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ABSTRACT

This paper presents an efficient, optimization
model—based approach for scheduling the production
of discrete—part, make—to—order type of flexible flow
shops, where setup effects are negligible. A nominal
scheduling algorithm based on Lagrangian relaxation
and minimum cost linear network flow is first
developed for scheduling under nominal conditions.
Fast rescheduling algorithms that exploit the
economic interpretation of Lagrange multipliers and
the network structure of production flows are then
proposed for timely adjusting the nominal schedule
to cope with disturbances. Numerical results on
realistic examples demonstrate that our methodology
is quite effective; it generates near—optimal
schedules, provides relatively smooth adjustments
(i.e., no drastic change from the nominal schedule)
and is computationally efficient.

1. INTRODUCTION

Although there have been many new develop—
ments in manufacturing automation, effective
(optimal and computationally efficient) scheduling
methodologies for advanced manufacturing systems
remain to be developed so that the productivity and
flexibility of an automated factory can be fully
exploited [1]. In spite of numerous research results on
production scheduling in the literature {2], there still
exists quite a gap between scheduling theory and
practice. ~ Due to the complexity of a realistic
production system, finding the optimal schedule
efficiently is often beyond the reach of the existing
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theories even for a small scale system. In practice,
production schedules are usually generated either by
simple heuristics or by time consuming computer
simulation. Among the various aspects of scheduling
a real factory, handling uncertainties in manu—
facturing, such as machine failures, material shortage
and demand variation, is especially a challenging
issue in both theory and practice [3].

In this paper, we propose an optimization
model—based and computationally efficient
methodology for production scheduling. As depicted
in Figure 1.1, the methodology consists of three
parts: (1) an efficient algorithm for finding a
near—optimal schedule under nominal conditions, i.e.,
a nominal scheduling algorithm, (2) optimization
model—based, fast rescheduling algorithms for timely
adjusting the nominal schedule to cope with
disturbances and (3) periodic rescheduling using the
nominal algorithm based on the latest system status.
Part (3) applies the open—loop feedback philosophy
of stochastic optimal control [4] and aims at
responding to disturbances in a longer time scale.
For small disturbances, our fast rescheduling
algorithm in (2) applies a neighborhood search to the
nominal schedule [5], exploits the structure of the
nominal scheduling algorithm and aims at a quick
but reasonably graceful response.
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We realize the above methodology on the
production scheduling of a flexible flow shop (FFS)
where setup effects are negligible. A FFS is an
extension of the traditional flow shops. It consists of
several machining groups, each of them having a



number of identical machines and a production
operation may be processed by any of the identical
parallel machines. Though a FFS is more structured
than a general flexible manufacturing system,
effective scheduling of a FFS is still very challenging
and difficult.

We develop algorithms for realizing the
methodology and conduct numerical experimenta—
tions based on realistic data of a FFS to examine the
feasibility, optimality and computational efficiency of
these algorithms. Results indicate that our nominal
algorithm obtains near—optimal schedules. Our fast
rescheduling algorithms are computationally very
efficient and usually result in a near—optimal and
smooth adjustments for small disturbances.

The remainder of this paper is organized as
follows. In Section 2, we first formulate the nominal
scheduling problem mathematically. Section 3 states
the development of a mominal scheduling algorithm
by modifying our earlier work [6].  Section 4
describes our fast rescheduling algorithms for
handling production uncertainties. Numerical results
of these algorithms are given in Section 5. Section 6
then concludes this paper.

2. PROBLEM FORMULATION

Consider a make—to—order FFS which manu—
factures medium—volume and medium—variety of
discrete parts with each type of parts having its own
due date and demanded quantity. For simplicity of
presentation without limiting much generality of
results, we assume that production flow of all types
of parts go through the M machine groups in the
same sequence. The M machine groups can be
organized as a line of production as shown in Figure
2.1, where buffer m locates before machine group m
and buffer M+1 represent the stock of finished parts
respectively. Both the input and stock buffers are
infinite in size. We also assume that all demands are
released at the beginning of the scheduling horizon.

Input
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(M+l)

Figure 2.1
Let us define some notations for such a FFS.

Notations:

I : total number of part types;
i : part type index, i = 1,

Di : demand for type i parts;

I
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: due date of type i parts;

: total number of machine groups;

: machine group index, m =1, + -+, M;

: total number of time periods within the
scheduling horizon;

: time period index, t = 1, «++, T}

: capacity of machine group m at period t;

HE g .~

O&

mt

o

im processing time of part type i on

machine groups m;
: buffer index;
: capacity of buffer b;

wn o

b holding cost per type i part in buffer b;

ibt

S

: number of type i parts in buffer b at

the beginning of time period t;
imt number of type i parts loaded onto
machine group m for processing at period t;
i number of type i parts arriving at the stock
during period t, where Z W (t—P.

: overtime capacity of machine group m

M)
mt
during period t, where 0 < Omt < Cl'(:lt’

Cont

: overtime cost per unit overtime capacity of

is the maximum overtime capacity;

mt
machine group m during period t.

In the flow line, the amount of type i parts
loaded onto machine (m—1) for processing at period

t_Pi(m—l) go into buffer m after Pi(m—l) periods of

processing. The first buffer of the line serves as a
source with an initial level of Di units of type i parts

while the last buffer serves as a sink and accumulates
finished parts. Flows of parts must satisfy the
following flow balance equations:

Flow Balance Equations

Xi11 = D. and Xi | Biven, m=2,- -+ M; (2.1.a)
11(t+1) = 11t Ui (2.1.b)

—u._, +u ,

1m(t+1) 1mt imt l(m—l)(t—Pi(m_l))
m=2,- -+ M; (2.1.¢)

XiM1)e+1) = K1y UM(P, )
(2.1.4)
for i=1,- -+ I and t=1,-++ T—1.



Since a batch of LT parts loaded onto machine

group m needs Pim periods to complete the

processing, the total number of parts which are being
processed by machine group m during time period t
must not exceed its processing capacity, i.e.,

Machine Capacily Consiraints

I t

¥y X u -

<C_,+0 ,,VmVt (22
i=1 T=t—P,_+1 mt © mb

Similarly, the total number of parts lodging in buffer
b at period t should not exceed its capacity,
Buffer Capacily Constrainls

1
)
i=1

The use of overtime can not exceed the overtime
capacity, i.e.,
Overtime Capacity Consirainis

0<o0_, <c°, Ym,Vt.
m mt

Moreover, the following integrality constraints should
also be satisfied: *

Xipe %imt 229 Oy

ViVb,Vm,Vt. (2.5)
The objective of production scheduling has three
folds: (i) to deliver products just in time to avoid the
overdue penalty and inventory cost of finished
products, (ii) to reduce the holding cost of in—
process inventories and (iii) to reduce the overtime
cost. Define the earliness/tardiness penalty coefficient
for per unit type i part completed at time t as

_ Ai(di—t), t > di
it ’

Xt <S8y VYb=2--- MVt 2.3)

(2.4)

are nonnegative integers,

A, Bi € Rl.

B,(t-d,),
We then formulate the scheduling problem as

t <d.
i

1 T M
® 151 2t b§2hibxibt)
M T
+ ¥ Y1l 0O
m=1t=1 mt mt
subject to constraints (2.1-5).

3. NOMINAL ALGORITHM DEVELOPMENT
The scheduling problem (P) formulated in
Section 2 for a FFS under nominal conditions is an
integer programming problem of NP-—hard [7].
Instead of looking for the optimal solution, we now
develop for it a near—optimal and computationally
efficient solution algorithm.
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3.1 Lagrangian Relaxation and Decomposition
Observing that the coupling among production

flows of different part types is caused by their
competition for processing and storage resources, we
apply Lagrangian relaxation to machine and buffer
capacity constraints (2.2) and (2.3) and form the
dual problem of (P) as

(D) max ®(A,7),
A0,x20
subject to (2.1), (2.4) and (2.5),
where '\mt and LWL Lagrange multipliers,
I
®(A,x) = ¥ min PLi(u.,X,r)
i=l u. !
i
M T
+ Y Ymin OLmt(Omt"\mt)
m=1t=1 O
mt
M T M T
- Y ¥rxc ., -%X ZxsS, (1
mel 1 T Wb gy PUP
T I\ZI:[ t
PL.(wA0= X {¢.Z + AL X u,
11 t=1 it it m=1 mt’-r:t.—P. +1 imr
im
M
+ b§2("ib+”bt)xibt}’ (3-2)
and
OLmt(Omt"\mt) = (Imt - '\mt)omt’ (3.3)

Note that for a given set of Lagrange multipliers
A and 7, there are two classes of independent
subproblems in (3.1):
(1) Production Scheduling Subproblem:
(PS-i) min PLi(“i"\”)

%

subject to (2.1) and (2.5); and

(2) Overtime Capacity Allocation Subproblem:

(OCA—mt) mé n OL (0 .\ )

mt
subject to (2.4) and (2.5)

3.2 Solution Algorithms for Subproblems
A. Network Flow Algorithm for (PS—i)

The set of flow balance equations (2.1) of
(PS—i) render themselves naturally to a network
representation. Each node of the network corre—
sponds to one flow balance equation. The arcs
represent either part processing paths with uimt's as

flows on them or parts carried over in buffers



's as their flows.
mt

Buffer 1 corresponds to the source node while buffer
M-+1 to the sink node. Machine and buffer capacity
constraints impose flow bounds on the arcs.

As the cost function of (PS—i) is linear in arc
flows, a subproblem (PS—i) is essentially a minimum
cost linear network flow (MCLNF) problem, which
has an integer optimal solution [7). We adopt the
RELAX code developed by Bertsekas and Tseng [8]
for solving each (PS—i).

B. Algorithm for (OCA-—mi)

Each subproblem (OCA—mt) is a simply
constrained, static, linear optimization problem.
Given '\mt and {ui, V i}, we determine the solution

Omt to (OCA—mt) according to the complementary

between two time periods with Xi

slackness conditions [7] as follows:

1) if (Imt — '\mt) > 0 then Omt =0
. o
2) if (Imt — ’\mt.) < 0 then Omt = Cmt’
3) if (Ilrnt — '\mt) = 0 then Omt= Min{ Max|
I t o
0, Y % u, - Cmt 1, Cmt}'

i=1 r=t—P, +1 ™7
m

3.3 Subgradient Algorithm for the Dual

After solving all the subproblems for a given set
of Lagrange multipliers (A,7), we update (A,7)
according to the subgradient method of [9)].
Interested readers may refer to [9] for more details.

3.4 Construction of a Good Feasible Schedule

The primal problem (P) is not a convex optimi—
zation problem because of integer decision variables.
So solution to the dual generally results in an
infeasible schedule, ie., some of the capacity
constraints ((2.2) or (2.3)) may be violated. We now
develop an iterative algorithm that exploits the
network structure of material flows and the marginal
cost interpretation of Lagrange multipliers to adjust
the dual solution to a near—optimal feasible schedule.
Major steps of the algorithm are as followed.

CGFSA
Step 0 Initialize with the schedule obtained from
solving the dual problem.
Do for t from 1 to T

Do for m from 1 to M
Step 1 Check if the capacity constraint of

machine group m or the associated buffer are
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violated at time period t.

Step 2 If so, determine, according to the
descending order of priority factors (PF) among
different types as defined in [6], the type(s) of
parts and quantity that should be removed from
facility m (a machine group or a buffer) at time ¢
to eliminate the excessive production flow.

Step 3 Remove the excessive production flow(s)
from the production schedule. Since the type(s) of
parts to remove is identified in Step 2, consider
again the material flow network of the type and
focus on the upstream and downstream subnets of
the arc with the excessive flow. Pull the excessive
amount of flow out of both subnets in a way that
results in a minimum production cost change, i.e.,
by solving a MCLNF problem for each subnet.
Then update arc flows of the material flow
network according to the removal.

Step 4 Reschedule the removed production flow.
This is done by first modifying the arc capacities
of the flow network where the capacity of an arc
belonging to the interval [0,i—1] is set to the
residual capacity of the corresponding facility
while that of an arc in [,T] is set to the difference
between the corresponding facility capacity and
the flow of this arc from Step 3. The removed
flow is then rerouted through the modified
network by solving again a MCLNF problem.

Enddo

Enddo

4. FAST RESCHEDULING ALGORITHMS

Uncertainties in machine availability, material
supply, demand quantity and demand types are fre—
quently encountered in a factory and have significant
impacts on production scheduling. When an unex—
pected event of these kinds occurs and makes the
original schedule infeasible, rescheduling is needed to
maintain schedule feasibility in a timely, economical
and smooth way, which essentially requires a very
similar function to the CGFSA. Ideas and steps of
the CGFSA therefore constitute the backbone of our
fast rescheduling algorithm developments.

4.1 Machine Availability

Suppose that some machines unexpectedly
become unavailable at time period ¢ and will last till
time period t+d. Assume that there exists an
emergent buffer space to temporarily store parts at
the unavailable machines. To adjust the production
schedule, we first update the machine capacities
during [t,t+d] and apply steps 1 and 2 of CGFSA to




determine the excessive production flows of the
nominal production schedule due to machine capacity
shortage. Since the production schedule over [0,t—1]
has been implemented, we need only construct
material flow networks over the duration [#,T] for
rescheduling.  Arc costs of these networks are
calculated by using the stored nominal Lagrange
multipliers. We then remove excessive flows from
and reroute them into their respective flow networks
by using steps 3 and 4 of the CGFSA.

4.2 Material Shortage
Consider a case where type—t parts are in short

of materials and can not be processed as originally
scheduled by machine group m at time period t and
the required materials will not be available until time
period t+d. We first use Step 8 of CGFSA to remove
from the production schedule the production flows of
type—i parts scheduled at machine group m during
period [t,¢+d]. Then we reroute these flows into the
production schedule. The rerouting procedure is
basically the same as Step 4 of the CGFSA except
that the capacities of machine group m during [¢,t-+4]
are set to zero for the production network of part
type i and are set to the residual values after
removing type—i flows for production networks of
other part types.

4.3 Demand Varjation

Demanded quantities may often be changed
during production. When demand for type ¢ parts
increases unexpectedly by ¢ units at time t, we first
use Step 4 of CGFSA to push these ¢ units of
increase into the material network of type ¢ parts
over [t,T]. As this insertion may cause capacity
violations in
check the feasibility of the capacity constraints and
construct a good feasible schedule over [t,T]. As for
a demand decrease, we can apply Step 3 of the
CGFSA to pull the decreased amount out of the
production schedule over {,T].

4.4 Producing New Types of Parts
In a flexible production system, it is important

to handle unexpected orders of small amounts but
very high priority (i.e., hot orders) after a production
schedule has been developed. As the overall
characteristics of the scheduled system may not
change much after adding a new order of low
volume, multipliers associated with the original
schedule should be a good starting point to re—run
the nominal scheduling algorithm and should be

[t,T], we then perform the CGFSA to

officient in computation. Hoitomt et. al. [10] has
exploited this idea for job shop scheduling. We adopt
the same idea here and our results in Section 5 also
confirm its effectiveness for our flow shop problem.

5. NUMERICAL STUDY
Numerical experimentations are conducted in
this section to demonstrate the feasibility and
effectiveness of our scheduling method. All of our
experimentations are performed on a SUN/SPARC—
IPC workstation.

5.1. A Realistic Example
The flow shop mainly produces four different

brands of products every season. There are eight
machine groups in the shop. Data about this shop is
listed in Tables 5.1 and 5.2. Assume that this shop
receives ten orders, each requesting parts of one of
the four basic brands. We treat the parts of one
order as one type. The corresponding production
demands and due dates are listed in Table 5.3.

Table 5.1 Data of Four basic Brands of Parts
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Brand Processing Time Demand
1 2 3 4 5 6 1 8
Al3 4 1 4 4 X2 2 90
Bl3 5 1 3 X 5 2 2 60
Cl3 4 3 X 4 X 2 2 30
Dl3 x 1 3 X 5 2 2] 30
* X denotes that the part need not be processed on this
machine group.
Table 5.2 System Capacity
Machine Group Indexj 1 2 34 5617 8
Machine Capacity 20 45 45 30 10 25 15 15
Buffer Capacity 500 100 80 110 90 60 75 80
Overtime Capacity | 10 22 22 15 5 12 7 7
Table 5.3 Data of Parts
Type 1 2 3 4 5 6 7 8 910
Brand A B C D A B A BAB
Due Date | 100 80 35 70 50 60 87 90 20 45
Quantity | 30 15 30 30 25 15 20 15 15 15
In applying our nominal algorithm to this

example, we initialize all the multipliers as zero and
the scheduling time horizon is set to 110 periods. As
a result it takes 3748.23 CPU seconds to obtain the



feasible schedule with cost of 520.000. The
coressponding dual cost is 515.998 and the resultant
relative duality gap is 0.77%. We consider such a
solution as near—optimal.

5.2 Rescheduling

We now compare the effectiveness of re—
scheduling between using the fast rescheduling
algorithms and direct rescheduling by the nominal
scheduling algorithm. Consider the following five
perturbed scenarios of the previous example:

M1) machine group 6 suddenly loses 11 units of its
25—unit capacity from time period 32 to time
period 36;

the scheduler is notified at time period 50 that
there will be short of type—2 parts at machine
group 3 from time period 67 to 72;

the scheduler is notified at time 30 that the
demand of type—5 parts is reduced by 5 units;
the scheduler is notified at time 20 that the
demand of type—4 parts is increased by 3 units
and;

a new order of 5 units of brand D parts is to
be rushed through the system starting from
time period 53.

M2)

M3)

M4)

M5)

Table 5.4 lists the rescheduling results of these five
test scenarios. Note that the initial multipliers for
direct rescheduling by using the nominal scheduling
algorithm are set to the optimal values from
scheduling the nominal scenario. From these results
we can see that our fast rescheduling algorithms are
very effective for handling small perturbations: the
computation times required are well within the
limitation for real time application (less than 3
seconds except for M5) and the adjusted schedules
are often as good as those by direct rescheduling. In
M3, the fast and the direct rescheduling algorithms
are essentially the same. So their CPU times are the

same.
Table 5.4 Test Results of Rescheduling Algorithms

Scenario Mt | M2 | M3 | M4 | M5
OurFast “JCPUTimd 1.61 | 1.11 |1.59 | 2.64
Reschedulin% (sec 1161.71
Algorithms] Cost | 540.10(521.501515.50] 529.60[ 588.00)

CPlsJez)lmeISSZ.OE473.52991.071115.921151_71
Re-Solving[=¢ st~ [540.10521.50515.50 525.40] 588.00
Our Nomin

.+ |Dual Cos{ 538.100518.8¢/513.50 522.90| 576.36
Algorithm -
D(‘}’al“y 0.37%| 0.51%}0.39% 0.48% | 1.98%
Jap
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6. CONCLUSIONS

We have developed an effective, optimization
model—based methodology for scheduling and re—
scheduling a class of flexible flow shops. Numerical
results demonstrated its effectiveness and potential
for real applications. However, the handling of
rework and scrap due to defects is a significant issue
in pproduction scheduling and is not addressed in
this paper. Extension of our methodology to include
this aspect will be reported in an upcoming paper.
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