th Annual In-
ternational Symposium on Computer Architecture,
Toronto, pp. 342-351, Mar. 1991.

191 M. Takesue, “A load control mechanism for
dataflow machines,” System and Computers in
Japan, Scripta Technica, Inc. vol. 19, no. 10, p-
p. 55-69, Oct. 1988 (This is a translated version of
the paper appeared in it %an. IEICE Japan, vol.
J70-D, no. 10, pp. 1878-1889, Oct. 1987.)

[lo] Masaru Takesue, “Cache Memories for Data Flow
Machines,” IEEE Tran. Comput., vol. 41, no. 6,

[ll] Arvid, and Gostelow, K. P., “The U-interpreter,”,
IEEE computer, vol. 15, no. 2, Feb. 1982.

[I21 Gurd, J., Kirkam, C. C., and Watson, I., “The
Manchester prototype dataflow compute,” Comm.
ACMvol. 28, no. 1, pp. 3452 , Jan. 1985.

[13] Hiraki, K., Sekiguchi, S., and Shimada, T.,
“System architecture of a dataflow supercomput-
er,” Tech. Rep. Computer System Division, Elec-
trotechnical Labotory, 1-1-4 Umesono, Sakura-
mura, Niihari-gun, Ibaraki 305, Japan, 1987.

[14] Shimada, T., Hiraki., and Nishida, K., “An archi-
tecture of a data flow machine and its evaluation,”
Proceedings of CompCon 84, IEEE, pp. 486-490,
1984.

[15] Arvid, and Iannucci, R. A., “Two fundamental
issues in multiprocessing,” Proceedings of DF VLR-
Conference on Parallel Processing in Science and
Engineering, Bonn-Bad Godesberg, W. Germany,
Jun. 1987.

[16] Arivnd, Nikhil, R. S. and Pingali, K. K., “I-
structure: Data structures for parallel comput-
ing,” Tech. Rep. Computation Structures Group
Memo 269 , MIT Laboratory for Computer Sci-
ence, MIT, Feb. 1987.

[17] Chaitin, G., Auslander, M., Chandra, A., Cocke,
J., Hopkins, M., and Markstein, P., “Register allo-
cation via coloring,” Comput. Lang. 6m pp. 47-57,
1981.

[18] Culler, D. E., “Managing parallelism and re-
source in scientific dataflow programs,” Ph.D. the-
sis, MIT Department of Electrical Engineering and
Computer Science, MIT, Jun. 1989; Tech. Rep.
TR446, MIT Laboratory for Computer Science,
MIT.

[19] Micah Beck, Richard Johnson, and Keshav Pin-
gali, “From control flow to dataflow,” Journal of
parallel and distributed computing vol. 12, pp.

[20] Cytron, R., Ferrante, J., Rosen, B. k., Wegman,
M. N., and Zadeck, F. k., “An efficient method of
computing static single assigment form”, In Pro-
ceedings of the 16th ACM Symposium on Princi-
ples of Programming Languages, pp. 25-35, Jan.
1989.

[21] Ferrante, J., Ottenstein, K. J., and Warren, J.
D., “The program dependency graph and its uses
in optimization,” ACM ThanS. Programming Lan-
guages Systems vol. 9, no. 3, page 319-349, Jun.
1987.

pp. 677-687, 1992.

118-129 1991.

397

