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Abstract

This paper presents an integrated framework
for order and production schedulings of a
discrete—part, make—to—order flow shop. We first
formulate the integrated problem and then
decompose it by applying Lagrangian relaxation into
subproblems of order scheduling (OS), production
scheduling (PS) and overtime capacity allocation
(OCA), which match operational functions in a
manufacturing organization, and form a dual
problem to optimize the Lagrange multipliers for
relaxation, which are interpreted as marginal costs.
The solution algorithm has a structure that clearly
captures the interrelationship among subproblems
and provides a framework for integration. Exploiting
such a framework, we also develop effective
rescheduling algorithms for handling new order
insertion and capacity loss.

1. Introduction

In the practice of production control,
scheduling the manufacturing of customer orders is
broken into order scheduling (OS) and production
scheduling (PS) according to the time scales of
decisions involved [VBWS89]. OS determines the
schedule of filling orders by estimating the capacity
of the factory, has a time scale in weeks and is in the
higher level of decision hierarchy. On the other
hand, PS is in the lower level and is used to decide
the hourly or daily production schedule for the
factory so that order delivery promises set by OS are
met. Current practice of OS uses simple Master

* This work was supported in part by the
National Science Council of the Republic of China
under Grants NSC 79—0422-E002—05, and
80—0422—E002—06.

* The authors would like to thank Prof. Hong—Mo
Yeh of Fu—Jeng University and Fu—Sheng Industrial
Co. for valuable discussions.

0-8186-2720-4/92 $3.00 ©1992 IEEE

Production Scheduling (MPS) to estimate the coarse

Order Scheduling

A Simple
MPS

Order Release v %

[ Production Scheduling |
Figure 1

production capacity of the factory [VBW89]. The
promised deliveries thus generated may either pose
ill—structure production requirements to PS or just
cannot be met. When there is a significant capacity
loss or material shortage in the shop floor, there is
lack of an effective method to adjust both OS and
PS accordingly and predict the potential impacts to
customers. These situations may not only result in
customers' dissatisfaction but also create production
chaos at the shop floor, such as highly unbalanced
resource utilization and special efforts to rush late
orders through. Such deficiencies are due to the fact
that the interactions between OS and PS, especially
the dynamic aspect, are not well accounted for in the
current. OS practice by just using simple MPS to
model PS. .

In this paper we exploit recent advancements
in scheduling theory and algorithms [CLH91, CABSJ,
LHM90, CoH88, Gra82] to propose a better
integrated framework for OS and PS and develop its
associated solution methodology. We first formulate
both OS and PS as one optimization problem in
Section 2, where given a set of customer orders and
production constraints, we want to find a
manufacturing schedule to fill customer orders
just—in—time and minimize production costs. The
optimization problem is decomposed in Section 3 by
Lagrangian relaxation of resource and demand
constraints into three groups of subproblems : order
scheduling (0S), production scheduling (PS), and
overtime capacity allocation (OCA). A dual problem
is formed to optimize the Lagrange multipliers, which
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have an economic interpretation as marginal costs.
Section 4 briefly describes a two—level solution
algorithm which we developed in [ChH91] for the
above optimization problems. We then investigate
the interrelationship between decisions of order and
production schedulings from the view point of
mathematical decomposition and coordination among
the three groups of subproblems and the dual
problem. In Section 5, we exploit the economic
interpretation of Lagrange multipliers and the
structure of our algorithm to develop fast
rescheduling algorithms for handling new order
insertion and unexpected capacity loss. Numerical
results for rescheduling is given in Section 6. We
conclude in Section 7.

2. An Integrated Problem Formulation

Consider that a set of orders have been placed
to a make—to—order flow shop without set—up
effects, each demanding a few different types of
products with a due date. The production of each
type of products involves a sequence of operations by
different machining facilities or labors. Different
types of products may have operations that require
the same manufacturing resource. Assembly and
disassembly operations are not considered in this
paper. Let us first define the following notations and
variables.

Input Variables and Notations:

T : the time horizon of scheduling;

T1 : the length of a time cycle;

t : time cycle index;

N : total number of cycles in T;

I : total number of product types;

i : product type index, i = 1,...,I;

J : total number of machine groups;

] : machine group index, j = 1,...,J;

Nj : the number of identical machines in
machine group j;

O't : the maximum overtime capacity of

J machine group jat cycle t;

tij : the processing time of a type—i product by
a machine in group j;

Lijt : the input buffer level of type—i products at
machine group j+1;

hit : per unit type—i product holding cost during
cycle t;

o,  iper unit overtime cost of machine group j

J during cycle t;
K : total number of orders;

d : the due date of order k;
Dki : the desired number of type—i products in

order k;
: the maximum available quantity of the raw

material for type—i products at cycle t;
Decision Variables :

Pi't : number of typed products processed at
J ma chine group jduring cycle t;
Fj ¢ number of overtime units of machine
: group j committed during cycle t;
Rit : number of type—i products released for

manufacturing at the beginning of cycle t;
th : order delivery variable, where

th = 1 if order k is to be delivered at the

end of the t—th cycle; th = 0 otherwise.

To convey our main idea but without loss of
generality, we assume that all types of products go
through all the J machine groups in the ascending
group index and that buffers are infinite. The
processing requirements for each machine group may
vary among different types of products. Considering
the level of details in modelling for order scheduling

purpose, we select a cycle time T1 >> tij for all i's

and j's, and assume that a batch of Pij units of

t

type—i parts scheduled for processing by machine
group j during cycle t can be finished during the
cycle and are moved together. Production flows in
the line of production must satisfy the following set
of constraints.

Production Flow Balance Equations

Liot1) = TioePinetRie (2-1.a)
Lite1) = B Pigethie =h-3-1
(2—1.b)
Lty = LisetPige (2-1.c)
t=1,...,N, i=1,...,I, with
Lijl’ 3=0,1,...,J given.
Material Availability Constraints
0<R, <, (2—2.a)
0<P,, <Ly 4R, (2—2.b)
0¢< Pijt < Li(j_l)t, =20, Vi (2—2.0)
Capacity Constraints
I
EltijPijt < NJ.T1+FJ.tT1, (2-3)
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0$F, €0, Vi (2—4)
End Product Availability Constraints

n K
Yp_-% Yn x> o0, i=l,.] t=1,.,N.
=1 Jt =1 k=1 ki* kt

(2-5)
ﬁingle Delivery Constraints
E X 1,Vk. (2-6)

kt

Our objective of scheduling is to determine the
delivery dates of orders and their respective
production schedules that meet all the system
constraints and minimize the production costs due to
holding inventory, use of overtime capacities and
earliness and overdue penalty. The integrated order
and production scheduling problem is then
formulated as

I N t t K
@P) mn L X{{E¥R -% EDk Jh}
X,RPFi=lt=1 n=1 " n=lk=1 *
E Tre + 5 v
+ F.o. + V(& tX —d)
j=1t=1 B3 oy Ko kt Tk
subject to constraints (2.1—2.6) and integrality
of decision variables,
where the Vk function penalizes both early and late

deliveries [OLC90],[ChH91].

t=1

3. Lagrangian Relaxation and Scheduling
Subproblems

3.1 Decomposition by Lagrangian Relaxation
In problem (IP), we observe that the coupling

among different types of products is due to their
competition for production capacities (inequality
(2.3)). The coupling among different orders arises
from their competition for end products (inequality
(2.5)). Applying Lagrangian relaxation [Lue84] to
these two coupling constraints, we form a dual
problem of (IP) with A and 7 as the Lagrange
multipliers for relaxing (2. 3) and (2.5) respectively :
I

(D) max[L(i\_,]_r) z LLk(A) + EL o AT
A,m20 k=1

hj J N
+ZL (M) — X E7rNT1]
=1 97 je1t=1

where

Order Scheduling subproblem,

08, k=12..K

N
(A= V, (X X, —d )+
Lix ’)‘(‘"‘ k(t_1 )
kt
2 2 (,\ B ) Z D
i=1t=1

subject to constra.mt (2.6) for order k ;
Production Scheduling subproblem,

PS,i=12,.1
J N N N
LyAm= mn X% ¥ b, 35t .+Y Yh R
R,y Pygi=lt=1 Ut =t B

subject to the flow balance equation (2.1) and
the material availability constraint (2.2) for
type—i product, where
T.t.., =1,.,J-1;
b.. = URY
ijt N
Tty = 2 Ay T
n=t
Overtime Capacity Allocation subproblem,
OCA,, j=12,..J

N
L,(f)=min ¥ (o,.— 7, T
3'](—) F t=1 ( 2 Jt
jt
subject to constraint (2—4).

PV Fi

3.2 Economic Interpretations
In our relaxation procedure above, the

Lagrange multiplier th can be interpreted as the

marginal cost (or shadow price) of using a group j
machine for one cycle while /\it can be interpreted

as the marginal cost of acquiring a type—i product
for order delivery during the cycle. Now consider the
objective function of OS subproblem. As a unit of
type— product delivered at t has to be acquired
N
during [t,N], the total acquiring cost is ) /\
n=t
the other hand, the holding cost tha.t. needs not be

incurred due to this delivery is E h, . The total

n= t
cost for acquiring all the needed products to deliver
I N
order k at cycle t is then ¥ ¥ (/\ h, )D,.. We
i=Iln=t in’ ki

now clearly see that the delivery decision for order k
is merely making a tradeoff between the
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earliness/overdue penalty and the cost for acquiring
necessary end products.

In the PS subproblem, the production costs
are mostly due to machine utilization and in—process
inventory. Once a type—i product is finished at cycle
t, it can possibly be acquired for delivery and

N
therefore has a value of X /\
n=t
cycle t is the machine utilization cost minus the
completion value. PS thus determines the minimum
cost production and loading. We can similarly
interpret OCA.

So its net cost at

4. Solution Methodology and Integration

4.1 Algorithm Development

Our methodology for finding a near—optimal
solution of problem IP consists of three parts as
follows :

(1) Algorithms for Subproblems

An OS subproblem is solved by direct
enumeration while an OCA subproblem is solved by
using complementary slackness. Solving a PS
subproblem is essentially solving a minimum cost
linear network flow problem. Interested readers may
refer to [ChH91] for more details.

(2) A Subgradient Algorithm for the Dual Problem

Let { X, R, P, F } be the optimal solution to
subproblems for the given Lagrange multipliers A\

and T. We define the subgradient of the dual
function as
s Sl
i= o Ay 4
t t
=—{XpP_ % ED X b (4-la)
n=1 9% pojk=1
2_0
84~ 37r L()\ 7r)|)‘
1
= 21 1_)P1]t —N.T,—F. tTl, (4—1.b)
i=1.]1j=1,.,J,and t = 1,...,N.

The subgrad1ent method proposed by Polyak [Pol69]
is adopted to update /\ and T. Iterative application

of algorithms in (1) and (2) may converge to an

optimal dual solution { A )\ X R P F }.
(3) A _Heuristic _for Fmdmz A Good Feasible
Solution

x  x  x %
The solution { X, R, P, F } obtained

under relaxation may violate capacity constraint
(2—3) and/or the end—product availability constraint
(2-5).  Our heuristic scheme uses unallocated
overtime capacity and a "pull—then—push" procedure
for the production flow networks to resolve capacity
violations in a philosophy of minimum change. The
end—products produced under the adjusted schedule
are then allocated to orders by the Earliest Due Date
first rule and order delivery dates are determined
accordingly.
4.2 Tmplications to Integration

The iterative algorithmic structure above
captures the interactions among OS, PS and OCA
and provides a framework for integrating order and
production schedulings. In addition to the economic
interpretations in subsection 3.2, we observe in
(4—1.a) that the end—product cost profile is affected
by the difference between the accumulated quantities
of end—products and the quantities for delivering
orders. If the difference is positive at cycle t, there
are more end—products than needed. So the price of
acquiring such an end—product, say /\ v should be

lowered, which in turn makes cost at the last (J—th)
machine, bth, increase. As a result, P,  is very

iJt
likely to decrease in order to minimize the production
cost. This effect then propagates through the flow
balance equation to the whole production schedule.
Since the demands for production resources are now
varied, the marginal cost profile T of machine

utilization is also varied according to (4—1.b), which
in turn affects the allocation of overtime capacity.
Actually, the above reasoning process can be initiated
from the perspective of either OS, PS or OCA to see
the interactions among each other. Furthermore, the
economic interpretations of multipliers may be used
for costing the scheduling processes.

5. Rescheduling

In this Section we explore how our integrated
order and production scheduling algorithm can be
exploited for effective rescheduling in response to the
uncertainties of order insertion and capacity loss.

5.1 Order Insertion

When a customer intends to place a new
order, the customer usually specifies a preferred
window of delivery. In inserting a new order, the
manufacturer generally evaluates the following two
factors : (1) the production cost incurred and (2) its
impact to the smoothness of the originally scheduled
production.
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Let Sy = { Xy Ry Py Fydyoy } be an

existing production schedule obtained by our nominal
algorithm. A new order arrives at period n and the
desired delivery window is [Nb , Ne]’ where Nb 2 n.

Let PI(n,d) be the rescheduling problem of inserting

the new order, by minimizing the increase of
production cost, into the existing production schedule
with the order due date set at d € [Nb’ Ne]. We

solve PI(n,d) in a similarly iterative procedure of the
nominal algorithm by using SN as a starting point.

As the dimension of Lagrange multipliers of
the dual problem does not increase with the insertion
of a new order as long as it does not require new
types of products, we initialize the multipliers { '\I’

TI } for PI(n,d) by { A N }. In solving the
subproblems of the dual of PI(n,d) to maintain the
smoothness of the original production, let [ n , Nf 1

where Nf > n, be a user defined window within which
the part of original schedule { XN’ R’N‘ PN, FN }is
Schedule after Nf can be
arbitrarily modified. Available nominal and overtime
capacities in [n, Nf] are calculated accordingly. The

desired to be fixed.

three types of subproblems in the dual of PI(n,d) are

solved the same as they are in the nominal algorithm
by adding the new order into demands. The same
iterative procedure and the feasibility adjustment
heuristic as the nominal algorithm are then applied
to obtain a production schedule with the new order
inserted. Let C(d) be the resultant production cost.
We finally solve PI(n,d) foralld € [Nb’ Ne] and find

* .
d = arg min C(d) as the promised delivery cycle for
d

the new order.

5.2 Capacity Loss
As a capacity loss occurs due to machine

breakdown or labor shortage, the original schedule

may become infeasible because of excessive

productions scheduled for the available capacity. We

extend the feasibility adjustment heuristic to solve

this problem by

(1) fixing the part of the original schedule that has
been executed up to n,

(2) removing the excessive production flows from

their respective material flow network in a way of
minimum increase cost and

(3) reroute, in a way of minimum increase in cost,
the removed flows into their individual flow
network from n and on with arc capacities
properly adjusted.

. Numerical Results of Rescheduling

We have preliminarily demonstrated in
[ChH91] that the nominal algorithm is near—optimal
(with duality gap less than 7% ) and computationally
efficient (190 minute for a problem with 1=4, K=20,
T=50 and J=9). In this Section we construct two
scenarios to examine the effectiveness of our
rescheduling scheme. The flow shop mainly produces
four different brands of products every season. There
are nine machine groups in the shop. Data about
this shop is listed in the Tables shown below.

Production Process of the Four Brands of Products

part processing time/machine

type| My mp m3 my M5 mg my; Mg Mo
1 1 31 7 1 3 4 x 4
2 1 319 1 3 x 5 4
3 1 31 7 3 4 4 x 4
4 1 3 1 x x 3 x 5 4
where x denotes that the product need not be processed
on the machine group

Machine Capacity

machinegronp 1 2 3 4 5 678 9

normal capacity 14 4040404040 6 5 40

overtime capacity 14 2020202020 6 5 20

Contents and Due Dates of Orders

pe dl? due
o 1234danwmr 12 3 4) 0
1T 19064 0 O[7 10 11 10 0 0192122
2 1o o192128[10l 12 [384 0 0 0]26
3 11980 0 0J12f 13 {0 5200 0]30
2 10120 0 ol1241 14 [384 0 0 0130
s |0 019212814 15 [400 0 0 0135
6 11920 0 0l16] 16 |368 0 0 0]38
710136 0 0160 17 | 0512 0 0]38
3 11920 0 0l18) 18 [ O 0 300 0]42
90 10 120 0 _0]174 19 | 0 0 468 0]46
0 10 384 0 01221 20 11920 0 512]4

1177

Other parameters are chosen as : time horizon T =
50 cycles, cycle T1=32 hrs, holding cost coefficient



hit=0.04, V i,t, overtime cost coefficient ojt=10’ Vi,
{100x, ifx20;
-10 x, otherwise ;
Example 1 (New Order Insertion)

Suppose a near—optimal schedule has been
obtained for the above baseline example. Results of
applying the rescheduling algorithm to evaluate the

costs of the four candidate delivery dates are listed as
follows.

and overdue penalty Vk(x)z

d 19 20 21 22
total cost | 7649.67 | 7691.90] 7102.9 | 7222.48
CPU time| 1569 1552 1530 | 1478

It can be seen from the above Table that d =
21 with cost = 7102.96 is the best cycle for delivering
the new order. It takes about 25 minutes to finish
the rescheduling for each optimal delivery date,
which may not be very satisfactory for practical
applications. = However, the CPU time can be
improved by fine tuning of the initial stepsize and
the total number of iterations of the subgradient
algorithm and the stopping criteria to within 10 min
or less.
Example 2 (Rescheduling Due To Machine Failure)

Suppose at the beginning of cycle 17 machine
group 8 breaks down for one cycle. Since group 8
happens to be the bottleneck in the baseline example,
this scenario represents the occurrence of a significant
capacity loss. It takes 1563.99 sec for our algorithm
to reschedule and the resultant cost is 7559.0399 with
duality gap as 13.838%. Among all the orders,
deliveries of orders 18 and 19 have to be delayed for
one cycle due to this capacity loss. The order
manager may want to inform the corresponding
customers about it.

7. Conclusions

We have formulated an integrated framework
for order and production scheduling/rescheduling and
developed the corresponding solution algorithms.
Algorithmic modules of our nominal scheduling
algorithm match the operational functions in a
manufacturing organization and the mathematical
relationships among them provide us with insights for
integrating these functions. Numerical
experimentations shows that our rescheduling
schemes for handling both order insertion and
capacity loss converge to near—optimal solutions.
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