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Abstract 

This paper considers optimal control problems of a class of 
nonlinear discrete-time systems with respect to cost func- 
tions that are additive in the time variable. For problems 
without state and input constraints, a solution algorith- 
m based on the differential dynamic programming and 
LQ optimal control techniques is proposed. For problem- 
s with constraints, the augmented Lagrangian method is 
combined with the first algorithm to form a non-primal 
solution algorithm. Finally, a hydroelectric generation 
scheduling problem is shown to fit the problem formu- 
lation, and is solved by using the algorithms developed. 

1. Iiitroductioii 

Optimal control methods are important in control engi- 
neering. If a type of optimal control problem has a solu- 
tion algorithm, then control engineers can focus on formu- 
lating practical problems in the form required, and use the 
algorithm to get the optimal control law systematically. 
This enables control engineers to ”weigh” various factors 
of the problem, and see the effects on the solutions. Thus 
it is important to develop efficient and easy-to-use solu- 
tion algorithms for optimal control problems with formu- 
lations as general as possible. Unfortunately unless the 
problem has very special structure, such as the LQ o p  
timal control problem, closed-form solution usually does 
not exist, and numerical methods that are iterative in na- 
ture must be adopted. In this regard, for unconstrained 
problems having no constraints on states and inputs ex- 
cept the system dynamics, the differential dynamic pro- 
gramming (DDP) technique [l] is a successful example. 
For the constrained problem, the primal approach of the 
DDP technique requires that all constraints be satisfied 
in the iteration process, which results in many quadratic 
programming problems to solve, and significant increase 
in computation time. 

Here we propose two solution algorithms for the optimal 
control problems of a class of nonlinear discrete-time sys- 
tems with respect to cost functions that are additive in the 
time variable. For unconstrained problems, the algorithm 
is based on the DDP and LQ optimal control techniques, 
and is conceptually more straightforward. For the con- 
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strained problem, the augmented Lagrangian method is 
combined with the first algorithm to form a non-primal 
solution algorithm, which needs not solve any quadratic 
programming problems. Finally, we show that a hydro- 
electric generation scheduling problem fits the discussed 
optimal control problem formulation, and can be solved 
by using the proposed algorithms. 

2. Main Results 

First, consider the discrete-time optimal control problem 

subject to the system dynamics 

where the initial state z1 is known. It is assumed that 
fk(., .) and cost functions . IN(.) ,  Jk(-, .), k = 1,. . . , N -  
1, have continuous first and second order derivatives, re- 
spectively. Note that this problem formulation is quite 
general, except that (1) has thc special additive form. For 
this problem, a solution algorithm based on the DDP and 
LQ optimal control techniques can be used: 

1. Set iteration index i = 0 and select a sequence of 
estimated control inputs u t ’ ,  k = 1 , 2 ,  . . . , N - 1. 

2. From the estimated control inputs { ~ ( k e ‘ ) } ,  initial s- 
tate 21, and system dynamics (a ) ,  determine corre- 
sponding state trajectory x;) for k = 1 , 2 , .  . . , N .  

3 .  Let uk = U:’ + Auk and x k  = df ’  + Ark.  Take 
quadratic approximation of (1) and linear approx- 

imation of (2) along {.:I} and { u t ’ }  to form an 
optimal control problem in terms of Axe, and Auk: 

subject to the linearized system dynamics 



j k ( A X k ,  A u k )  has similar but longer expression, 
A x 1  = 0, and all partial derivatives are evaluated 

4. Choose appropriate X A k ,  U A k  such that with the 
variable change A X k  = X:hk + ?k , A u k  = U A k  + 
& (3), (4) are reformulated into the LQ problem 

(i) at x k  = x f ) ,  u k  = U k  . 

subject to the linearized system dynamics 

? k + i  = A k ? k  + B k U k  + c k ,  (6) 

where Q k ,  s k ,  R k ,  A k ,  B k ,  c k ,  and 21 are known. 
5. Solve the above LQ problem to get the optimal 

(6;) .  Compute Au; = u A k  + 6; €or all k. 
6. Update u t + ’ )  = u f ) + c y ( ’ ) A u ;  €or all k with some 

constant di) making (1) decrease most. 

7. If Idi)l 5 E ,  a prespecified threshold, then stop. 
Otherwise increase i by 1 and return to step 2. 

In the above algorithm, some matrices need to be nonsin- 
gular or positive definite. This indirectly limits the cost 
functions and system dynamics that can be handled, but 
it is not too surprising since it is difficult, if not impos- 
sible, to develop an algorithm that can handle arbitrary 
problems. Basically, the above algorithm is similar to the 
DDP method [l] for the unconstrained problem (1) sub- 
ject to (2), but conceptually it is more straightforward, as 
all we need to do are finding quadratic and linear approx- 
imations and calling for the standard LQ procedure. 

To consider constrained problems, the following con- 
straints are added for k = 1,. . . , N :  

h k ( x k , u k )  = 0 and ! ? k ( x k , U k )  5 0. (7)  

Note that each h k ( . ,  .) and g k ( ‘ ,  e )  can be vectors. If so, 
then the inequalities are componentwise. Also, these func- 
tions are assumed to have continuous first order deriva- 
tives. Unlike the DDP method for constrained problem, 
which uses the primal approach, we adopt a non-primal 
approach, the augmented Lagrangian method [2, 31. The 
basic idea is to transform hard constraints into soft ones, 
i.e., to add into the objective function suitable terms that 
contain constraint functions, Lagrange multipliers and 
penalty factors. By adjusting these multipliers and penal- 
ty  factors systematically and solving the corresponding 
unconstrained minimization problem with respect to the 
modified objective function, the solutions will converge to 
the constrained optimum under mild assumptions. Thus, 
the above algorithm can be embedded in the lower level 
of a two-level iterative scheme, of which the upper level is 
a maximization process updating multipliers and penalty 
factors to form unconstrained minimization problems for 
the lower level. 

Many practical application problems [4] can be formulat- 
ed in the form of (l), (2) and (7), and can be solved by the 
proposed method. Consider the exemplary hydroelectric 
generation system shown in Fig. 1 ,  which has three reser- 
voirs, two pumped-storage units, and one hydro unit. Let 
zk, denote the water storage volume of reservoir i at the 
beginning of hour k ,  u k ,  the water released from reservoir 
i for generation in hour k ,  T k  the volume of natural inflow 

to reservoir 1 in hour k, and l k  the system load at hour 
k.  Then from water balatnce relation we have the system 
dynamics: 

x k + 1 1  

x k + l z  = x k z  + u k 1  

x k + l 3  x k 3  -k u k z .  

= z k l  - ukl - u k z  - u k s  -k rk 

Of course, to reflect practical situations, we may have 
constraints like CY; 5 zk, 5 pi to represent reservoir s- 
torage capacity, 5 U S ,  5 yi to  represent bounds on 
water releases, and X N ,  = I C ~  to represent final condition- 
s. Note that negative values of U k , ’ s  represent pumping 
operation. For a given sequence of i k ,  we may want to 
minimize a cost function, of the form: 

where the first term stands for thermal generation cost, 
and the second term stands €or lightly weighted hydro 
generation cost. We implement the above algorithm with 
the MATLAB and run many cases of the above problem 
on a TITAN workstatialn. Different load patterns (e.g., 
light and heavy loads) and time span (up to 3 days, N = 
73) are tested. For all catses we obtain convergent optimal 
control inputs, with about 21 minutes of CPU time for the 
most difficult and 1onge.r t case. 

reservoir 

Fig. 1 A hydroelectric generation system. 

3. Conclusion 

We propose an easy-to-implement method foit constrained 
optimal control problems, and apply it to a representa- 
tive hydroelectric generation scheduling problem. It is 
believed that this method has the potential for more ap- 
plications. 
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