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Abstract

Verification of various properties associated with
concurrent/distributed systems is critical in the process
of designing and analyzing dependable systems. While
techniques for the automatic verification of finite-state
systems are relatively well studied, one of the main
challenges in the domain of verification is concerned
with the development of new techniques capable of cop-
ing with problems beyond the finite state framework. In
this paper, we investigate a number of problems closely
related to dependability analysis in the context of prob-
abilistic infinite-state systems modelled by probabilistic
conflict-free Petri nets. Using a valuation method, we
are able to demonstrate effective procedures for solving
the termination with probability 1, the self-stabilization
with probability 1, and the controllability with proba-
bility 1 problems in a unified framework.

Keywords: Controllability, probabilistic Petri net,
reachability, self-stabilization, verification.

1. Introduction

As modern hardware and software systems are be-
coming more complex and at the same time required to
be more dependable, there is an ever-increasing need
for new evaluation techniques; the advantage of an-
alytical evaluation over experimental one lies in its
usefulness in abstracting the essentials of systems (so
that various levels of system details can be abstracted
out) and analyzing or predicting system behaviors (es-
pecially while a system is being designed or imple-
mented), and its being generally far more cost effec-
tive than its experiment-based counterpart. With the in-
creasing interest in developing dependable systems, the
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study of problems regarding termination, controllabil-
ity, and self-stabilization, among others, has also been
gaining increasing popularity in the computer science
community due to the following reasons. Dependable
systems are often associated with properties like safety
(‘something bad never happens’), liveness (‘something
good eventually happens’), fault-tolerance (error detec-
tion, recovery and masking), etc. The safety property
requires that undesired or failure states be avoided at
all times during the course of a computation. The live-
ness property asserts that a certain desired condition be
true eventually. The notion of self-stabilization was in-
troduced by Dijkstra [2] to describe a system having the
behavior that regardless of its starting configuration, the
computation is guaranteed to return to a legitimate con-
figuration eventually. By a legitimate configuration we
mean a configuration reachable from its initial config-
uration. Since a self-stabilizing system has the ability
to ‘correct’ itself even in the presence of certain unpre-
dictable errors leading itself to an illegitimate configu-
ration, one can assert that a self-stabilizing system is, in
a sense, fault-tolerant.

In view of the above, it becomes apparent that auto-
matic verification of various properties associated with
concurrent/distributed systems is critical in the process
of designing and analyzing dependable systems. While
techniques for the automatic verification of finite-state
systems are relatively well studied; see, for example,
Clarke, Grumberg and Long [1], one of the main chal-
lenges in the domain of verification is concerned with
the development of new techniques capable of coping
with problems beyond the finite state framework.

The aim of this paper focuses on investigating the
following problem. Given an infinite-state system, de-
termine whether the system meets certain criteria
(termination, controllability, and self-stabilization) fre-
quently required in dependable computing environ-
ments. Taking into consideration that many real-world
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Figure 1. A conflict-free Petri net mod-
elling a system of m producers and one
consumer.

systems are nondeterministic (or stochastic, to be more
precise) in nature, the system model under our inves-
tigation is not only infinite-state but also probabilis-
tic, allowing us to ask questions such as ‘something
happens with probability 1’, for instance. The sys-
tems under investigation are modelled as Petri nets,
which have been regarded as one of the most success-
ful models for describing the behaviors of systems
of concurrent nature [9]. In spite of their popular-
ity, the high expressive power of Petri nets renders most
of the nontrivial problems for this model highly in-
tractable or even unsolvable. As a result, it is of interest
from the theoretical and practical viewpoints to inves-
tigate problems with respect to restricted (either struc-
turally or behaviorally) versions of Petri nets, in hope
of making simpler solutions feasible and well as gain-
ing more insights into the factors that make general
Petri nets difficult to analyze.

A Petri net is conflict-free if every place which is an
input of more than one transition is on a self-loop with
each such transition [6]; therefore, once a transition be-
comes enabled, the only way to disable it is to fire the
transition itself. Figure 1 is a conflict-free Petri net mod-
elling the m-producer-1-consumer problem.

Probabilistic techniques, capable of modelling unre-
liable or unpredictable behaviors of systems, are exten-
sively used in the analysis of the performance and de-
pendability of hardware and software systems, see, for
example, Marsan, Balbo, etc. [8]. In this paper, we con-
sider a probabilistic version of conflict-free Petri nets,
in which each marking (i.e., configuration) is associated
with a transition probability function characterizing the
firing of each enabled transition. We investigate through
a technique recently developed in [11] (called the val-
uation method) a number of important dependability-
related problems, including termination with probabil-
ity 1, self-stabilization with probability 1, and controlla-
bility with probability 1, etc. The idea of the valuation-

based approach for Petri nets is to associate a valuation
in {0, 1, 2, ...∞} with each marking, and if the set of
markings of zero valuation is forward-closed, then the
valuation along any computation is non-increasing, and
in many cases, has the tendency to move towards the
ground level (i.e., valuation zero) of which the marking
sometimes constitute the set of states of interest, e.g.,
the termination set.

The main contribution of this paper lies in the devel-
opment of a unified approach (extending of the work of
[11]) for reasoning about various dependability-related
problems for probabilistic conflict-free Petri nets. In
addition to the results themselves, we feel that the
valuation-based approach for the analysis of probabilis-
tic conflict-free Petri net is also interesting in its own
right, and may have other applications to the analysis of
other probabilistic Petri net models. The remainder of
this paper is organized as follows. In Section 2, we de-
fine the probabilistic version of Petri nets on which the
type of systems under consideration is based. The nota-
tions and definitions used throughout this paper as well
as the dependability-related problems under investiga-
tion are also explained in this section. In Section 3, we
develop the basic theory behind the valuation-based ap-
proach for probabilistic conflict-free Petri nets to solve
those problems defined in Section 2 in a unified frame-
work. Finally, a conclusion and directions for future re-
search are given in Section 4.

2. Preliminaries

2.1. Definitions and notations

Let N denote the set of nonnegative integers, and Nk

the set of vectors of k nonnegative integers. A Petri net
(PN, for short) is a 3-tuple (P,T,ϕ), where

• P is a finite set of places,

• T is a finite set of transitions, and

• ϕ is a flow function ϕ : (P × T) ∪ (T × P) →{0,1}.

In this paper, k is reserved for |P| (the number of places
in P). A marking is a mapping µ : P → N. (µ assigns
tokens to each place of the net.) Pictorially, Petri net
is a directed, bipartite graph consisting of two kinds of
nodes: places (represented by circles within which each
small black dot denotes a token) and transitions (repre-
sented by bars or boxes), where each arc is either from
a place to a transition or vice versa. See Figure 1.

A transition t ∈ T is enabled at a marking µ iff for
every p ∈ P, ϕ(p, t) ≤ µ(p). In a PN (P,T,ϕ), a transi-
tion t may fire at a marking µ if t is enabled at µ; we then

write µ
t�−→ µ′, where µ′(p) = µ(p) – ϕ(p,t) + ϕ(t,p) for
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all p ∈ P. (We also write µ → µ′ to denote the reach-
ability of µ′ from µ in one step.) A sequence of transi-
tions σ = t1...tn is a firing sequence from µ0 in a PN

iff µ0
t1�−→ µ1

t2�−→ · · · tn�−→ µn, for some sequence of
markings µ1,...,µn; we also write µ0

σ�−→ µn. In a PN,
we write µ0

σ�−→ to denote that σ is enabled and can
be fired from µ0, i.e., µ0

σ�−→ iff there exists a marking
µ such that µ0

σ�−→ µ. An infinite sequence σ is a fir-
ing sequence from µ, written as µ

σ�−→, iff for every fi-

nite prefix σ′ of σ, µ
σ′
�−→. We write µ

∗�−→ µ′ to denote
the existence of a firing sequence σ such that µ

σ�−→ µ′.
The reachability set of a PN P with respect to ini-

tial marking µ0 is the set R(P, µ0) = {µ | µ0
σ�−→ µ for

some σ ∈ T ∗}. Given a set of markings S, the succes-
sor (resp., predecessor) of S, written as succ(S) (resp.,

pred(S)), is the set {µ | ∃t ∈ T, µ′ ∈ S, µ′ t�−→
µ} (resp., {µ | ∃t ∈ T, µ′ ∈ S, µ

t�−→ µ′}). Let
pred∗ (resp., succ∗) be the reflexive and transitive clo-
sure of pred (resp., succ). (That is, succ∗(S) = {µ |
∃µ′ ∈ S, µ′ ∗�−→ µ}, and pred∗(S) = {µ | ∃µ′ ∈
S, µ

∗�−→ µ′}.) The sets succ∗(S) and pred∗(S) will
be referred to as the forward reachability set and the
backward reachability set of S, respectively. Notice that
R(P, µ0) = succ∗({µ0}). A set of markings S is said

to be forward-closed if ∀µ ∈ S,∀t ∈ T, µ
t�−→ µ′ im-

plies µ′ ∈ S. An infinite computation µ1
t1�−→ µ2

t2�−→
· · ·µi

ti�−→ µi+1 · · · is fair if for every transition t, if t is
enabled at infinitely many µil

(l ≥ 1), then there exist
infinitely many jl (l ≥ 1) such that tjl

= t. (In words,
if a transition is enabled infinitely many times, then the
transition must occur infinitely often as well.) See, e.g.,
[9, 10] for more about Petri nets and their related prob-
lems.

Our analytical model is based on the model of prob-
abilistic Petri nets, which is defined as a 4-tuple
(P ,T ,ϕ,p), where P, T, and ϕ are the same as those de-
fined earlier, and p : M × T → [0,1] is the tran-
sition probability function such that ∀µ ∈ M,∑

t∈T pµ(t) = 1. (Here M denotes the set of all mark-
ings.) In words, a probabilistic Petri net associates each
marking µ ∈ M with an individual transition probabil-
ity function.

Of note is that pµ(t) is indeed a conditional prob-
ability of firing a transition t given the system being
at marking µ (sometimes denoted by Pr(t | µ) as of-
ten seen in probability textbooks); hence it may differ
from pµ′(t) once µ′ 
= µ. A path of a probabilistic Petri
net P=(P, T, ϕ, p) is a nonempty (finite or infinite) se-

quence µ1
t1�−→ µ2

t2�−→ · · ·µi
ti�−→ µi+1 · · · of alterna-

tive markings and transitions, such that µi ∈ M, ti ∈ T
and pµi

(ti) > 0 for all i ≥ 0. For each µ ∈ M, let Πµ

denote the set of all infinite paths starting from µ, and
Bµ ⊆ 2Πµ the smallest σ-algebra of measurable sub-
sets that contains all the cylindrical sets

Πµ(σ1) ≡ {σ ∈ Πµ | σ1 is a prefix of σ},
where σ1 ranging over the finite paths starting from µ.
The probability measure π on Bµ is defined so that for

each cylindrical set containing prefix σ1, say µ1
t1�−→

µ2
t2�−→ · · ·µn−1

tn−1�−→ µn, we have

π(Πµ(σ1)) = Pr(σ1), where Pr(σ1) =
n−1∏

i=1

pµi
(ti).

Those probabilities for paths following a prefix give rise
to a unique probability measure on Bµ.

For ease of expression, the following notations will
be used throughout the rest of this paper. Let σ, σ′ be
transition sequences, and t be a transition.

• #σ(t) represents the number of occurrences of t in
σ.

• Tr(σ) = {t|t ∈ T, #σ(t) > 0}, denoting the set
of transitions used in σ.

• σ . σ′ is defined inductively as follows. Suppose
σ′ = t1...tn. Let σ0 be σ. If ti is in σi−1, let σi

be σi−1 with the leftmost occurrence of ti deleted;
otherwise, let σi = σi−1. Finally, let σ . σ′ = σn.
For instance, if σ = t1t2t3t4t5 and σ′ = t1t3t4,
then σ . σ′ = t2t5. Intuitively, σ . σ′ represents
the transition sequence resulting from removing
each transition of σ′ from the leftmost occurrence
of such a transition in σ (if the transition exists).

Given a computation µ0
σ�−→ µ, a sequence σ′ is said

to be a rearrangement of σ if #σ(t) = #σ′(t),∀t ∈ T ,

and µ0
σ′
�−→ µ.

2.2. Dependability-related problems

In this paper, we focus on the following
dependability-related problems:

• The termination with probability 1 problem:
Given a probabilistic PN P and a set of mark-
ings S (called the termination set), and let
ΠS

µ represent the set of computations reach-
ing S from marking µ, the problem is to com-
pute the set TPr=1(P, S) = {µ | the probabil-
ity of reaching S from marking µ is one, i.e.,
Pr(ΠS

µ) = 1}.

• The self-stabilization with probability 1 problem:
In spite of having some non-self-stabilizing com-
putations, in practice a system might be considered
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Figure 2. Non-self-stabilizing computa-
tions. (See top two paths.)

fault-tolerant if the probability of the system be-
ing self-stabilized equals one. Given a probabilis-
tic PN P with initial marking µ0, a computation σ
from marking µ1 is said to be non-self-stabilizing
iff one of the following holds:

(1) σ (µ1 → µ2 → · · · → µm, for some m) is fi-
nite such that µm is a ‘dead’ marking (i.e.,
µm has no immediate successor in P) and
µm 
∈ R(P, µ0), or

(2) σ (µ1 → µ2 → · · · → µi → · · ·) is infinite
such that ∀i ≥ 1, µi 
∈ R(P, µ0).

See Figure 2. Let ΠNSS
µ denote the set of non-

self-stabilizing computations with respect to
R(P, µ0) from marking µ. The self-stabilization
with probability 1 problem is to compute the set
SSPr=1(P, µ0) = {µ | the probability of reaching
R(P, µ0) from µ is one; or Pr(Πµ \ ΠNSS

µ ) = 1,
i.e., Pr(ΠNSS

µ ) = 0}, where the difference
Πµ \ ΠS

µ ≡ {σ | σ ∈ Πµ, σ /∈ Πs
µ}.

• The controllability with probability 1 problem: A
controlled PN is simply a PN (P, T, ϕ) with its
set of transitions T being partitioned into Tc (the
set of controllable transitions) and Tu (the set of
uncontrollable transitions). A control policy is a
mapping Nk → 2Tc . (What it means is that at
each marking, the control policy selects a subset of
controllable transitions from which the next tran-
sition to fire must come, unless the next transition
is an uncontrollable transition.) In order to cope
with the situation when the probability-embedded
controllable transitions are disabled, we have to

make an assumption about the restricted behavior
of the pcf-PN under control. As a general setting,
e.g., [7, 5], for supervisory control of probabilis-
tic systems, the supervisor will dynamically dis-
able certain set of controllable transitions such that
the occurrence probability of disabled transitions
becomes zero, whereas the occurrence probability
of the remaining enabled transitions, inclusive of
uncontrollable transitions, is increased in propor-
tion to their probability in the uncontrolled system.
The same assumption is considered herein about
probabilistic PNs in that the occurrence probabil-
ity of the transition t enabled by control policy h
at marking µ is given by

Pr(t | h enables Γµ) = Pr(t | t′ ∈ Γµ)

=
pµ(t)∑

t′∈Γµ
pµ(t′)

(1)

where Γµ is the set of transitions enabled under
h at marking µ. Let ΠS̄

µ(h) denote the set of the
infinite computations from marking µ that always
avoid S under the control policy h regardless of
how such computations are interleaved with tran-
sitions in Tu. The controllability with probability
1 problem is that of, given a controlled probabilis-
tic PN and a set S of forbidden markings, com-
puting the set CPr=1(P, S) = {µ | there exists
a control policy h under which the probability of
never reaching a marking in S from µ is one, i.e.,
Pr(ΠS̄

µ(h)) = 1}. Intuitively, CPr=1(P, S) repre-
sents the set of markings from which the computa-
tion can be controlled with probability one to stay
away from S. The interested reader is referred to
[3] for more about controlled Petri nets and the re-
lated issues.

3. Valuation-based Dependability Analysis

Given a PN P =(P, T, ϕ), the idea of the valuation
method is to devise a valuation function f : Nk →
N ∪ {∞}, which maps each marking µ to a value
in N ∪ {∞}. Such a value f(µ) is called the valua-
tion of the marking. Furthermore, if the set of mark-
ings of zero valuation is forward-closed, then the valua-
tion along any Petri net computation is non-increasing,
and in many cases, has the tendency to move towards
the ground level (i.e., valuation zero). A valuation func-
tion f is said to be monotone if for every marking µ, if

µ
t�−→ µ′ (for some marking µ′ and transition t), then

f(µ) ≥ f(µ′). It is obvious that if f is monotone and
µ

σ�−→ µ′ (where σ ∈ T ∗), then f(µ) ≥ f(µ′).
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In this paper, we mainly focus on the following
subclass of probabilistic Petri nets named probabilistic
conflict-free Petri nets (pcf-PNs, for short):

1. |p•| ≤ 1, or ∀t ∈ p•, t and p are on a self-loop
(i.e., t ∈ (p• ∩ •p)),where p• = {t | ϕ(p, t) > 0}
(resp., •p = {t | ϕ(t, p) > 0}) represents the set of
output (resp., input) transitions of place p, and

2. with each marking µ we associate a transition
probability distribution pµ such that pµ(t) > 0 rep-
resents the probability of firing the enabled transi-
tion t at µ, and

∑
t∈T pµ(t) = 1.

As Condition 1 above indicates, a conflict-free PN re-
quires every place being an input of more than one tran-
sition to be in a self-loop with each such transition,
hence if a transition becomes enabled, the only way to
disable it is to fire itself [6] (i.e., ∀t, t′ ∈ T, t 
= t′,

µ
t�−→ µ′ and µ

t′�−→ implies µ′ t′�−→.). In words, a pcf-
PN is a conflict-free PN extended with conditional prob-
ability on the firing of each transition enabled at a given
marking.

Example 1 Figure 1 illustrates a conflict-free PN de-
scribing a system consisting of m producers and one
consumer. The i-th producer iterates a loop consisting
of a sequence of two actions, produce (denoted by pi)
followed by send (denoted by si), whereas the con-
sumer iterates a loop containing the actions of receive
(denoted by r) and consume (denoted by c).

Given a conflict-free PN P=(P, T, ϕ) and a set of
markings S, the following valuation function f will be
used throughout the rest of this paper: f(µ) is defined
to be the length of the shortest path from µ to a mark-
ing in S; if µ cannot reach S, f(µ) is ∞. Notice that
∀µ ∈ S, f(µ) = 0 (i.e., S defines the set of markings
of zero valuation). What follows is another way to view
such a valuation function. We partition Nk into a se-
quence of disjoint sets of markings U0, U1, ..., U∞ such
that

U0 = S

U1 = (pred(U0)) − U0

...

Ui = (pred(Ui−1)) − (∪j=0,...,i−1Uj), i ≥ 1

U∞ = Nk − (∪j≥0Uj)

It is not hard to see that f(µ) = i iff µ ∈ Ui.
Before getting into the details of our analysis, we re-

quire a lemma concerning conflict-free PNs as well as
the valuation function defined above.

Lemma 1 (from Lemma 3.1 in [11]) Given a conflict-
free PN P and a forward-closed set S, let f be the val-
uation function based upon the shortest path criterion
defined above. The following hold:

(1) f is always monotone,

(2) For an arbitrary µ and a path µ
δ�−→ µ′′,

if µ
σ�−→ µ′ (µ′ ∈ S) is one of the short-

est paths reaching S and Tr(δ)∩Tr(σ) 
= ∅, then
f(µ′′) < f(µ). What this statement says is that if
δ uses some transition(s) belonging to the short-
est path to S, then δ will constitute a drop in valu-
ation.

Proof: For the sake of completeness, we provide a
proof sketch in the following. For (1), it suffices to show

that µ
t�−→ µ1 implies f(µ) ≥ f(µ1). Consider the fol-

lowing cases:

(a) (f(µ) = ∞:) In this case, f(µ1) = ∞.

(b) (0 < f(µ) < ∞:) Let µ
σ�−→ µ′ be one of the

shortest paths reaching S. Consider two cases:

(i) If t 
∈ Tr(σ), ∃µ′′ such that µ′ t�−→ µ′′ and
µ′′ ∈ S (since S is forward-closed). Clearly,
µ1

σ�−→ µ′′, and f(µ1) ≤ f(µ) follows.

(ii) If t ∈ Tr(σ), let µ
σ1�−→ µ2

t�−→ µ3
σ2�−→ µ′

for some µ2, µ3, and t is not in σ1. Due to
PN being conflict-free, µ1

σ1�−→ µ3
σ2�−→ µ′;

hence, f(µ1) ≤ f(µ) − 1.

Figure 3 illustrates the monotone property of the valua-
tion function for paths in a conflict-free PN.

Now consider (2). Due to Tr(δ) ∩ Tr(σ) 
= ∅, there
must exist a first occurrence of transition, say t ∈ T ,
along δ as well as σ such that (see Figure 4)

• σ = σ1tσ2 and µ
σ1�−→ µ1

t�−→ µ2
σ2�−→ µ′, for

some σ1, σ2 ∈ T ∗, and µ1, µ2,and

• δ = δ1tδ2 and µ
δ1�−→ µ̄

t�−→ µ̄1
δ2�−→ µ′′, for some

δ1, δ2 ∈ T ∗, and µ̄, µ̄1.

Again, due to PN P being conflict-free, it is not hard to
see that µ̄1

σ1�−→ µ̄2, for some µ̄2, and µ̄2
σ2�−→ µ̄′ for

some µ̄′ ∈ S. Hence µ̄1
σ1σ2�−→ µ̄′ ∈ S. (See Figure 4)

Hence, f(µ̄1) ≤ |σ1σ2| = f(µ)− 1. Using the result of

(1) and the fact that µ̄1
δ2�−→ µ′′, (2) follows.

It should be noticed that being conflict-free plays an
important role in Lemma 1 as the following example in-
dicates.

Example 2 Consider a non-conflict-free PN P shown
in Figure 5. (In P , t and t′ are in conflict with each
other.) The initial marking is (1, 0, 0, 0) (i.e., one to-
ken in p1 while p2, p3, and p4 are empty) and suppose
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Lemma 1.

S = {(0, 0, 0, 1)}, which is clearly forward-closed as
none of the transitions is enabled in S. From the easy

fact that f((1, 0, 0, 0)) = 1, (1, 0, 0, 0) t′�−→ (0, 1, 0, 0)
and f(0, 1, 0, 0) = 2, the monotonicity property does
not hold for P .

Now we are in a position to reason about the list
of problems mentioned in Section 2 for pcf-PNs in the
framework of the valuation method.

Theorem 1 Given a pcf-PN P=(P ,T ,ϕ,p), and
a forward-closed termination set S, if there ex-
ists no path from µ leading to ‘dead’ marking beyond
S, then µ ∈ TPr=1(P, S) iff µ ∈ pred∗(S).

p1
t’ p

pp

2

34

t

Figure 5. A non-conflict-free Petri net.

Proof: We let f(µ) = 0, ∀µ ∈ S. Clearly, if
µ 
∈ pred∗(S), then there exists no firing sequence
σ such that µ

σ�−→ µ′ ∈ S; hence µ /∈ TPr=1(P, S).
The only-if part follows. Now we show the if part, i.e.,
µ ∈ pred∗(S) =⇒ µ ∈ TPr=1(P, S). Suppose, in con-
trast, that µ ∈ pred∗(S), yet µ /∈ TPr=1(P, S);
i.e., Pr(ΠS

µ) < 1 or Pr(Πµ \ ΠS
µ) > 0. Since no

‘dead’ markings reachable from µ beyond S, ev-
ery computation σ ∈ Πµ \ ΠS

µ is infinite. According
to Lemma 1, there shall exist a marking µ1, and com-
putations σ1 and σ2 such that µ

σ1�−→ µ1
σ2�−→,

f(µ) ≥ f(µ1) > 0, and the valuation along µ1
σ2�−→ re-

mains f(µ1). Let µ1
t1t2···ti�−→ µ′ be one of the short-

est paths reaching some marking in S. If t1 ∈ Tr(σ2),
then the valuation along σ2 must eventually drop below
f(µ1) (Lemma 1), which is a contradiction. Now, con-
sider the case for which t1 
∈ Tr(σ2). For the path of
σ2, say µ1

x1�−→ µ2
x2�−→ · · ·µn

xn�−→ · · ·, let Xi be the
random variable assuming the value of the i-th transi-
tion, namely xi, along the path, and TS

µi
the set of tran-

sitions being able to transfer µi to markings in S when
fired. Since t1 
∈ Tr(σ2), t1 would have been en-
abled infinitely often without being fired along σ2.
Hence, let C = maxσ∈Πµ\ΠS

µ , σ=σ1σ2 Pr(σ1), we have

Pr(Πµ \ ΠS
µ) =

∑

σ∈Πµ\ΠS
µ , σ=σ1σ2

Pr(σ1)Pr(σ2)

≤ C ·
∑

σ∈Πµ\ΠS
µ , σ=σ1σ2

Pr(σ2)

= C · lim
n→∞

n∏

i=1

Pr(Xi 
∈ (TS
µi

⋃
{t1}))

≤ C · lim
n→∞

n∏

i=1

Pr(Xi 
= t1)

≤ C · 0 (as Pr(Xi 
= t1) = 1 − Pµi
(t1) < 1)

= 0.

Proceedings of the 10th IEEE Pacific Rim International Symposium on Dependable Computing (PRDC’04) 

0-7695-2076-6/04 $20.00 © 2004 IEEE



– again a contradiction. Our theorem follows.

Theorem 2 Given a pcf-PN P=(P ,T ,ϕ,p) and
an initial marking µ0, µ ∈ SSPr=1(P, µ0) iff
µ ∈ pred∗(R(P, µ0)).

Proof: Clearly R(P, µ0) is forward-closed. We
let the valuations of those markings in R(P, µ0) be
zero. If µ 
∈ pred∗(R(P, µ0)), none of the (finite
or infinite) computations can reach R(P, µ0); hence
µ 
∈ SSPr=1(P, µ0). The only-if-part follows. Now
we prove the if-part, i.e., µ ∈ pred∗(R(P, µ0)) =⇒
µ ∈ SSPr=1(P, µ0). Following an argument similar
to the proof of Theorem 1 with Πµ \ ΠS

µ being sub-
stituted for ΠNSS

µ , we have Pr(ΠNSS
µ )=0; or the proba-

bility of reaching R(P, µ0) from µ is one. Hence µ ∈
SSPr=1(P, µ0).

Theorem 3 Given a controlled pcf-PN P=(P , Tu∪Tc,
ϕ,p) and a forward-closed set S of forbidden markings,
µ ∈ CPr=1(P, S) iff µ 
∈ pred∗(S).

Proof: It is obvious that if µ 
∈ pred∗(S), any
computation from µ (regardless of whether it is con-
trolled or not) never encounters S. It suffices to show
that µ ∈ pred∗(S) =⇒ µ /∈ CPr=1(P, S); i.e., any
computation has the tendency to move towards S with
nonzero probability, in spite of the presence of a con-
trol policy. Suppose, in contrast, that µ ∈ pred∗(S),
yet µ ∈ CPr=1(P, S); i.e., there exists a control pol-
icy h such that Pr(ΠS̄

µ(h)) = 1. It is clear that any σ ∈
ΠS̄

µ(h) can be decomposed into δ0σ1δ1 · · ·σmδmσm+1

such that δ0, δ1, ..., δm ∈ (Tu)∗, σ1, ..., σm ∈ (Tc)∗,
and σm+1 is an infinite computation consisting of tran-
sitions from Tc. (As transitions in Tu cannot be disabled
by the control policy, one may view the δ0, δ1, ..., δm

segments as the steps performed by an ‘adversary’ try-
ing to force the computation into S. This explains why
the infinite suffix computation σm+1 is assumed to use
transitions in Tc only.) In words, σ can be decomposed
into µ

σ1�−→ µ1
σ2�−→ for some marking µ1, and compu-

tations σ1 and σ2 such that f(µ) ≥ f(µ1) > 0, and the
valuation along µ1

σ2�−→ remains f(µ1). Using an argu-
ment parallels to the proof of Theorem 1 with Πµ \ ΠS

µ

being substituted for ΠS̄
µ(h) and pµi

(t1) being substi-

tuted for
pµi

(t1)∑
t∈Γµi

pµi
(t)

(refer to equation (1)) in the

derivation of occurrence probability of σ2, the path σ2

must eventually enter S under the control policy h – a
contradiction.

The following known result serves as a vehicle for us
to compute the forward and backward reachability sets,
which play a vital role in using the valuation method as
our earlier theorems show.

Lemma 2 (Howell et al. [4]) Given a conflict-free PN
P=(P, T, ϕ) and a marking µ0, we can construct in
nondeterministic polynomial time a system of linear in-
equalities L(P, µ0, µ) (of size bounded by a polynomial
in the size of P) such that µ ∈ R(P, µ0) iff L(P, µ0, µ)
has an integer solution. Furthermore, L(P, µ0, µ) re-
mains linear even if µ0 and µ are replaced by vari-
ables. (The reader is referred to Lemma 4.3 in [4] for
a detailed description of the system of linear inequali-
ties associated with L(P, µ0, µ).)

What Lemma 2 says is that checking reachability for
conflict-free PNs can be equated with solving the in-
teger linear programming problem, which is known to
be in NP. It is important to point out that, as µ0 and µ
can be regarded as variables, the forward and backward
reachability sets are readily expressible in terms of in-
teger linear programming.

Theorems 1-3, in conjunction with Lemma 2, imme-
diately yield the following result.

Theorem 4 Given a pcf-PN P and a forward-closed
set S expressible in integer linear programming,
the following sets are computable: TPr=1(P, S),
SSPr=1(P, µ0) (assuming P satisfies the condi-
tion stated in Theorem 1), and CPr=1(P, S).

4. Summary and directions for future re-
search

We have demonstrated, through a valuation-based
strategy, effective procedures for solving problems as-
sociated with a number of dependability-related
properties such as termination with probability 1,
self-stabilization with probability 1, and controlla-
bility with probability 1 in a unified framework. One
direction of future research is to see whether the
valuation-based strategy has applications to other sub-
classes of probabilistic Petri nets. Another issue
that deserves further investigation is the enhance-
ment of probabilistic models and valuation methods for
describing and reasoning about different dependabil-
ity properties of real-time systems, as many real-world
systems are of real-time nature.
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