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Abstract

A novel hierarchical defect-tolerant sorting network is presented in this paper. The design
achieves a balance in area—time cost between the odd-even transposition sort and the bitonic sort. It
uses less hardware than a single-level odd-even transposition sorter and reduces the wire complexity of
the bitonic sorter in VLSI or WSI (wafer scale integration) implementation. The optimal number of
levels in the hierarchy is evaluated and the sorting capability of each level is derived to minimize the
hardware overhead. The hierarchical sorting network is very regular in structure and herice is easy to
provide redundancy at every level of the hierarchy. Hierarchical reconfiguration is implemented by
replacing the defective cells with spare cells at the bottom level first, and goes to the next higher level to
perform reconfiguration if there is not enough redundancy at the current level. Yield analysis is
performed to demonstrate the effectiveness of our approach.

L INTRODUCTION

According to Thompson’s[1] analysis, only two of the thirteen sorters discussed in his paper were
designed with high degree of concurrency and thus suitable for real-time applications. One is the bitonic
sort[2] and the other is the odd-even transposition sort [3]. The Batcher’s bitonic sort requires
(N/2){logaN -(logaV + 1 ))/2 sorting elements with the concurrency factor [logoN -(logoN + 1)}/2 to sort
N input elements. Although this architecture has the advantage of logarithmic processor—time cost, it
is difficult to implement in VLSI if N is very large, due to its complex communication scheme. Even
with some modified sorting networks which are much more regular but require more sorting elements (
(N/2)[logoN -logaN] ) than the bitonic sort, such as the perfect shuffle sort{4] or the balanced sort [5],
they are still hard to implement in VLSI due to their complex interconnections. It is well known that the
minimum area required to lay out an m-line perfect shuffle interconnection networks grows as m2. This
problem is even more significant when the sorter is implemented in WSI (Wafer Scale Integration)
which can have a huge number of sorting elements fabricated in a single wafer. In addition, due to the
large area and the processing technology limitation, defects are unavoidable in WSI implementation.

Therefore, the sorting networks need to have defect tolerance capabilities or to be reconfigurable
such as the fault-tolerant systolic sorting array in [6]. However, this is a hardware intensive architecture
since it requires O (N2) sorting elements to sort N inputs. Hence, various architectures have been
proposed to obtain good processor -time tradeoff and ease of implementation in VLSI and WSI. The k-
way bitonic sorter in [7] reduces the wire complexity of a bitonic sorter with a multi-way modularized
approach. Since each module in the k-way bitonic sorter is a bitonic sorter and the interconnections
between modules are shuffle-connected it is very difficult and costly to introduce redundancies into the
sorter [8,9]. However, the analysis in [10] shows that it is not cost effective in replacing a defective cell
with a redundant cell and its yield performance is not good enough [11]. Therefore, a hierarchical
modular sorting network (HMSN) was presented by the authors in [10,11]. The design of HMSN
considers the balance between the simple communication scheme of the odd-even transposition sort and
the fast convergent speed of the bitonic sort.

IL. HIERARCHICAL MODULAR SORTING NETWORKS

If N is very large, it is difficult to implement the N -input bitonic sorter in a single chip VLSI or
'WSI[10] due to the complex and long interconnections. As shown in the middle of Fig. 1, both shuffie
and butterfly interconnections are used in the bitonic sorter and the longest interconnection exists
between sorting elements which are n/2 elements away from each other if there are n elements in each

240 0-8186-2482-5/92 $1.00 © 1992 IEEE



Session 9: WSI Applications II 241

stage. Although the odd-even transposition sorter is a hardware intensive architecture, it has the
advantage of having simpler and shorter interconnections. As shown in the left of Fig. 1, every sorting
element only communicates with its two nearest neighbors and hence the odd-even sorter is more
suitable for implementation in VLSI and WSI. Therefore, in order to have fewer processing elements as
well as less wire complexity and faster convergence in sorting, the sorting network can be decomposed
into a two-level structure with the bitonic sorter in the bottom level and the odd-even transposition sorter
in the top level.

A. Hierarchical Modular Sorting Network

Although the two-level sorting network has a better processor—time cost measure than the odd-
even transposition sorter, it is still difficult to incorporate redundancy and reconfigure for surviving from
defects since the bottom-level bitonic sorter has imegular shuffie and butterfly interconnections.
Therefore, it is not cost effective to use this architecture for WSI implementation where reconfiguration
is necessary to tolerate defects. To minimize the cost to survive from defects, the easily reconfigurable
odd-even transposition sorter can be used as the bottom-level sorter to replace a sorting element in each
bitonic sorter [10].

Let N=bxmxh. Then, each bottom-level odd-even sorter can sort b inputs, each middle-level
bitonic sorter can merge m sets of sorted inputs with b inputs per set, and the top-level odd-even sorter
can merge h sets of inputs with m-b inputs in each set. In the following, a sorting element will be
referred as a cell at the bottom-level, a submodule at the middle-level, and a module at the top-level.
Each bottom-level odd-even sorter has b stages with b/2 cells in an odd stage and b/2-1 cells in an
even stage if b is even [3]. If b is odd, there are (b-1)2 cells in a stage. A data register "D" in the
odd-even sorter is a buffer to synchronize the data movements. We refer a middle-level bitonic sorter in
Fig. 1 as a multi-way bitonic merger . A cell (submodule) marked with a "1" ("-") means that the
outputs from it are in monotonic decreasing order, otherwise, the outputs are in monotonic increasing
order.

It can be shown by using the method similar to that in {3] for merge—sort that the multi-way
bitonic merger in the middle-level with a total of (logom+1)-(logom +2)/2 stages can completely sort b-m
inputs if there are m (m needs to be a power of two) submodules in each stage and each module can

Odd-even sort Multi-way odd-even merger
Multi-way bitonic merger

Fig. 1. Hierarchical sorter.
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sort b inputs. In the top-level, the odd-even sorter is referred as a multi-way odd—even merger which
can merge h sets of b-m sorted inputs into the correct order. The multi-way odd-even merger has
2xh-1 stages with A modules in each stage and can merge h sets of b-m sorted outputs into the correct
order if each module can sort b-m inputs. An example three-level sorter is shown in Fig. 1 where the
four-input odd-even transposition sorter is used in the bottom-level.

In addition to the bitonic sorter, a new sorting network, the balanced sorter, was proposed in [5]
recently. This balanced sorter was proved essentially to be equivalent to the bitonic sorter in[12] so that
it can also be a good candidate for the middie-level sorter. If we replace each bitonic sorter in Fig. 1 by
a balanced sorter, a multi-way balanced merger is formed. Although the multi-way bitonic merger
uses less sorting submodules and incurs less time latency (logon-(logon + 1)/2 stages) to fill the pipeline
than the balanced merger ((logan )? stages), the multi-way balanced merger has the advantage that itis a
repetitive structure and has the same interconnection pattern between stages in a block. This repetitive
architecture can simplify both the design and the operation complexity compared with the recursive
architecture of the bitonic merger. In addition, unlike the multi-way bitonic merger which does not have
uniform sorting submodules, the multi-way balanced merger contains only one type of submodules. The
bitonic merger which has recursive structure and needs more than one type of submodules may increase
the implementation complexity. Therefore, the multi-way balanced merger is more suitable for WSI
implementation because of its uniform submodules and regularly repeated architecture.

B. Easily Reconfigurable Equivalent Networks

As discussed in subsection A, the multi-way bitonic merger and the multi-way balanced merger
have advantages in WSI implementations. However, it is very difficult to reconfigure them to exclude
faulty elements because their shuffle type interconnections. Some modifications are necessary to make
these networks easily reconfigurable. Therefore, in addition to the topological equivalence between the
modified data manipulator and the Omega network we have shown that they are also functionally
equivalent [10]. Hence the shuffie connected Omega network in the balanced merger can be replaced by
the modified data manipulator without any modification. Since the modified data manipulator has
simpler interconnections, the resulting network is easier to reconfigure (will be discussed in section IV)
around faulty submodules.

The shuffle connections in the multi-way balanced merger can now be simplified by replacing the
Omega network in each sorting block with the modified data manipulator. The remaining shuffle
permutations (o) in the multi-way bitonic merger and © permutations in the multi-way balanced merger
can also be replaced by the equivalent switching network which are more regular and reconfigurable
since we have shown in [10] that : (1) the shuffle permutation o is topologically equivalent to the
Banyan permutation r , (2) The © permutation is topologically equivalent to W permutation.

Now we can see that the sorting networks with complex connections can be replaced by equivalent
networks which are inherently easier to reconfigure. Each switching element in the equivalent networks
is either in the bypass state or in the exchange state and therefore, is very simple to implement such that
the area and time penalty is negligible compared with the entire sorting network. The number of cells
used in the modified equivalent networks is equal to that of the original networks and the time latency is
not changed.

III. OPTIMAL DECOMPOSITION
In this section, we will present the analysis procedures for determining an optimal sorting
capability of each level based on the wire complexity and the processor~time cost. We will assume
that the multi-way balanced mergers are used at the intermediate levels in the analysis, however, similar
analysis can be performed if the multi-way bitonic mergers are used. The analysis will begin with a
three-level HMSN and then the HMSN's with more than three levels.

For a three-level sorter, let N = bxmxh and therefore, the total number of cells is
H,=b(b-1)m (logzm+1)2h (2h-1)/2. m
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The ratio R of H, over the number of sorting cells in a single-level odd-even sorter which is N-(N-1)/2
is then

R= b (b—l)t;r_rl"gl.o%zrr'x’-’i;'l)zji?'h-l) = (b—l)-(lo'g.%:‘n‘+l_)2~(2'h - 2(logz;ln+l)2 ) 2

From equation (2), we see that the HMSN will have less sorting cells than the single-level odd-even
sorter if m >64 and R <1 if m>>(log;m+1)2. Therefore, m should be as large as possible in order to
reduce the number of sorting cells in a three-level HMSN . However, m should be under the constraints
imposed by the technology and wire complexity. Thus, the optimal m is technology dependent. In the
following analysis we will assume that m=mmex is known in advance and is dependent on the
technology and the wire complexity.

After the value of m has been determined in a three-level HMSN , we can find the values for b
and k. From equation (1), since both N and m are fixed so logom as well as bxh (let it be represented
as p) are fixed, the minimization of H, is then equivalent to minimizing (b-1)2:h-1) =
2b-h-2-h—b+1. By maximizing 2h+b under the constraint that b-h is equal to a constant p, we will
have a minimum H,. This means that b, which is an integer factor of p, should be as small as possible.

However, with redundancies included in every level, finding the minimum with respect to b is not
possible with analysis. Simulation is thus necessary to select the minimum H, and determine b and &.
The reason is that the minimization procedure involves finding the minimum value of a fourth order
function of b and b not only has to be an integer but also must be a factor of p. Let H, be the number
of sorting cells in a HMSN with redundancy and assume that there are d, /, and n redundant rows as
well as f, g, g redundant columns in each sorter at the bottom-level, middle-level, and top-level,
respectively. Then,

Hy=(25L4d)(b4f )(m+1) [(ogam-+12+g 1 (h+n ) (2 h=14+q). 3

Finding the minimum H, with respect to various b is equivalent to finding the minimum C where
C =(b—142d ) (b+f ) (h+n) (h—=14q )=[b -h+H2d~1)h+nb+n(2d—1)]-[2b -h+2f -h+H{g-1)b+f (-1)14)
Since m in equation (3) and the redundancies added to each sorter are fixed, only & (= p/b) is related to

b in finding the minimum #, with respect to b.

Example cases with various amounts of redundancy are used to illustrate how to find the minimum
C (or H,) with respect to a given p. It should be noted that H, is equal to kxC where k can be viewed
as a constant and is equal to (m+/)-[(logam+1)2+g1/2. These example cases have one or two redundant
rows and columns in each level. The amount of redundancy in a level for each case is shown in Table I
where nr represents n redundant row and mc represents m redundant columns. Tables II presents the

results for these example cases with p=20. The Cnin is the minimum C and the corresponding b is
listed as b min.

In Fig. 2, we show the cost versus b graphicaily for cases 1, 2, 3 and 4 with p=100 and p=105.
The cost decreases rapidly before b=bmin for case 2 which has two redundant columns in the bottom-
level sorter and increases rapidly after b >bmin for case 3 which has two redundant columns in the top-
level sorter. Since case 4 has two redundant columns in both the bottom-level and the top-level sorters,
the curve in Fig. 2 shows the cost decreases before bmin and then increases after b=bmin. The cost does

Table 1. The amount of redundancy for each case.

Case No.

level 1 2 3 4 5 6 7 8

bottom | Ir | Ir2c Ir 1r2c | 2r | 2r2c 2r 2r2c

middle | Ir Ir Ir ir 2r 2r 2r 2r
top Ir Ir Ir2¢ | Ir2c | 2r | 2r | 212c | 2r2c




244 1992 international Conference on Wafer Scale Integration

Table II. The cost C with p=20.

Case No.
pi 1 2 3 4 5 6 7 8
4 1080 | 1620 | 1320 | 1980 | 1764 | 2646 | 2156 | 3234
5 1050 | 1470 | 1350 { 1890 | 1680 | 2352 | 2160 | 3024
10 990 | 1188 | 1650 | 1980 | 1560 | 1872 | 2600 | 3120
Cmin | 990 | 1188 | 1320 | 1890 | 1560 | 1872 | 2156 | 3024
b min 10 10 4 5 10 10 4 5

not change significantly with respect to b for case 1 with no redundant columns.

Comparing case 2 with case 3 in Fig. 2, we see that the minimum cost of adding two redundant
columns in the bottom-level sorter is less than that of adding two redundant columns in the top-level
sorter. Case 4 has the highest hardware cost among the first four cases and it costs about 20-25% more
than case 1 or 2. Case 8 has the highest cost among all cases since it has the most redundancy in every
level. However, the optimal amount of redundancy depends not only on the area overhead but also on
the yield improvement achieved over the original structure with no redundancy. Therefore, the results
on these cases will be used in section V to determine the optimal amount of redundancy in each level.
Based on our analysis in [13] , normally a three-level network is sufficient for most applications
unless a huge number of inputs (more than 128x256x256 inputs) is to be sorted. Practically, it may not

be possible to implement a sorting network to sort more than 128x256x256 inputs in a single wafer.
Hence, in the rest of this paper we will concentrate on the three-level structure only.

0 :
40 -4 : 4
Cost/1000
30 —
20 I | l I 1
0 10 20 30 40 50

Bottom level sorting capability (p1)
Fig. 2. Cost C vs. b for cases 1, 2, 3 and 4 with p = 100 and 105.
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IV. DEFECT TOLERANCE
A. Bottom-Level and Top-Level Reconfigurable Structures

Since the odd-even sorter is used in both the bottom-level and the top-level of the sorting network,
the reconfigurable structures in these two levels are the same and similar to that in [11]. It has been
shown shown in [6] that by adding two extra stages in an odd-even sorter, any single fault which makes
a sorting cell perform an incorrect swap (we call this a functional fault) can be recovered automatically.
In addition to the fault masking property for the single functional fault, each sorting cell includes bypass
registers such that the faulty cells generating nonfunctional errors can be bypassed without affecting
system synchronization. Therefore, the odd-even transposition sorter can tolerate up to two faulty stages
by simply bypassing the faulty cells without the need to restructuring the entire sorter.

For the top-level sorter, since the bottom-level sorter in each submodule can be bypassed, each
module can also be bypassed by setting all sorters in the submodules of this module bypassed.
Therefore, the same reconfigurable structure with redundant rows and columns of modules or cells can
be applied to both levels.

B. Middle-Level Reconfigurable Structure

However, with clustered defects, it is possible that there are more than two faulty stages in a
bottom-level sorter. If the number of faults in a bottom-level sorter is larger than the amount of
redundancy it has or if any physical defect causes a faulty cell unable to be bypassed, this sorter will be
declared as unrepairable and switched out by the reconfiguration scheme described in the following and
replaced by a redundant submodule.

Input lines and output lines of a submodule in this level are connected to three submodules in the
preceding stage and succeeding stage. Each submodule has two switches, one in the input port to select
two out of three inputs and the other in the output port to direct data to two of the three output lines. It
should be noted that after the transformation to the equivalent network, the shuffle interconnections in
the bitonic merger are replaced by the Banyan permutation and therefore, the bitonic merger is now like
a modified data manipulator. The Omega network in a sorting block of the balanced merger and the 1
permutation between sorting blocks are replaced by the modified data manipulator. Therefore, the
balanced merger is now connected by a series of modified data manipulators.

The major drawback of the defect tolerant multi-way merger is that the reconfigurable butterfly
interconnections between two stages have wrap-around connections. An example butterfly
interconnection between two stages is shown in Fig. 3(a), where each stage has k=38 sorting elements
and one tedundant element (R=1). If each element has n=3 outputs with one bit line per output, then
there will be 8 (=(k+r=1)n/3) warp-around interconnections. Let a represent the wire width of an
interconnection and z the space between two interconnections as shown in Fig. 3. Then the distance
between two stages in a butterfly interconnections 1s k/(2‘/§)x(h +z) (d1 = d2 in Fig. 3). The length on
the longest interconnection due to wrap-around will be about (k/2+k+1)x(h+z) which is 3¥3 times
longer than the shortest interconnection.

This drawback can be avoided by replacing the wrap-around interconnections with
interconnections directly from the source to the destination. Let the submodules in a stage be numbered
from O to k. As shown in Fig. 3(b), the three wires of a sorting element s (O<s<k) connect respectively
to the sorting elements s, k/2; and k/2+1 in the next stage, if s<k/2, otherwise, they connect to the
sorting elements s, s—k/2 and s—k/2-1 in the next stage. The configuration of Fig. 3(b) is then
equivalent to Fig. 3(a). The length of the longest interconnection in Fig. 3(b) becomes
2(k/2+1)(h+z ¥¥3 which is approximately 2/(3‘6) that of the longest interconnection in the wrap-around
structure.

V. YIELD ANALYSIS

The yield of a WSI array processor is defined as the probability that during the manufacturing
process, defects are distributed into cells, switches, and wires of the array in such a way that all
defective elements can be tolerated [14]. In order to evaluate the improvements on yield after
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Fig. 3. Butterfly interconnections with and without wrap-around wires.

redundancies are introduced in each level, yield modeling and analysis are developed in this section.
Our approach is to start the analysis at a stage of the bottom-level odd-even sorter.

In the real manufacturing environment, the defects have a tendency towards clustering. Therefore,
the yield Y follows the more accurate negative binomial distribution, ie., Y = (1 + DA/a)y<= [15]. a is
a parameter representing the level of clustering, which usually takes a vatue around 1 or 2. The
probability of having k defects in a stage is then[15]

DA
Po(k) = M,
K (o) 1+ DAyt

The yield Y of a stage at the bottom-level with n—r normal cells and r redundant cells can then be
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derived as

F(k+a)(—%‘—)‘
. Pio
o= KT+ et @

where Py, is the reconfiguration coverage which represents the probability of successfully reconfiguring
a stage of n cells with r redundant cells and k defects. For our reconfiguration scheme, Py, =1 if k<r,
and in order to simplify the analysis we will assume that Py, =0 for k>r to obtain the lower bound of
Y, Actually, our scheme can tolerate more than k defects if some of the defects fall on the same cell.

Defective wires or switches between two stages can also be tolerated by using altemative paths
and bypassing the corresponding cell which can be viewed as a faulty cell and replaced by a redundant
cell. Therefore, the effect of defects in wires and switching elements on the yield can be included into
the model Y5, by adding the area of switches and interconnections to the total area A in equation (8).

Therefore, the yield of a bottom-level sorter, Y, is equal to Y™, if there are m stages and no
redundant stage in the sorter. If two redundant stages are included, the bottom-level sorter can tolerate
up to two consecutive faulty stages, and the yield is

Yy = Vi M2H{m42)Y p (1= s HKm +1)Y pe ™ (1=Y s )2.

Since a submodule is an odd-even sorter, the yield of a stage in the middle-level sorter is
Yis = Vpit24i +2)Yp +1(1=Yp Wi +2)(i +1)Y 5 (1-Y )22
assuming there are i submodules plus two redundant submodules in each stage.

Let A, represent the area of the interconnections and the switching elements between two
neighbor stages of a middle-level sorter. The yield Yi, of the interconnection area can be derived by
using equation (8). The yield of a stage including the interconnection area is then Yi,'=Yi XY, .
Therefore, the yield of a middle-level sorter, Y;, will be (¥;;")? if there are g stages.

Similarly, the yield, Yy, of a stage in the top-level sorter is
Yis = Yiit 24 (j42)Y, 4 (1=Y; Wi +2)(j +1)Yii (1-Y; )22

if there are j rows plus two redundant rows in each stage and Y;=YsXYp, where Ys, is the yield of the
interconnection area between two top-level stages. Then, Y, the yield of the top-level sorter (i.e., the
yield of the HMSN ) is

Y =Y, (42)Y (=Y DY (1Y 2, ®
if there are ! stages plus two redundant stages in the top-level odd-even sorter.

An example sorting cell in[6] is used in the following simulation to evaluate how much yield
improvement can be achieved by various amount of redundancies in each level. The height of a cell is
assumed to be between 5 um (micrometers) and 50 pm. From equation (7), the area An of the butterfly
interconnections in the middle-level is proportional to (kh)? where k=mmax is the sorting capability of
the middle-level sorter. Therefore, the larger the A;, is the smaller the Yi, will be. Since Yis'=Yi XY,
any small decrease of the value of Y;, will reduce the value of Y;;' and thus, drop the yield of the
middle-level sorter significantly. This is due to the fact that ¥;=(Y;; "}, where ¢ is the number of stages
in a sorter at this level and is no less than 64 (i.e., Mmax=128).

Yield with respect to p for the example cases in Table I are shown in Fig. 4(a) and (b). The
defect density D in the cell area is assumed to be two defects per cm?2 and a is 2. However, since the
wires and switches are much simpler and more regular than the cells, they are less vulnerable to defects
and hence we assume that defect density in the interconnection area is one tenth of D. If no redundancy
is included in an HMSN, the yield is zero for all cases in Table Il. From Fig.4(a), we see that the
HMSN performs well in every case with p=20 and mma.=256 (the solid lines) for cell heights less than
25 pm. The dotted line in Fig. 4(a) shows the yield with mp.,=128. We only show cases ! and 2
which have about 92% yield even if the cell height = 50 pm. For cases 3 to 8, the yields are close to
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Fig.4. Yield analysis.

100%.

In Fig. 4{b), m =256 and p=100, the yield drops very fast when only one redundant row is
incorporated in every level for case 1. Also, we can see that case 7 performs better than case 8 even
case 8 has two more redundant columns in the bottom-level sorter. The reason is that when two
redundant rows are included in the bottom level, the yield of a bottom level sorter will be almost 1, and
two more redundant columns cannot generate any further significant improvement on yield. Therefore,
the difference on yield between case 7 and case 8 depends on the value b. Since Ai grows with
(bxcell—height 12, a difference in b can generate a large difference in Y;,,. From Table I, since b=10
for case 7 and b=20 for cases 6 and 8, case 7 has a higher yield than cases 6 and 8. The yield of case 5
with b=25 is less than that of case 6, but it is not significant. The same reason can be applied for the
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differences among cases 2, 3, and 4.

VII. SUMMARY

A novel approach to designing a defect-tolerant hierarchical modular sorting network is presented
in this paper. The defect-tolerant HMSN uses less hardware and converges faster than a single-level
odd-even transposition sorter and the wire complexity problem of the bitonic sorter in VLSI or WSI is
alleviated. A cost function is derived to determine the optimal sorting capability at each level and
minimize the hardware complexity when redundancy is provided at every level of the hierarchy.
Hierarchical reconfiguration strategy is used to tolerate the defective elements in an efficient manner.
Detailed yield analysis is performed on the hierarchical sorting networks. Yield improvements for cases
with various number of spares are evaluated. The simulation results show that the defect tolerant HMSN
achieves a significant yield increase over a nonredundant sorting network.
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