Fault-tolerant wormhole routing algorithm for mesh

networks

P.-H.Sui and S.-D.Wang

Abstract: A multicomputer system can hardly avoid having faulty components in the real world.
A good fault-tolerant routing scheme should tolerate as many fault patterns as possible and, hence,
reduce the number of disabled functional nodes. The authors consider disconnected unsurrounded
faults, i.e. all disconnected faults discussed in the literature. In disconnected unsurrounded fault
models, there is no restriction on the shapes of faults. In the proposed routing scheme, a message
always leaves each f-ring encountered at an appropriate node such that no message will encounter
the same f-ring again and therefore never get trapped in faults.

1 Introduction

Direct networks have become a popular means for inter-
connecting components of multicomputers. In direct
network, nodes (computers) are connected to only a few
nodes, their neighbours, according to the topology of the
network, and communicate with each other by passing
messages. The n-dimensional (D) mesh network is
currently the most popular topology for multicomputer
systems. Low dimensional mesh networks, due to their
low node degree, are more popular than high dimensional
mesh networks. The 2D mesh topology has been adopted
by Symult 2010 [1], Intel Touchstone DELTA [2] and Intel
paragon; the MIT J-machine adopts 3D mesh topology.
Network latency is one of the major factors to affect the
performance of a multicomputer system. In order to mini-
mise network latency, the wormhole switching technique
has been widely used in the current generation multi-
computers. In the wormhole technique, a message is
divided into packets and a packet is composed of flow
control digits or flits. The header flit governs the route. As
the header advances along a specific route, the remaining
flits follow in a pipeline fashion. If the header encounters a
busy channel, it is blocked until the channel becomes
available, and all the flits in the same packet remain in
the flit buffers along the specified route. A survey of
wormhole routing for direct networks can be found in [4].
A multicomputer system can hardly avoid having faulty
components in the real world. Fault-tolerant routing in
direct networks has been the subject of extensive research
in recent years [5—19]. Chien and Kim [10] present a
partial adaptive routing algorithm for k-ary n-cubes and
multi-dimensional meshes. Every fault needs to be
augmented, by disabling functional nodes, to form rectan-
gular faults, or convex faults in [10], to assure the correct-

© IEE, 2000
IEE Proceedings online no. 20000187
DOI: 10.1049/ip-cdt:20000187

Paper first received 5th March 1999 and in revised form 9th November
1999

The authors are with the Department of Electrical Engineering, EE
building, Rm. 441, National Taiwan University, Taipei 106, Taiwan

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

ness of their method. Boppana and Chalasani [12—14]
proposed a method to enhance current routing algorithms
for fault-tolerant routing. The concepts of a fault-ring (f-
ring) and a fault-chain (f-chain) are introduced and are
used for routing messages around rectangular faults. Sui
and Wang [15] improved the routing algorithm proposed
by Boppana and Chalasani. Su and Shin [17] proposed an
adaptive routing algorithm for meshes and hypercubes,
where a given interconnection network is decomposed
into two virtual interconnection networks, VIN, and
VIN,. VIN, supports deterministic deadlock-free routing
and VIN, supports fully adaptive routing. In nD meshes,
their algorithm tolerates disconnected rectangular faults.

In a real multicomputer system, nonrectangular faults
may occur. In [18], Chalasani and Boppana introduced the
solid fault model, which can reduce the number of disabled
nodes. Solid faults include all convex faults and many
nonconvex faults, such as faults in the shape of L and T.
Messages blocked by faults are routed along the fault ring
either clockwise or counter-clockwise. Overlapped fault
rings are not allowed in [18]. Kim and Han [19] also
proposed a fault-tolerant routing algorithm, which is an
extension of the algorithm proposed in [18]. The algorithm
in [19] can tolerate any number of overlapped f-rings and f-
chains based on the solid fault model.

Since nonrectangular and nonsolid faults may occur in a
multicomputer system, a good fault-tolerant scheme should
tolerate a large class of fault patterns so as to reduce the
number of disabled functional nodes. We consider discon-
nected unsurrounded faults, i.e. all disconnected faults
discussed in the literature. In our routing scheme, messages
never encounter the same f-ring more than once. Each
routing algorithm uses a different amount of fault informa-
tion from the network to route messages. The more the
fault information used, the higher the probability that the
messages can avoid faults and, hence, can achieve better
network performance. It is expensive to collect and distri-
bute detailed fault information, however. In this paper, we
develop routing algorithms that include a little pre-work to
set node status. Only local information is needed while
routing messages, i.e. each node need only to know the
status of its neighbours. Since only local information is
used in our algorithm, messages may encounter faults and
may block each other.

2 Preliminary

An n-dimensional mesh has &, k,_,... k, nodes, k;
nodes along dimension i, 0 <i<n — 1, and k; >2. Each
node x is uniquely indexed by an n-tuple (x,_,,
X,_2,...,Xg), where 0 <x; <k; — 1. Two nodes x=(x,_,,
Xp_ny---sXp)and y=,_1, ¥p_o - - -, ¥p) are neighbours if
and only if x; =y, for all i except one, j, where x; =y, £ 1.
Each node has from n to 2n neighbours up to its location
on the mesh. Neighbouring nodes are connected by a direct
link implemented by two unidirectional physical channels
with opposite directions. The four sides of a 2D mesh are
hereafter labelled North, East, South and West.

A fault block is a set of connected faulty nodes and/or
links. Channels incident to faulty nodes are considered
faulty. In this paper, we assume that no fault touches the
mesh boundaries. Therefore, an f~ring consists of fault-free
nodes, and links can always be formed around each fault
block. By exchanging link status to nonfaulty neighbours,
each node can easily know its position on an f-ring. A node
on an f-ring is a NE (NW, SE, SW) node, if all of its links
are good and links to the South and West (South and East,
North and West, North and East, respectively), are on the f-
ring. In Fig. 1, nodes (13, 8) and (13, 0) are NE and NW
nodes, respectively, on the f-ring of F1.

Two fault blocks are connected if their f-rings share
some common channels; otherwise, they are discon-
nected. A fault block F1 is surrounded by fault block
F2 if a node (x;, y,) exists on the fring of Fl, and two
nodes (x,, ¥,) and (x;, y3) exist on the fring of F2 such

o
(0,0)

Fig. 1 2D mesh with three disconnected faulty regions

Pass one of node identification:

that x, <x; <x; or y, <y; <y;. Similarly, a node (x, y) is
surrounded by an f-ring if two nodes (x,, y,) and (x5, ¥3)
exist on the fring such that x, <x<x; or y, <y<ys.
Faults that are not surrounded by any other faults are
unsurrounded faults. Fig. 1 shows a 2D mesh with three
disconnected faults: F1, F2 and F3. In Fig. 1, filled circles
indicate faulty nodes, and heavy lines indicate f-rings. The
combination of faults F1 and F2 is not allowed in the
unsurrounded fault model, for F2 is surrounded by F1. In a
2D mesh, the set of nodes on an f-ring with the largest
(smallest) index value in dimension 0 is the Emax (Emin)
of the fring, and the set of nodes that has the largest
(smallest) index value in dimension 1 is the Nmax (Nmin)
of the f~ring. Nodes in each of the four sets (Emax, Emin,
Nmax and Nmin) are not necessarily contiguous or in some
kind of order, for the faults could be of any shape. For
instance, the Nmax of F1 contains nodes (13,0), (13,1),
(13,2), (13,6), (13,7), and (13,8).

A two-pass process is proposed for node identification.
In pass one, node informations of f-rings are collected.
Each NE node, say (x;, ¥;), sends a message along the f-
ring in C.C.W. The message contains the co-ordinate of the
NE node and four fields, DOmax, DOmin, DImax and
DImin. The four fields are used to record the maximal
and minimal index values in dimensions 0 and 1 of all
nodes on the fring. Each node, say (x,, y,), of types NE,
NW, SE and SW intercepts and processes the message. In
order to reduce network traffic and avoid deadlock some of
the messages are aborted.

Only the message generated by the East-most North-
most node survived after a certain amount of time, for all
other messages will eventually be aborted due to step 1 in
Fig. 2. The maximal and minimal index values in dimen-
sions 0 and 1 of all nodes on the f-ring are recorded in
DOmax, DOmin, DIlmax and Dlmin after the message
returns to the East-most North-most node. In pass two,
the collected node information is used for node identifica-
tion. In pass two, the East-most North-most nodes send
DOmax, DOmin, D1max and D1min in a message along the
f-ring, again in C.C.W. Each node on the f-ring can easily
decide whether it is a node in Emax, Emin, Nmax or Nmin
by comparing its index value to the values in DOmax,
DOmin, DImax and D1min. We assume that each node
uses six one-bit flags, N, E, S, W, B1 and B2, to indicate its
position on an f-ring. The node that sends a message in
pass two sets B1 directly, for it is the East-most North-most
node on the f-ring. A node with a B2 set indicates that it is
the East-most South-most node on the f-ring.

Nodes in Nmax, Emin, Nmin and Emax are identified
sequentially in steps 1, 2, 3 and 4 in Fig. 3. Step 5 is used
by the East-most South-most node of the f-ring to set its
B2 flag, for it is the node first identified to be in Emax.
The value of Dlmax is equal to 0 after the East-most
South-most node has been identified, no other node can
set B2.

/* assume the message is generated at node (x;, y;) and is intercepted by node (x,,y,)*/

/* DOmax and DOmin are initialised to y,;, and DImax and D1min are initialised to x; */

1. If y, >y, or y, =y; AND x, > x;, abort the message.

2. If x, > Dlmax, Dlmax =ux,, if x, < Dlmin, DImin = x,,

if y, > DOmax, DOmax = y,, if y, < DOmin, DOmax = y,.

3. Forwarding the message to its next neighbour.
Fig. 2 Pass one of node identification

10

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

Pass two of node identification:

/* assume the current node is (x;,y;), and the received message contains DOmax, DOmin, D1max and D1min */

1. If x; = D1max, set N.
2. If y; = DOmin, set W.
3. If x; = Dlmin, set S.
4. If y, = DOmax, set E.

5. If y; = DOmax AND Dlmax # 0, set B2 and DImax = 0.

Fig. 3 Puass two of node identification

3 Fault-tolerant routing

3.1 The FT-Routing algorithm

The well known e-cube routing algorithm is enhanced to be
fault-tolerant in this section. In a 2D mesh, messages are
routed along dimension O first and then routed along
dimension 1. At any node, the first hop of the path,
which is specified by the e-cube algorithm for a message,
is called the e-hop for the message at the node. Messages
are classified into one of the following four types: WE
(West-to-East), EW (East-to-West), NS (North-to-South),
and SN (South-to-North). Two bits in the message header
can represent four message types. WE and EW messages
are called row messages, NS and SN messages are column
messages. Once a row message completes its routing on
dimension 0, it becomes a column message. Thus, row
messages can become column messages, but not vice
versa. Each message is injected into the network as either
a WE message or an EW message, depending on the
relative position of the source and the destination node.
In our routing scheme, the direction of a message is set to
be null, clockwise (C.W.), or counter-clockwise (C.C.W.)
at any instance of time. When a message is newly gener-
ated its direction is set to be null. Procedure Set-Type (Fig.
4) defines the rules of changing a row message to a column
message.

In the fault-free region, messages have null direction and
are routed along their e-hops. If a message header encoun-
ters an f-ring, depending on the message type and its
location on the f-ring, its direction may set to be clockwise
or counter-clockwise. The message is then routed on the f-
ring along its specified direction. The direction is reset to
be null again after bypassing each fault encountered.

If a WE (EW) row message encounters an f-ring at a
node not located at the Emax (Emin) of the f-ring, its
direction is set to be clockwise (counter-clockwise). The
WE (EW) message is then routed on the f-ring along a
clockwise (counter-clockwise) direction until either its
routing on dimension 0 is completed or the Emax (Emin)
of the current f-ring is reached. If the Emax (Emin) has
been reached before the row message completes its routing
on dimension 0, the row message leaves the f-ring at Emax
(Emin); otherwise, it changes into a column message. In
both cases, the row message is reset to have null direction.
If a WE (EW) message is generated in the Emax (Emin), its

Procedure Set-Type (M)

direction remains null. Since WE (EW) row messages
leave every f-ring encountered at the respective East-most
(West-most) column, if they have not yet changed into
column messages, they never encounter the same f-ring
more than once.

When an SN (NS) column message encounters an f-ring
at a node which is not located at the Nmax (Nmin) of the f-
ring, its direction is set to be clockwise (counter-clock-
wise). The SN (NS) column message is then routed on the
fring along a clockwise (counter-clockwise) direction
until reaching its off-node (to be defined below) on the
current f-ring. If an SN (NS) message is generated in the
Nmax (Nmin), it will leave the f~ring directly if its e-hop is
not occupied by another message. The off-node of an SN
(NS) message is the node at which the message leaves the
f-ring, and is used to prevent the message from looping on
the f-ring. This assures that a column message never
encounters the same f-ring more than once. The concept
of the off-node will also help in detecting whether or not
the destination node is surrounded by the fring. We will
use a 1-bit flag, called FLAG, to record this status when
detected. In order to find the off-node, a column message
has to trace the f-ring along its specified direction. We
assume that there is a field in the message header that
holds the index of the candidate off-node and this field can
be updated while the message is tracing on an f-ring. The
candidate off-node is initialised to be the node at which the
column message encounters the f-ring the first time. The
update policy is as follows: each time the SN (NS)
message gets to the destination column, it examines the
index value of the node reached. If the index value in
dimension 1 of this node is larger (smaller) than that of the
candidate off-node, but is smaller (greater) than that of the
destination node, then this node is set to be the candidate
off-node for the SN (NS) message. If the index value of
the visited node in dimension 1 is greater (smaller) than
that of the destination node, the candidate off-node is
unchanged and the SN (NS) message set the 1-bit flag,
FLAG. The candidate off-node becomes the off-node for
the SN (NS) message in the following two cases: a) if the
candidate off-node is in the Nmax (Nmin); b) the candi-
date off-node has been visited the second time after
travelling the entire f-ring. It is noticed that the off-node
for an SN (NS) message is on the destination column. The
index value of the off-node in dimension 1 is smaller

/* Assume that message M is currently at node (c;, ¢;) and destination node is (d;, dy) */

1. If (¢y, ¢y) = (dy, dy), consume M.

2. If M is a row message and ¢, = d,, then

set its direction to be null and change its type to

NS, if ¢; > d,, or SN, if ¢| < d,.
Fig. 4 Procedure Set-Type

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

11

(larger) than, or equal to, that of the destination node, but
is greater (smaller) than that of nodes, which are below
(above) the destination node, on the destination column.
Therefore, no node of the f-ring locates between the off-
node and the destination node of the SN (NS) message on
the destination column.

A column message with its FLAG set means that its
destination node is located in the area surrounded by the f-
ring encountered. When the message gets to its off-node,
the flag is used to guide the selection of virtual channels
such that the column message will not be blocked by other
column messages routing in the surrounded fault-free
area. Fig. 5 shows two NS messages NSI1 and NS2,
whose destinations are dl and d2, respectively. The
FLAG value will be 1 for NS1 when it has traced on
the fring and detected the surrounding situation, and will
be 0 for NS2.

Steps 1, 2, 3 and 4 in Procedure Set-Direction (Fig. 6)
are used for deciding if a message with non-null direction
should be reset to have null direction again. In step 5,
depending on the message type WE, EW, NS or SN, and
whether the current node is a node in the Emax, Emin,
Nmax or Nmin of the f-ring, respectively, the direction of
messages are set to be C.W. or C.C.W. Routing algorithm
FT-Route is given in Fig. 7.

NS2 NS1
o di | I faulty area
O d2

Fig. 5 Two NS messages with different FLAG values

FT-Route (M)
1. Set-Type (M).
2. Set-Direction (M).
3. If the direction of M is null then
route M along its e-hop
else

route M along the specified direction.
Fig. 7 Fault-tolerant routing algorithm

3.2 Usage of virtual channels

In our routing method, four virtual channels per physical
channel are needed. Virtual channels of class i are denoted
as VC;, 0<i<3. WE row messages use VC, in a C.W.
direction, and EW row messages use VC; in a C.C.W.
direction on their journey. Since each column message
routed on an f-ring has to find out its off-node on the f-ring,
it circumvents the f-ring encountered. After visiting all
nodes on the fring, a column message has to use a
different set of virtual channels to get to its off-node so
as not to be blocked by the message itself. Since different
column messages may encounter the same f-ring at a
different node, we define two breaking nodes, where
column messages switch to a different set of virtual
channels, on each f-ring. The East-most North-most node
and the East-most South-most node on each f-ring are the
breaking nodes for NS and SN messages, respectively. An
NS (SN) message uses VCy (VCy) in the fault-free area, if
its FLAG is of value 0. When an f-ring is encountered, it
uses VC, (VC,) before passing through the breaking node.
Depending on the position where the column message
encounters the f-ring, this column message may at most
pass through the breaking node two times before getting to
its off-node. NS (SN) messages use V'C, and V'C; in a C.W.
(C.C.W.) direction after passing through the breaking node
the first and the second time, respectively. If the FLAG is

Procedure Set-Direction (M)/* Assume that message M is currently at (c;, co) */
1. If M is a WE and the direction of M is not null then

if (¢, ¢p) is in the Emax then
set its direction to null
else return

2. If M is an EW and the direction of M is not null then

if (¢y, ¢p) is in the Emin then
set its direction to null

else return

3. If M is an NS and the direction of M is not null then

if (¢, ¢y) is the off-node then
set its direction to null
else return

4. If M is an SN and the direction of M is not null then

if (¢y, ¢p) is the off-node then
set its direction to null
else return

5. If the direction of the WE (EW, SN, NS) message is null and (¢, ¢;) is on an f-ring

but is not a node in the Emax (Emin, Nmax, Nmin) then set its direction to be

C.C.W., if M is an EW or NS message, or

C.W., if M is a WE or SN message.

Fig. 6 Procedure Set-Direction

12

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

set for an NS (SN) message, the NS (SN) message uses
VC, (VCs) between its off-node and its destination node.
The usage of virtual channels is depicted in Fig. 8 and
Table 1. It is clear that the four types of messages use
disjointed virtual channels.

3.3 Example

Let us consider the example of routing message M from
(7,0) to (3,10) in Fig. 9. M begins as a WE message and is
routed along its e-hop to (7,3), where its e-hop is faulty. It
is then misrouted along the f-ring of F1 in a clockwise
orientation to (13,8). Since (13,8) is a node in the Emax of
the f-ring, the direction of M is reset to be null at the node.

WE EW
VCo(C.W.) VC,(C.C.W)
NS SN
l VGCy [VC4(VCy)
VCy, VG, VCq VCy, VCy, VCy
(C.CW) (C.W)
l VCy(VCy) [Ve,

Fig. 8 Usage of virtual channels by WE, EW, NS and SN messages

Table 1: Virtual channels used by messages on f-rings

C.W. C.C.W.
VG, WE NS
VC, SN EW
VG, SN NS
VG, SN NS

(7,0
Fig. 9 4 routing example fiom (7,0) to (3,10)

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

M is then routed along its e-hop to (13,10), where M
becomes an NS message. From node (7,0) to (13,10), M
uses VC,. At (13,10), M is routed along its e-hop to
(12,10), where its e-hop is faulty. It is then routed along
the fring of F2 in the counter-clockwise orientation, and
its candidate off-node is (12,10). Node (10,10) becomes
the candidate off-node for M when the message gets to it,
for its index value in dimension 1 is smaller than that of
the candidate off-node (12,10) and is greater than that of
the destination node (3,10). When M gets to (2,10), the
candidate off-node is still (10,10) and FLAG is set, for the
index value of (2,10) in dimension 1 is smaller than that of
the destination node. Node (5,10) becomes the candidate
off-node when M gets to it. M is then routed along the f-
ring of F2 with its off-node unchanged afterward. From
(13,10) to (6,15), M uses VC,. Since (6,15) is the breaking
node for NS messages, M begins to use VC, at (6,15).
When M gets to (5,10) again, (5,10) becomes the off-node
for M. The direction of M is then reset to null and M is
routed along its e-hop to its destination node (3,10) using
VC,, for the FLAG is set.

3.4. Deadlock-freedom of algorithm FT-Route

We have the following facts: a) each of the four types (EW,
WE, NS and SN) of messages use a disjoint set of virtual
channels; b) row messages (EW and WE) can become
column messages (NS and SN), but not vice-versa; ¢) EW
and WE messages cannot change into each other, and SN
and NS messages cannot change into each other. Thus, to
prove that the algorithm FT-Route is deadlock-free it is
necessary only to prove the deadlock-freedom in each of
the four types of messages. Since the routing schemes for
WE and EW messages are the same, as are the routing
methods for NS and SN messages, we have given proof of
deadlock-freedom for WE and NS messages only.

Lemma 1: No deadlock occurs among WE messages.

Proof: We assign an integer channel number to each virtual
channel in the West-to-East V'C,,. In an X*Y mesh, virtual
channels in VC, from (i, j) to (i, j+ 1) have channel
number j, where 0<i<X —1, 0<;<Y —2. When
faults occur, a non-integer channel number is assigned to
each virtual channel on f-rings. If the top-most node in the
Emax of an f-ring is (x, y), then each virtual channel on the
f-ring is assigned a non-integer channel number between
y—1 and y, 0<y<Y — 2. The channel number is
assigned increasingly from the virtual channel leaving the
top-most node in the Emax to the virtual channel entering
the top-most node in the Emax in a clockwise orientation.
A channel number assignment example is given in Fig. 10.

We have the following facts: a) WE messages routed in a
fault-free region travel virtual channels in an increasing
order of channel number; b) the channel number of any
West-to-East virtual channel entering an f-ring is less than
that of every virtual channel on the f-ring entered; c) WE
messages routed on f-rings travel virtual channels in an
increasing order of channel number; d) the channel number
of the virtual channels leaving an f-ring at the Emax is
larger than that of every virtual channel on the f-ring.
Therefore each WE message travels virtual channels in an
increasing order of channel number on its journey. Hence,
no deadlock occurs among WE messages. O

Lemma 2: No deadlock occurs among EW messages.
Proof: Similar to the proof of lemma 1.

Lemma 3: No deadlock occurs among NS messages.

13

0 1 2 3 4 5 6 7 8
O—PO—PO—PO—PO—PO—PO—PO—PO—PO

6.19 6.20 621 622 623 (8.7)
O—pO—pO O

o
6.18 6.01

o o e o o o
6.17 6.02

o o e o o o
616 6.04 603

o o e o o o o o

6.05

6.15

o o e o o o o
6.14 6

o o o o

07
e o o o
6.13 ie.oe
o o <«—O€4—O€—O o o o
612 611 610 6.09
© o o o o o o o o o

0 1 2 3 4 5 6 o7 8 o
(0,0) 0,9)

Fig. 10 Channel number assignment

Proof: Lemma 3 is proved by showing that no deadlock
can occur among NS messages in the following three
cases: a) on one f-ring, b) on one f-ring and in the fault-
free area surrounded by the f-ring and ¢) on multiple f-
rings.

NS messages routed on f-rings use counter-clockwise
orientation to travel on virtual channels. Each time they
pass through the breaking node, they use a different set of
virtual channels. Depending upon the number of times NS
messages pass through the breaking node, V'C,, VC, and
VC, are used sequentially by NS messages. Since each NS
message can pass through the breaking node two times at
most, three sets of virtual channels are enough to guarantee
that no deadlock can occur among NS messages routed on
one f-ring.

If the destination node of an NS message is located in
the fault-free area surrounded by an f-ring, the value of the
FLAG is 1 when the NS message gets to its off-node on the
fring. Then VC,, instead of VC,, is used by the NS
message in the fault-free area. Hence, the NS message
will not be blocked by any NS message, which may
encounter the fring on its journey, using VC, in the
surrounded fault-free area.

Since a) the off-node, where an NS message leaves an f-
ring, is surely below the node where the NS message enters
the fring; b) each NS message is routed from North to
South in the fault-free area, f-rings are used acyclically by
NS messages. Hence, no deadlock can occur among NS
messages routed on multiple f-rings. [

Lemma 4: No deadlock occurs among SN messages.
Proof: Similar to the proof of lemma 3.
Theorem 1: Algorithm FT-Route is deadlock-free.

Proof: From lemmas 1, 2, 3, and 4, it is clear that no
deadlock would occur among each of the four types of
messages. Thus, the FT-Route is a deadlock-free routing
algorithm. O

4 Conclusion

Most of the fault-tolerant routing schemes in the literature
assume rectangular or solid faults, although in the real
world, it is likely that nonrectangular and nonsolid fault
patterns may occur. A large number of functional nodes
may have to be disabled to transform nonrectangular and
nonsolid faults to rectangular and solid faults. We have
proposed a fault-tolerant routing algorithm for 2D meshes
to handle disconnected unsurrounded faults, this covering
all disconnected faults discussed in the literature. Since
there is no restriction on the shapes of the faults in the
disconnected unsurrounded fault model, the number of
disabled functional nodes can be reduced greatly. The
concept of the f-ring is used in our routing scheme.
Misrouted messages are routed along f-rings until they
reach an appropriate node such that messages never
encounter the same fring more than once. Messages
therefore never get trapped in faults. By fully utilising
virtual channels in C.W. and C.C.W. directions on f-rings,
only four virtual channels per physical channel are needed.

5 References

1 SEITZ,C.L., ATHAS, W.C., FLAIG, C.M., MARTIN, A.J,, SEIZOVIC,
J., STEELE, C.S., and SU, W.K.: ‘The architecture and programming of
the Ametek Series 200 multicomputer’. Proc. 3rd Conference Hypercube
Concurrent Computers and Applications, Jan. 1988, vol. I, pp. 33-36,
Association for Computing Machinery

2 Intel Corp.: ‘A Touchstone DELTA System Description’, 1991

3 DALLY, WJ, and SEITZ, C.L.: ‘Deadlock-free message routing in
multiprocessor interconnection networks’, IEEE Trans. Comput., 1987,
C-36, (5), pp. 547-553

4 NI, LM., and MCKINLEY, PK.: ‘A survey of wormhole routing
techniques in direct networks’, IEEE Comput., 1993, 62-76

5 DALLY, W.J., and AOKI, H.: ‘Deadlock-free adaptive routing in multi-
computer networks using virtual channels’, IEEE Trans. Parallel Distrib.
Syst., 1993, 4, (4), pp. 466475

6 GLASS, CJ, and NI, L.M.: ‘Fault-tolerant wormhole routing in
meshes’. Proc. 23th Ann. Int’l Symp. Fault-Tolerant Computing, 1993,
pp. 240-249

7 LINDER, D.H., and HARDEN, J.C.: ‘An adaptive and fault tolerant
wormhole routing strategy for k-ary n-cubes’, IEEE Trans. Comput.,
1991, 40, (1), pp. 2-12

8 CHEN, M.S., and SHIN, K.G.: ‘Depth-first search approach for fault-
tolerant routing in hypercube multiprocessors’, IEEE Trans. Parallel
Distrib. Syst., 1990, 1, (2), pp. 152-159

9 CHEN, M.S., and SHIN, K.G.: ‘Adaptive Fault-tolerant routing in
multicomputers’, IEEE Trans. Comput., 1990, 39, (12), pp. 1406-1416

10 CHIEN, A.A., and KIM, J.H.: ‘Planar-adaptive routing: low-cost adap-
tive networks for multi-processors’, Proc. 19th Int’'l Symp. Computer
Architecture, 1992, 268-277

11 LEE, T.C., and HAYES, J.P.: ‘A fault-tolerant communication scheme for
hypercube computers’, [EEE Trans. Comput., 1992, 41, (10), pp. 1242—
1256

12 BOPPANA, R.V,, and CHALASSANI, S.: ‘Fault-tolerant routing with
non-adaptive wormhole algorithms in mesh networks’, Supercomput.,
1994, 693-702

13 CHALASSANI, S., and BOPPANA, R.V.: ‘Adaptive fault-tolerant
wormhole routing algorithms with low virtual channels requirements’.
Int’l Symp. Parallel Architecture, and Networks, 1994, pp. 214-221

14 BOPPANA, R.V, and CHALASSANI, S.: ‘Fault-tolerant wormhole
routing algorithms for mesh networks’, IEEE Trans. Comput., 1995,
44, (7), pp. 848-864

15 SUI, PH., and WANG, S.D.: ‘An improved algorithm for fault-tolerant
wormhole routing in meshes’, IEEE Trans. Comput., 1997, 46, (9), pp.
1040-1042

16 CHIU, G.M., and WU, S.P: ‘A fault-tolerant routing strategy in hyper-
cube multicomputers’, [EEE Trans. Comput., 1996, 45, (2), pp. 143-155

17 SU, C.C., and SHIN, K.G.: ‘Adaptive fault-tolerant deadlock-free rout-
ing in meshes and hypercubes’, IEEE Trans. Comput., 1996, 45, (6), pp.
666—682

18 CHALASSANI, S., and BOPPANA, R.V.: ‘Communication in multi-
computers with nonconvex faults’, IEEE Trans. Comput., 1997, 46, (5),
pp. 612—622

19 KIM, S.P, and HAN, T.: ‘Fault-tolerant wormhole routing in mesh with
overlapped solid fault regions’, Parallel Comput., 1997, 23, pp. 1937—
1962

IEE Proc.-Comput. & Digit. Tech., Vol. 147, No. 1, January 2000

	Abstract
	1Introduction
	2Preliminary
	3Fault-tolerant routing
	4Conclusions
	5References

