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Abstract 
In this paper, we extend our generalized methodology for 

designing a lower-error and area-time efficient 2's-complement 
fixed-width Booth multiplier that receives two n-bit numbers and 
produces an n-bit product. The generalized methodology 
involving three steps results in several better error-compensation 
biases. These better error-compensation biases can be mapped to 
low-error fixed-width Booth multipliers suitable for VLSI 
implementation. Finally, we successfully apply the proposed 
fixed-width Booth multipliers to speech signal processing. The 
simulation results show that the performance is superior to that 
using the direct-truncation fixed-width Booth multiplier. 

1. Introduction 
In many digital signal processing (DSP) applications such as 

digital filters [ l ,  21 and wavelet transform, it is desirable to 
maintain fixed-width output word through the arithmetic 
operations. The Baugh-Wooley based fixed-width multipliers [ 1- 
51 have been widely studied. King and Swartzlander [3] analyzed 
an adaptive error-compensation bias and proposed an n-bit fixed- 
width multiplier. In [ l ,  21, we generalized this kind of Baugh- 
Wooley based fixed-width multipliers by properly choosing the 
generalized index and binary thresholding. The above scheme is 
based on keeping n+w colums of the subproduct array, where w 
is a nonnegative integer between 0 and n-I. Thus, several lower- 
error and area-efficient fixed-width multipliers can be obtained. 
However, the area-time efficient fixed-width multiplier cannot be 
fully achieved by the Bauth-Wooley based fixed-width 
multipliers. Therefore, the fixed-width Booth algorithm is 
currently one of the research topics. 

The modified Booth algorithm proposed by the MacSorley [6] 
in which a triplet of bits is scanned at a time. I t  is known that the 
recoding technique of the modified Booth algorithm has two 
main advantages. One is that almost half the partial products 
compared to the Baugh-Wooley multiplier can be saved. Hence, 
the number of rows of the subproduct array can be reduced by 2. 
The other is that, based on the first advantage, the critical delay 
time can be shorter than that of the Baugh-Wooley multiplier. 
Area saving of a fixed-width Booth multiplier can be achieved by 
directly truncating n least significant product bits and preserving 
n most significant product bits. With this method, significant 
truncation errors would be introduced since no error 
compensation is considered. In this paper, we are motivated to 
propose a systematic design methodology for low-error area-time 
efficient Booth multipliers. The methodology includes the 
following steps in order: 1) Propose an error-compensation bias 
with a new binary thresholding for a fixed value of w; 2) simulate 
the value of K and error performance of the proposed error- 
compensation bias using our generalized index, and then select 

the best index having lower error and satisfying the same value 
of K for small width n; 3) construct a low-error Booth multiplier 
structure. Based on our methodology, while w = l ,  the proposed 
fixed-width Booth multiplier also operates lower error than those 
in [7] at the expense of slightly increased area-ratio with respect 
to each value of w. The organization of this paper is as follows. 
The modified Booth algorithm is concisely reviewed in Section 2. 
In Section 3, we propose a better error-compensation bias and 
present the simulation results for small width n . The improved 
error-compensation bias can be mapped to a new structure with 
respect to each value of w. The performance of the proposed is 
described in Section 4. Finally, brief statements in section 5 
conclude the presentation. 

2. Modified Booth Multiplier 
Considering the multiplication of two 2's-complement 

integers with n-bit multiplicand A and n-bit multiplier B as 
2n-1 

P = A B = C P , 2 '  (1) 
i=O 

n-2 n-2 
where A =  -an.12n-' + C a j 2 ' ,  B =  -bn-,2"-' + c b j 2 j  , and 

Pi denotes the i-th output product bit. Note that ai and b, 
indicate data bits of multiplicand and multiplier, respectively. 
Assume n is even and the n-bit multiplier B can be rewritten as 

i=O j = O  

( n - 2 ) / 2  

B =  C(b, ; - ,  +b2; -2b2;+')22; , (2) 
i = O  

where b-, = 0 . Note that the terms in the bracket in Eq. (2) have 
values of {-2, - 1, 0, I ,  2). Each recoded value performs a certain 
operation on the multiplicand A, and then the multiple additions 
at each stage would be required in order to generate the correct 
partial product. It is worth mentioning that the operation of - A  
can be realized by the inversion of the multiplicand and addition 
of '1' at the least significant bit. Substituting Eq. (2) into Eq. (I) ,  
we can obtain Eq. (3) as 

where Si =(bZiTI + b2; -2b2j+l)A22i, and it is known that the 
scanning of triplets begins from b-, to the MSB with one-bit 
overlapping. 
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So as to simplify the representation of the bit-product of each 
row for the Booth algorithm, we define the following notation 

S I  = 22r+n-1 + 5'i.n-2 22i+n-2 + ... + S l p 2 2 i  , (4) 

where SI , ,  represents the bit product of the i-th row. According 
to the sign-generate sign extension scheme [8], for an 8 by 8 
multiplier, the sign of the final result can be expressed as 

s = (s0,7z2' )2O +(s1.7c2') 22 + 
I5 13 

') 24 +(S3, , iZ '  ) z6  
~ = 8  ~ = 8  ~ = 8  ~ = 8  

= (29 + g 2 7 + ( 2 1 1  + G 2 1 0 ) + ( 2 1 3  +S2,72l2) 

+ (215 + S3,72I4) + 2 8 ,  (5) 

where S is the final result sign. From Eq. (5), the partial 
products of the Booth algorithm only need to add two elements 

( I ,  G )  for each row and add an extra ' I '  in the 28 -weight 
position as shown in Fig. 1, where main and remain represent 
main part and remain part of the least significant bit (LSB), 
respectively. Thus, the sign-generate sign extension scheme can 
reduce many redundant full adders compared to the conventional 
sign extension method. 

1 1  

Fig. 1. Modified Booth partial-product diagram with sign- 
generate sign extension scheme for an 8x8 multiplier. 

The architecture of the Booth Multiplier as shown in Fig. 2 
consists of Booth encoders, selectors (sel), full adders (FA) and 
half adders (HA). The Booth encoder generates Ctd,[O : 21 
signals to control the selector to choose -2A, -A, 0, 1 A or 2A. 

Fig. 2. An 8 X 8 modified Booth multiplier using sign-generate 
sign extension scheme. 

3. Design of Fixed-Width Booth Multiplier 
The 2n product for n by n 2's-complement multiplication can 

be divided into two sections as 
P = AB = MP+ LP . (6) 

The most accurate truncation product is given by 

P E MP + oremp x 2", 

n r e m p  = [ ~ p l  r . 

(7) 

(8) 

Without loss of generality, for n=8, Eq. (8) can be denoted as 

I 
2 ] . (9) 

7tS3,l + s2.3 + sl,5 + s0.7 ) + y ( s 3 , 0  + '" + s0,6 

1 1 
+ C W ~ ~ [ ~ ] ) + . . . + ~ S ~ , ,  +,(So,, +Ctr lo[2] )  

2 2 r 

(10) 

I OTemp = 

Then we define the following terms 

= s3,1 + s 2 . 3  + s1,5 + s0,7 3 

1 
Eremam = 7 (S3,O + s2.2 + sl,4 + s0,6 + ctrz3 L 2 1 )  

(1 1) 1 + ... + -(So,o + Ctrlo[2]) 
27 

Thus, we can rewrite Eq. (9) as 

oTemp = - (Emom + Eremam) . (12) [: l r  

It is convenient to perfom exhaustive simulation if we define the 
generalized index. Here the generalized index for 8 by 8 
multipliers is defined as 

6)r~=~,r(q3'921ql,qO)=<s~,I -,,, >" +<s2 .3 - , ,  >92 +<s,,-,, >y* 

+ < s0.7-% (1 3) 

where the binary parameters q3-,+, q 2 - w ,  ..., qo E (0, I }  , and 

the operator 

in which is the complement of binary T . Furthermore, 
B ~ ~ ~ ~ ~ ~ . ~ ~ ~ ~ , ~ ~ , ~ ~ ~ ~ ~ )  isreferredtoasas ,where 

Q = q j ~ 2 3 + q Z ~ 2 2 + q l ~ 2 ' + q o ~ 2 0 .  (15) 

For example, the value of g has a range from 0 to15 for w=O 
and 1. Note that if the value of the second index of Si,j in Eq. 

( 1  3) is less than zero, the Si, can be neglected. In [4,5], they 
show that lower truncation error can be obtained if larger n+w 
columns are kept in hardware. However, more area cost could be 
increased. Since the reduction and rounding errors do not own 
the same weight position, we adopt S-Ss' method [8]  to 
concurrently treat reduction and rounding error. By applying Eqs. 
( 1  3) to ( I  5) into Eq. (12), we get 
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Herein, the second index of the control signal in Eq. (1 8) denotes 
whether the control signal exists. In case the value of the second 
index is less than zero, the control signal can be neglected. Note 
that the least significant weight of K must be limited to the n+w 
weight position. Concurrently treating method for reduction and 
rounding errors of Eq. (16). In the first step, to design a 
realizable error-compensation bias, two types of binary 
thresholding for the error-compensation bias can be change to 

Type 1:  

Type 2: 

w = l .  The restriction of the value of K can be modified as 
[ K ,  I, E { o, 2 - 1  } for i=l,2,3 and 4. For w =  I ,  since 
using the same simulation procedures as mentioned in [ I ] ,  we 
only introduce the analysis for w = 1 and construct the structure. 
In Type 1 binary thresholding, by exhaustive search we can find 
that one good index, shown in Fig. 3(a). We observe that the 
specific index, 6)Q=o,u,=I achieves better error performance where 

the chosen index satisfies [ & I r  = 1 and [&I, =o ,  we simulate 

average error as shown in Fig. 3(b). On the other hand, for Type 
2 binary thresholding, the error simulation in terms of average 
errors are large than what find error resulted from the best index 

- 1  - 

in Type 1 thresholding, so we ignore the discussion in Type 2. 
So far, the second step is achieved. Hence, a new lower error 
fixed-width Booth multiplier under w=l can be described and 
simplified as: 

where B,=,,,.=, = s3,0 + s,,z + + so.6 . In the third step, 

Eq. (22) can be mapped to a new structure as shown in Fig. 4. 
From simulation results, ew..H-, in Type 1 binary thresholding is 

still the best index for w = l .  Note that the error-compensation 
circuit only needs three basic element gates. 

... 3 . I  ....,. \ \JJJ+ 

Q 

Fig. 3. (a) Values of KI and K2 versus different Q of the binary 
thresholding. (b) Average errors by exhaustive search simulation 
versus different Q of the binary threshoding for n = 8 . 
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Fig. 4. Proposed low-error fixed-width 8 X 8 Booth multiplier 
with @,,,,,,=, . 

4. Performance and Application Discussion 
In this section, we first simulate error performance in terms of 

maximum error, average error, and variance of error as listed in 
Table 1 between the direct-truncation multiplier and the 
proposed fixed-width Booth multiplier. It is clearly seen that the 
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new structure can achieve better error performance than the 
direct-truncation Booth multiplier. Regarding the number of 
gates and the critical path delay time issues as listed in Table 2, 
comparison results show that the new Booth multiplier saves 
much area cost with respect to the full-precision Booth multiplier 
based on the sign-generate sign extension scheme. Most 
importantly, the gate count and critical delay time of the 
proposed structure are close to those of the direct truncation 
multiplier, respectively. Thus, the proposed fixed-width Booth 
multiplier has the area-time efficient feature with better error 
performance. On the other hand, we apply the proposed fixed- 
width multiplier to the 35-tap FIR filter for speech processing 
[9]. For convenience of comparison of various fixed-width 
multipliers, we take 1000 samples for the consonant part and 
vowel part of “Chicken” .We are concerned with whether the 
filtered waveform is accurate via our proposed fixed-width 
Booth multiplier, so the correct standard output is required. We 
use error-free output as a standard, which is used to compare the 
accuracy performances of fixed-width Booth multipliers. From 
comparison results obtain with four fixed-width Booth 
multipliers as show in Fig. 5 for speech processing application, 
we observed that Type 1 multiplier with ~ Q , o , w , ,  shows better 

performance in the consonant and vowel parts. 

Multiplier Width Maximu Average 
m Error Error 

Direct- 4 32 10.88 
Truncation 6 192 70.50 

z ............... ................ ................ ................. : ................ 20 : : ; 
w 

Variance of 
Error 
67.20 

1465.86 
i ............. .i ................ : ................. :. ............ ; ................ 

Type 2 with 

Type 1 with 
Q=O, w=O 

Q=O, w= 1 

SamDle number 

Fig. 5. Comparison results of error signals obtain with four kind 
of fixed-width multipliers. 

5. Conclusions 
This paper develops a new methodology for designing two 

low-error and area-time efficient fixed-width Booth multipliers. 
By properly choosing binary thresholding and the generalized 
index, we can derive several better error-compensation biases to 
improve the truncation error. Furthermore, these error- 
compensation biases can be easily constructed as lower-error 
fixed-width Booth multipliers. It is very suitable for VLSI digital 
signal processing applications where the accuracy, area, and 
speed issues are crucial. Finally, we successfully apply the 
proposed fixed-width multiplier to a digital FIR filter for speech 
processing application. 
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Table 1 : Comparison Results of Three Kinds of Errors among 

with 6 1  41 I 12.25 I 175.88 
Q=O, w=l 8 I 798 I 7 9 6 9  I 7514 AA - -, - . _.-_ . - - . . . .  

16 I 394248 I 42533.53 1186761423 
Table 2: Comparison Results of Area and Critical Delay Time 

among Different Booth Multipliers for n = 8 
Multiplier 

Time 

13TF.4 + 3THA 

Direct-Truncation 
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