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ABSTRACT 
This paper is concerned with the definition of the discrete 

fractional Fourier transform (DFRFT). First, an eigende- 
composition of the discrete Fourier transform (DFT) matrix 
is derived by sampling the Hermite Gauss functions which 
are eigenfunctions of the continuous Fourier transform and 
by performing a novel error removal procedure. Then, the 
result of the eigendecomposition of the DFT matrix is used 
to define a new DFRFT. Finally, a numerical example is 
illustrated to demonstrate the proposed DFRFT is a better 
approximation to the continuous fractional Fourier trans- 
form than the conventional defined DFRFT. 

1. INTRODUCTION 

In recent years, many researchers have paid attention to 
the investigation of a new signal processing tool called frac- 
tional Fourier transform (FRFT). This transform has found 
many applications in the solution of differential equation, 
quantum mechanics and quantum optics, and optical sys- 
tems and optical signal processing, swept-frequency filter, 
time-variant filtering and multiplexing,. pattern recognition, 
and study of time-frequency distribution [l]. Besides, the 
FRFT has been proved to relate to other signal analysis 
tools, such as Wigner distribution, neural network, wavelet 
transform and various chirprelated operations [2]. Sever- 
al useful properties of FRFT are currently under study in 
signal processing community [3]. 

So far, many methods for implementing FRFT has been 
developed. However, most of them are to utilize the optical 
instruments or numerical integration. Because the FRFT 
is a potentially useful tool for signal processing, the direct 
computation of FRFT in digital computer has become an 
important issue. Basically, the computation of the discrete 
fractional Fourier transform (DFRFT) needs to obey ad- 
ditivity property and similarity condition. The additivity 
property means that application of the transform with an- 
gular parameter a followed by an application of the trans- 
form with angular parameter p is equivalent to the appli- 
cation of the transform with angular parameter Q + p. The 
similarity condition means that the transform results of D- 
FRFT must be similar to those of the continuous FRFT. 
In [4], a method for digital computing FRFT was proposed, 
but their method does not obey the additivity property and 
the signal can not be recovered from its transform result- 
s. In [5], another DFRFT is defined, but this definition 
does not provide the similar transform results as those of 
continuous case. The purpose of this paper is to present a 
new DFRFT which obey additivity property and similarity 
condition simultaneously. 
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2. EIGENDECOMPOSITION OF THE DFT 
MATRIX 

2.1 The eigenvalues and eigrenvectors of DFT matriz 
Now, we briefly review the properties of the t?igenvalues 

and eigenvectors of the DF'r matrix F whose elements de- 
fined by 

' p ) )  O < n , k < N - l  F,,& = - (cos(-) N - j sin(- 
1 27rkn 
JT 

~~ 

(1) 
From the results in [6][7], the properties can be summarized 
as the following two facts: 
Fact 2 The eigenvalues of F are { 1, -1, j ,  - j }  and its mul- 
tiplicities are listed below: 

N 
4m I m+l I rn 
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m f  1 m+l m 

Fact 2 Let w = 9 and matirix S be 

0 l 1  ... 1 ; 2cos(w) .-. . .  

0 ... 1 

... i 
1 0  * - e  ~cos ( (N  - 1 ) ~ : )  

then it can be shown that FS = SF. 
Because matrix S, with distinct eigenvalues, commutes with 
F, the eigenvectors of S will be the desired set of eigenvec- 
tors of F. Note that S is a real and symmetlic matrix, 
so its eigenvectors will be leal and orthogonal. Although 
Fact 2 can help us to find a real orthogonal eigenvector set 
of the matrix F, this solutxon is not unique because any 
linear combination of the eigenvetors which correspond to 
the same eigenvalue is also im eigenvector. Thus, there ex- 
ist infinite eigendecomposition forms of the DFT matrix. 
If we use the eigendecompoition of the DFT matrix F to 
define the discrete fractional Fourier transform (DFRFT), 
then we have infinite choice. However, under the condition 
that transform results of DFRFT needs to be similar to 
those of continuous FRFT, the eigendecomposition of DFT 
matrix must be found trickly. In the following, we wil l  de- 
rive an eigendecomposition form by sampling the Hermite 
Gauss functons which are ithe eigenfunctions of the con- 
tinuous Fourier transform and by performing a novel error 
removal propcedure. Using the proposed decomposition to 
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define DFRFT, the transform results wil l  obey simialarity 
condition. 

2.2 An eigendecomposition of DFT matriz 
The usual continouos Fourier transform pair is defined as 

. rea 

. rea 

It can be shown that the eigenfunctions of the Fourier trans- 
formation operator are Hermite Gauss function H , ( t ) e - g ,  
where H , ( t )  are the Hermite polynomials of order m. We 
thus have 

Now, we will use this equation to derive an approximate 
eigendecomposition of the DFT matrix. Our derivation is 
mainly based on the following two facts: 
Fact 9: If the sequence gm(n) is obtained by sampling the 

Hermite Gauss function H , ( t ) e T  with sampling interval 
T = fi, i.e., 

- i 2  

+ 
gm(n) = H,(nT)e (4) 

then it can be shown that 

7 r-1 

for sufficiently large N .  
Because the degree of Hermite polynomial Hm(t) is m, 

the decay rate of the Hermite Gauss function H , ( t ) e T  is 
proportional to tme-" for sufficiently large t. And, the larg- 
er order m is, the slower decay rate Hermite Gauss function 
has. Thus, when order m becomes large, the approximation 
in eq(5) become worse. 
Fact 4: If the sequence gm(n) defined in the range [0, N- 13 
is obtained by shifting Hermite Gauss samples gm(n) de- 
fined in the range [+, % - l] in the following way: 

-1' 

then it can be shown that the DFT of the &(n) can be 
approximated by (-j)'"#,(k), i.e., 

7 N-1 

n = O  

for sufficiently large N .  
From the Fact 4, it is clear that &(n) are the approxi- 

mate eigenfunctions of the discrete Fourier transform. Be- 
cause the Hermite Gauss functions are orthogonal each oth- 
er for different orders, the sequences gml(n) and g,2(n) are 
approximately orthogonal for m l  # m2, i.e., 

N-1 

n=O 

Let us define the vectors vm as follows: 

then eq(7) means that 

where V, = & is normalized version of the vector vm. 
Thus, V, is an approximate eigenvector of the DFT matrix 
F corresponding to the eigenvalue (-j),. Although the 
approximate expression in eq(l0) is valid for any order m, 
the DFT matrix F with size N x N only has N eigenvectors 
whose eigenvalues need to satisfy the multiplicity property 
in Fact 1. Thus, we are required to select N orders denoted 
by the set 0 = { m l , m z , . - - , m N }  (ml < m2 < .-. < mN) 
to construct an eigendecomposition of the matrix F. Two 
rules of the selection in this paper is listed as follows: 
(I)  The set {(-j)m1,(-j)m2,.--,(-j)"'N} formed by 
eigenvalues must satisfy the multiplicity property in Fact 
1. 
(2) The approximation error Il(-j)"iiimi -FVmi 11 must be 
less than the error Il(-j)"V, -Fo,ll if m is not in the set 
e. 
Because the approximation error 1[(-j)Wm - FV.,II be- 
comes large when order m increases, a suitable choice of set 
Q which obeys two rules is described in the following table: 

N I  \Y - - { m l , . . . , m N }  
4n I 0.1.2.. .. .4n - 2.4n 

l4n+1 I 0.1.2 . . . e .  4n-11.4n I 
4n+2 I 
4n+3 I 0,1,2,... ,4n + 1,4n + 2 

0, 1 ,2 , .  . - ,4n, 4n + 2 

Based on this choice, an approximate eigendecomposition 
of the DFT matrix F is given by 

N 

F x ~ ( - j ) m i V , , t ~ i  (11) 
i = l  

In order to remove the error in this decomposition, an eigen- 
vector calibration procedure is developed as follows. As- 

be corrected into the eigenvector set {uml, U,', - ,UmN} 
and the vectors from uml to u,,-~ have been obtained. 
Then, the eigenvector U,, is found by minimizing the 
squared error (U,, - om,): subjected to two prescribed 
constraints which are the eigenvector constraint F'u,, = 
(-j)"ku,,  and the orthogonal constraint ufumr = 0 for 
i = ml,  - - , m k - ~ .  After some maniputation, two con- 
straints can be rewritten as matrix form below: 

sumed that the eigenvector set {Vml, vma, - 1 ,B"} will 

C m k - l U m k  = (12) 

where the matrix C,,-, is given by 

Real(F - ( -j),, I) 
Img(F - ( - j ) * k I )  
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The notation Real(.) and Img(.) denote the real part and 
imaginary part of a complex matrix, and I is identity mar- 
tix. Using the QR decomposition, the matrix c,,-, can 
be rewritten as 

Substitute eq(14) into eq(12), the eq(l2) reduces to 

Rmk-,umk = 0 (15) 

If the rank of matrix C,,-, is equal to r, the size of the ma- 
trix R,,-, is r x N. Now, using the well-known Largrange 
multiplier method, the solution of this constrained opti- 
mization problem is given by 

Umk = (I - ~ k _ l ( R m k - l R k ~ _ , ) - l R m k _ l )  vmk (16) 

Finally, the entire eigenvector calibration procedure is sum- 
marized as follows: Given DFT matrix F and the ap- 
proximate eigenvector set {vml, vma,. . , vTN} we take 
the following steps to compute the exact agenvector set 

Step 1: Let matrix Cml be [I - Real(F)',Img(F)'It and 
use eq(16) to find the vector uml. Note that we normalize 
uml to unit norm. Set k = 2. 
Step 2.- Perform the following two computations: 

{Uml U,,, * 

(1) Use the eq(13)(14) to compute the matrix Rmk. 
(2) Use the eq(16) to calculate the vector Umk and nor- 

malize it to unit norm. 
Step 3: Let k = k + 1. If k > N, stop the procedure. Oth- 
erwise go to Step 2. 
After this calibration, the exact eigendecomposition of the 
DFT matrix F is given by 

N 

i = l  

The unique feature of this eigendecomposition is that the 
shape of the eigenvector is similar to the shape of the Her- 
mite Gauss functions which is the eigenfunction of the con- 
tinuous Fourier transform. In the next section, we will use 
this decomposition to define a discrete fractional Fourier 
transform. 

3. NEW DEFINITION O F  DFRFT 
The DFRFT of the data vector x is defined by 

2p Ra[x] = F ,, x 

Since $th power of the DFT matrix F can be calculated 
from its eigendecomposition by taking the F t h  power for 
its eigenvalues, the matrix F* is given by 

N 

i = l  

Because ( - j )mi% = e-jmia , the eigenvalues of the new 
transform matrix F* are consistent with those of the con- 
tinuous FRFT. Moreover, the eigenvectors umi are obtained 
by sampling Hermite Gauss functions with an error removal 
procedure, so the eigenvectors of new DFRFT are similar 

to those of the continuous E'RFT. Due to these two agree- 
ments, the transform result of our DFRFT will be similar 
to that of continuous FRFT. In order to demonstrate the 
advantage of our DFRFT, we consider the FRFT of impulse 
function 6( t ) .  The continuous FRFT of this special signal 
has the closed form formula given by 

Fig.1 shows the continuous l?RFT of the impulse signal for 
various angles a. For compzrision, we examine the DFRFT 
of the pnit sample function (defined by 

1 for n = 0 
0 otherwise 6(n) = 

Fig.2 shows the trasnform result of the DFRFT defined by 
Santhanam and McCleUan [.5], and Fig.3 depicts the result 
of our DFRFT for N = 36. It is clear our result is more 
similar to that of continuous case than the result of the 
conventional DFRFT. 

4. CONCLUSIONS 
In this paper, a new definition of the discrete fractional 
Fourier transform (DFRFT) based on an eigendecomposi- 
tion of DFT matrix has been presented. The eigencomposi- 
tion of the DFT matrix is derived by sampling the Hermite 
Gauss functions which are eigenfunctions of the continuous 
fractional Fourier transform imd by performing a novel error 
removal procedure. A numerical numerical example is illus- 
trated to demonstrate the proposed DFRFT is a better a p  
proximation to the continuous fractional Fourier transform 
than the conventional defined DFRFT. However, the com- 
plexity for implementing DI'RFT is O ( N Z )  which is same 
as that of DFT. Thus, it is interesting to develop a fast 
algorithm to compute DFRFT. 
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