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Abstract A practical design of fuzzy logic controller is 
presented in which the sliding mode control method and 
the adaptive control scheme are properly incorporated to 
enhance robustness and sliding performance in a class of 
uncertain MIMO nonlinear systems. The proposed fuzzy 
controller requires no knowledge of an MIMO nonlinear 
system and facilitates robust properties by fine-tuning the 
consequent membership functions. By employing the fuzzy 
descriptions to overcome the interaction among the 
subsystem, a fuzzy sliding mode controller is used to 
approximate the equivalent control in the neighborhood of 
the switching hyperplane. The hitting control is appended 
to assure that the fuzzy sliding mode control can achieve a 
stable closed-loop system through Lyapunov stability 
theory for the trajectories tracking control of a plant with 
unknown nonlinear dynamics. Finally, the simulation 
results of a two-link robotic manipulator confirm that the 
effect of both the hzzy  approximation error and external 
disturbance on the tracking error can be attenuated 
efficiently by the proposed method. 

1. Introduction 
Conventional control theory is well suited for 

application where the control efforts can be generated 
based on analytical model [I-21. There are inevitable 
unmodelled nonlinearities and uncertain disturbance in 
their constructed model where conventional control 
strategies cannot be easily derived. The latest studies 
consider adding some computationally intelligent methods 
to the sliding mode control (SMC) by automatically tuning 
the control parameters. Particularly, integrating fuzzy set 
theory and SMC into fuzzy controller design have acquired 
superior performance [3-81. This approach retains the 
positive property of SMC but alleviates the chattering, and 
the fuzzy control rules can be determined systematically by 
the reaching condition of the SMC. 

This paper will address the problem of controlling an 
unknown multi-input multi-output (MIMO) nonlinear 
affined system. The goal i s  to develop a direct adaptive 
MIMO fuzzy controller to overcome the interaction among 
the subsystems by a decoupling neural network and to 
facilitate robust properties by fine-tuning the consequent 
membership functions. Firstly, a sliding mode controller 
for robust tracking control of multivariable nonlinear 
systems is- developed by assuming that imposed 
uncertainties are bounded and satisfy matching conditions. 
The fuzzy logic control is then designed on the basis of the 
SMC law. A fuzzy sliding mode control (FSMC) is used to 
approximate the equivalent control in the neighborhood of 

the switching hyperplane with on-line f i . ~ u y  self-tuning 
parameters subject to parameter variations in the control 
object. Secondly, the hitting control is appended to assure 
that the proposed FSMC can result in a closed-loop system 
that is stable for the trajectories tracking control of a plant 
with unknown nonlinear dynamics. As a result, we 
simultaneously guarantee the global stability of the closed- 
loop system and obtain a suitable equivalent control when 
the nominal mathematic model is unknown in advance. 
The simulations using the proposed method by a two-link 
manipulator subject to unccrtaintics is performed to 
demonstrate the properties of the developed FSMC. 

2. Problem Formulation 
Consider an MIMO nonlinear system govern by 

y"' = f ( x )  + C(x)u + d ( X , f )  (1) 

where y=(yl;..,ym)' and y"' = ( y ~ " ) ; - ~ , y ~ ' ) '  denote 
the output vector and its derivative, respectively, 
r =.(rl,-.-,rm) with rzl? = n is defined as the system 

relative degree, U = (u1;~.,um)'  is the input, 

x = (x,,x,;. .,x,,)' = . . . . . . . . . . . . . . . . . . . . . . . . . . . .  is the 

state vector, f ( x )  = (A(x);- . , f , (x)) '  , C(x) = 

[g, (x),*-.,g, g, (x) = (Si, (x),. ..,g,## (4)' with 

g ,  > 0 and f ; ( x )  , i = l,.-.,m , are unknown functions: 
and d(x,t)  = ( d , ( x , t ) , . . .  ,dm(x , t ) ) '  is the disturbance 
with the properties of standard smoothness and it is 
assumed to have upper bound D = Diag[D,] , that is, 
jd,(x,t)fI D,, i = l ; . . , m .  

Let yd = ( y d l , y d 2 ; . . , y h ) '  represents the known 
desired trajectory, the control aim is to determine a 
controller for the composite nonlinear system described by 
(1) so that the tracking error represented by 

g = [e,;..,e,]' (2) 
with ei = (e .  , Y  e.  , 7  .. .,e:ri-J))' = (ydr - yi ,..., y$-I) - y!-l))' ~ 

i = I,...:m, will be attenuated to an arbitrarily small 
residual tracking error set. Define a generalized error 
vector to represent a switching manifold as follows: 
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and .\, =(a, , : . . . :a ,  , )' c K'. be such that all roots Gf the 
pol~nomial 

h , f P )  = P ! c j  - u , , p ' r , . - ' ,  .+."+ff,,b,-,,P+u,,, (4) 

are in the open left-half plane, i = I;..,m . The aim of 
sliding mode control law is to force the system states 
approach the sliding surface and then move along the 
sliding surface to the origin. This implies that the system 
dynamics will track reference trajectory asymptotically. 

3. Description of the Fuzzy Logic System 
Various fuzzy models and their control have been 

succe5jfully applied in many fields [9-121. The basic 
configuration of the fuzzy logic system comprises four 
principal components: fuzzifier, fuzzy rule base, fuzzy 
inference engine and defuzzifier [13]. The hzzy control 
rules are the principal factor to determine the performance 
of a fuzzy controller. The f i z z y  system can uniformly 
approximate nonlinear continuous functions to arbitrary 
accuracy [14-15]. Thus we will introduce fuzzy systems, 
which are expressed a$ a series expansion of fuzzy basis 
functions. 

The fuzq logic system performs a mapping from 
C z  R" to V c R "  . Let U = U ,  r. . .xC' , ,  and 
V = V, r: ... A Vm where C', c R , k = 1,2;..,n and V, c R , 
i = 1 7  ,-> ...,PI. A multivariable system can be controlled by 
thc following h: linguistic rules 

R"' : IF x I  is A: and ... a n d q  is A: 

THEN z1 is B: and ... and z, is BL ( 5 )  
where 1 = I , . . . ,  N , x k  k = 1,2,...; n , are the input variables 
to the fuzzy system, z , , i  = 1,2;..,m, are the output 
variables of fuzzy system, and the antecedent fuzzy sets 
A: in Uk and the consequent fuzzy sets 0: in V, are 

lingu'istic terms characterized by the fuzzy membership 
functions pAi ( x k )  and pB/ (z,) , respectively. The fuzzy 
logic system with center-average defuzzifier, product 
inference and singleton fuzzifier is defined as [ 141 

where p'(wj = n;-,p I ( x , )  is the matching degree of the 

Ith rule, and y,' is the center of the consequent 

membership function of the Ith rule. If y( is chosen as the 
design parameter, the adaptive fuzzy system can be viewed 
as the type of neural network [ 161. Therefore, (6) can be 
rewritten as 

1 

Z,(X) = 4 , , ' ! w  (7 )  
where 4, = (Y,~,...,Y: )' is a parameter vector, and 

y ( x )  = ((!,...,<,,,)T is a regcssor, and where the fuzzy 
basis function is defined as [ 141 

'-\ I 

Fig. 1 Configuration of the adaptive FSMC system. 

4. Adaptive Fuzz); Sliding Mode Controller 
The proposed adaptive kzzy sliding mode 

controller is composed of the following three parts: an 
MIMO SMC, a fine-tuning mechanism on the consequent 
membership functions of the multi-layer fuzzy system, and 
a decoupling network shown in Fig. 1 [ 171. The multi-layer 
fuzzy system and the decoupling network are nominal 
designs based on on-line approximation of the unknown 
nonlinear functions of the plant. The fine-tuning 
mechanism is designed to encounter the equivalent 
uncertainty resulted by the plant uncertainty, the function 
approximation error, or the extemal disturbances. 

Let U,' be the output of the system's ith MIMO 
SMC. Then, for the system given in ( I ) ,  the ith sliding 
surface is s, . Hence, this MIMO SMC also has m sliding 
surfaces to form a switching, manifold so that the system 
exhibits desirable behavior when its trajectories are 
confined in the sliding surfaces. If the control law is 
designed such that the sliding mode exists on s, = O  , 
i = I , . - . , m ,  the system error d,ynamics is dictated by the 
linear dynamic equation (3). Since (3) satisfies Hurwitz 
stability criterion from (4), maintaining system states on 
sliding surface 5 for all t > 0 is equivalent to the tracking 
problem y = yd , that is, it is required that the system 
errors converge to zero. Thus, the tracking control problem 
can be formulated by keeping the error vector in (2) on the 
sliding surface defined as follows: 

In the design of sliding mode controller, an 
equivalent control is given first such that each state 
Lyapunov-like condition holds for system stability [IS]: 
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Inequality (10) constrains trajectories to point towards the 
surface s , ( t )  such that the distance to sliding surface 
decreases along all system trajectories, and is referred to as 
the reaching condition. That is, the states of the system are 
driven from any initial state to the eventual sliding surface 
on which sliding mode control takes place. 

If the function I, G and d of nonlinear MIMO 
systems (1) are known and does not take the 
interconnections among subsystems into consideration, 
then the control law U' can be chosen as follows 

( T-Ia eh-o 
,= I  If 1 

where @ = Diugb,,] , K = Diug[K,] is m x m positive 
definite diagonal gain matrix with K ,  > 0 , 
sgn(s) = (sg~~(~,),...,sgn(s~))~ and sgn(s,) is defined as 

1 s,>o 

sgn(s,) = 0 s, = 0,  I =1;.. ,m. 1 - 1  s,<o 

Therefore the optimal control is 
U,* =g,'[CI;T:a,,ej.'-')-f, - d ,  + y ; ' + h ,  sgn(s,).q,] 

1 ,if si #O 
o ,if s, = O '  

where vi > 0,  h, = 

This optimal sliding mode control input U,* guarantees the 
reaching condition of (IO). 

Since the control of MIMO nonlinear systems 
directly use the sliding mode control but does not take the 
interconnections among subsystems into consideration, the 
interconnections compensating network is needed. Thus 
the proposed sliding mode controller has a neural part to 
release the interaction among the subsystems. The output 
of the controller is combined with U' and its modification 
by decoupling network 

To derive a stable weight adaptation in control matrix, the 
matrix M be chosen as 

u(r) = U O ( f ) +  Mu'(t) (13) 

M = -(Zm + &-'P)-' (14) 
where I,,, denotes a m x m identity matrix and 

Using (12),- (13), (14), (15) and the matrix inversion 
(A+BCD)-' = A - '  -A- 'B(DA-'B+C-' ) - 'DA-'  1191, the 
formulation of MIMO SMC resolves into 

Lx;Ia e("-') I 
J mr nr 

where G = e + P . By plugging U* into (9), we will have 
S = -Ksgn(s) . Thus, the reaching condition (10) can be 
easily verified. 

In this paper we use direct adaptive fuzzy controller 
(DAFC), therefore, the parameters of the controller are 
directly adjusted to reduce some norm of the output error 
between the plant and the reference model. Due to the 
existing of fuzzy approximation errors and extemal 
disturbances, simply an equivalent control term cannot 
ensure the stability of the closed-loop system, it is 
necessary to preserve a hitting control to deal with them. 
Suppose that the control U due to the DAFC is the 
summation of a basic fuzzy logic system G(x 14) and a 

hitting control i, ( i, = G-'u, ) 

U = ir(x 1 $6) - -b ir, (17) 

where 1 = [p,;..,pm] , c =(zi,;-.,C,,,)' with 

vector of fuzzy bases, p, =(4,,;..,&) is the 
corresponding parameters of fuzzy logic systems, 
i = I , . - - , m .  

; , (X/P) , )=OJ. t .  (X I ,  where T,,(x)-(5,,1,...,5,,~)I is a 

5. Learning Algorithm and Performance Analysis 
In direct adaptive fizzy control, linguistic fuzzy 

control rules can be directly incorporated into the 
controllers and the parameters of the controller are directly 
adjusted to reduce some norm of the output error between 
the plant and the reference model. As far as the adaptation 
of the controller parameters are concemed the input 
applied to one subsystem affecting the other subsystem. 
Our approach to the solution of such a problem is based on 
to derive the proper direct adaptive fuzzy control law for 
the plant model whose structure is represented by 
exploiting the advantages of the DAFC and the IAFC 
(indirect adaptive fuzzy controller) into a single controller 
i.e. both the fuzzy control rules and the fuzzy descriptions 
can be incorporated into a single controller. Thus the 
unknown functions G(x) is estimated and the controller is 
chosen by assuming the estimated parameters being able to 
representing the true of the plant parameters. This is 
similar that the IAFSMC (indirect adaptive fizzy sliding 
mode control) uses the fuzzy system as approximator for 
the dynamic systems [17]. In this section, we firstly show 
how to derive an adaptive law to adjust the controller 
parameters such that the DAFC can optimally approximate 
the equivalent control of the FSMC under the situation of 
unknown functionsfand G. Then, we construct the hitting 
control to guarantee system's stability by the Lyapunov 
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thcory so that the ultimately bounded tracking is 
accomplished. 

We now adopt the control U = u(xi$j + U, as ( I  7) 

where the hitting control U, = C ' u ,  , and the fuzzy logic 
system i , ( x  ~ p ! )  as (7) is 

4 (x I 4  j = 4: x,, ( x )  = LoT (x), $4 (1  8) 
where ( , , ( x )  is vector of fuzzy bases, 4, is the 
corresponding parameters of fuzzy logic systems, 
i - I , . . . , m  . Define the parameters p,' ER" of the best 
function approximation as 

where Qr is constraint sets for p , ,  i = I , . . . , m ,  defined as 

= k,  $,I 5 M ,  ,,~, } where M ,  I,m are specified by the 
designer. After some straightforward manipulations, the 
sliding surface cquation (9) with the h a y  control law U 

in ( I  7) to replace U' in (1 6) can be rewritten as 

where 6 =p, -p: denotes the parameter estimation errors 
with 4 =[p,,...,~,j . Our design objective involves 

speciQing the control and adaptive laws for p, such that 
the reaching condition (I 0) is guaranteed. 

Theorem I :  Consider nonlinear plant (1) with 
controller (17), the tracking error allows to use the 
following adaptive law and hitting control as 
$4 = PrSTR,r,, ( 2 0 )  

u.+, = w ( . q ,  )[I L tlnl.  +Z-,I gy Ima. .I i j  I+ I Y ~ )  I 

where 1 = I , - . . , m  . After straightforward manipulation, the 
time derivative of b' is obtained as V = sTS 5 0 . 

ProoJ Consider thc Lyapunov candidate 

.- I 1 whcre V,  = - ( s / s ,  -+ ----p,'p,) , i = I;..,m. By the fact 

6; = 

2 P, 

and (19), we obtain the derivative of Y as 

V = V , + V 2 + - . + V m  (23 1 
where 

- y l S , U h ,  + s'G[u' - i i ( x  If$*)] - 

where ~ , ( ~ ) = ( g , ~ ( ~ ) , . . . , g , ~ ( x ) ) ~  , ~ = l , - . . , m  . If we 

choose the adaptive law as 6; = p,s 'g ,  <,, and thc optimal 
control (1 6), then 

V, = -K,.Y, sgn(.s, j + sy,rC:=l R,U; -Cl, K,;, I - w,, 
= -K,s, sgn(s,) + S, [x:i'~t,,e,("-') - f, - d ,  + y$ )  

+ K, '!dS,) - g,'; 1 - '#'h, 

~ ( s , : [ ~ ~ ~ " ' a , , e ! ~ , ~ ' '  i+lL I+D,+IY::" ~+z=,lg,,li,Il 
- ', ' h t  (24) 

We use the fact that U,+, has the same sign with s,, the U,,, 
can be implemented in (21) such that < 5 0,  i = I , . - . , m .  

In order to complete the FSMC design, it is necessary 
to show that the hitting control is enough to force the state 
trajectory toward the sliding S.UrfaCe as well as to establish 
asymptotic convergence of thii tracking error. Consider the 
Lyapunov function candidate 

(25) 
1 v = -.yz 

' 2 '  

r', =s,(~~~,'aVerl;-"-f, - ~ ~ ~ l g , l i ,  +y$' -d , ) -s ,uh i (26)  

To ensure (26) being less than zero, the hitting control 
should be sclectcd as (21). This means that the inequality 
Y, = s,i, < O  is obtained and the hitting control actually 
achieves a stable FSMC system. 

Conceptually, in sliding rnode thc equivalent control is 
used when the state trajectory is near s, = 0 ,  while the 
hitting control is appended in the case of s, # O  [20]. 
However, the hitting control will generate a very large 
control force and causes high-frequency unmodelled 
dynamics [20]. Therefore, wc minimize the hitting control 
in (21) by a fuzzy function in practical implementation 
[21]. Thus, a hzzy rule base is of the form 

(27) 
(28) 

where ZO and NZ dcnote 2:cro and nonzero fuzzy sets: 
respectively, and input variable 3, is givcn in (3). The 
modified control law of the fiizzy controller for (17) is 

Taking the derivative of (25) and using (9), (17), one has 

If s, is ZO Then U; is U, = iC, 
If s, is NZ Then U, is U, = li, +U,,# 

where ,uLcj(s,) and ~ ~ ~ ( s , )  is the membership functions 
of fuzzy sets ZO and NZ, respectively. 

6.  Simulation Results 
We demonstrate the proposed FSMC by the tracking 

control of a two-link robotic manipulator with 2 degrees of 
fieedom in the rotational angles describcd by q = (q , , q2 ) r  ~ 

as shown in. Fig. 2. The dynamic equations describing the 
motion of the robotic system are of the following form [22] 
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Fig. 2 Model of a two-link robotic manipulator. -= -s, 0 s: 

Fig 3 The fuzzy membership hnctions of ZO and NZ. 

w q ) q  + c(q, i )  + m, g) = T + d(q, 4, t )  

(m, + m,)r: + m,r;? + 2m2rlr2c, + J ,  m2r; + m 

(30) 
where T is the externally applied torques along the 
directions of their corresponding generalized coordinates q, 

m2r,' + m2rlr2c2 m2r; + J ,  
W q j  = 

with g = 9 . 8 m / s 2  is the gravity constant and 

d(q ,q , f )  E: R2 is friction forces, and external disturbances. 
In (30), the nominal parameters mi, m2, J I ,  J2, rI = 0.51,, 
and r? =0.51, are the mass, the moment of inertia, the 
half-length of link 1 and 2, and shorthand notations 
c, = cos(q2) , s2 =sin(q,) , cI2 =cos(y, + 9 2 ) ,  etc. The 
combined effects of friction and the external torque 
disturbance are 

d, = 2.0sin(4,) +2.5sin(cj2)+0.5sin(t) 
d,  =5.0sin(q,)+4.0sin(q2)+0.4sin(t) 

In the control experiments described below, the 
kinematics and inertial parameters of the arm are chosen as 
I, =2.04m, I, =1.66m, J ,  = J ,  =4.5kg.m, m, =0.60kg, 
m2 = 7.02kg, respectively. The trajectories to be followed 
are described by two decoupled linear systems from (4), 
the desired coefficients are specified to be a,, = 2 ,  a,2 = 1 , 
i = 1,2 . The robot is givcn the following target joint 
rotations: 

qdl = (2.57~ / 12). sin t 
qdz =(3.75~/12) .cost  

with the initial states q,(O) = 1.5rad , y,(O) = -1.2rad , 
q , ( O )  2 0 rad/sec and q2(0) = 0 radlsec . 

In (20) and (21), the design parameters are given by 
p, = 1.2 , K ,  = 1 , D, = 5 , I = 1,2 . The membership 
functions of states q! , q2 , q, , and q2 (represented by 
generic variable x ,  ) for the qualitative statements 

( N  = 5' = 625 regular rule partitions) are defined as 

t 0 5 IC 15 

" Isc l  

Fig. 4 The tracking curves of 4, , qd, and qr , q d 2 .  

1 

0 4  

0 7  .......................................................... 

Fig. 5 The state trajectorics on the phase plane. 

{NB,  NS,  ZE, PB, PS} 
where 
h 1 B : I / [ l + e x p ( 2 . 5 ( x ,  -0.4))] h S : e x p ( - O  5(x, +0.2)') , 

PB : 1 /[I + exp(-2.5(x, - 0.4))], PS : exp(-O.S(x, - 0.2)2)  , 
ZE: exp(-OSxf) . In (27) and (28): The membership 

functions of S, for the fuzzy sets 20 and NZ are given in 
triangle function, as shown in Fig. 3. It has a property that, 
for all s, , pzo(s,)+pM(s,)= 1 . When holding the 
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condition Is,\ 2 s,‘ with s,’ = 0.3 , it can be seen that the 
control law is the same as the proposed FSMC. However, 
the amount of hitting control in region \s,I<s: is 
dominated by the grade of the membership function of NZ: 
that is, the hitting control could be attenuated by the grade 
of NZ. 

The tracking curves and the state trajectories of the 
phase plane for q,(t) and q2(t) are shown in Fig. 4-5, 
respectively. The simulation results reveal that the 
proposed FSMC, encountering the combined effects of 
friction, parametric uncertainties, unmodeled dynamics and 
extemal disturbance, can attenuate the tracking error 
efficiently. Moreover, without using any a priori linguistic 
information, our adaptive fizzy sliding mode controller 
has successfully executed the trajectow following control 
of the robot system. 

7. Conclusion 
The goal of this work is the development and 

implemcntation of a direct adaptive fuzzy control based 
SMC for the robust trajectory tracking of MIMO control 
systems with unknown nonlinear dynamics. This design 
obtains robustness in the sense that the self-tuning 
mechanism can automatically adapt the fuzzy controller by 
using a learning algorithm and the global asymptotic 
stability of the algorithm is established via Lyapunov 
stability criterion. The simulation presented in the two-link 
robotic manipulator control indicates that the proposed 
approach is capable of achieving a good chattering-free 
trajectory following performance without the knowledge of 
plant parameters. Although only the two-link robotic 
system has been studied in this paper, the proposed control 
scheme can also be used to address the other class of 
MIMO nonlinear systems. 
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