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Abstract

We propose a new framework for key management to
construct a secure multicasting environment. When rekey-
ing, only one message needs to be generated, and the mes-
sage size is a constant. Especially when the group size is
lurge, our framework largely reduces the traffic in the net-
work. In this paper, two solutions are given to carry out
this framework, which are closed curve solution (CCS) and
perpendicular space solution (PSS), respectively. One is
based on geometric approach and the other on linear alge-
braic approach. Our framework is also compatible to other
group communication protocols.

1 Introduction

Multicasting is now considered an attracting and chal-
lenging paradigm in the arca of communication. It avoids
transmitting packets from one sender to each recipient sep-
arately to save the network bandwidth. Such applications
include pay-per-view systems, where a video server deliv-
ers a movice to all subscribers through multicasting; or video
conferencing systemns, where messages are shown to all re-
motc members. The movie and messages should be only
available to authorized subscribers and conference mem-
bers, respectively. Therefore, secure multicasting becomes
an important design issue in the areca of communication.

We assume all members in a group share a group key.
Messages should be encrypted by the key before they are
multicast. On receiving an encrypted message, group mem-
bers can extract the message using the group key, while oth-
ers cannot.

For the sake of security, we need a new group key when
someone joins or leaves the group. A new member can only
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access the multicast messages sent after it joins the group,
as illustrated in Figure 1. Therefore, the group key has to
be changed when someone joins the group. Similarly, the
group key should also be changed when someone leaves
the group, because the user is no longer authorized to ac-
cess the multicast messages after leaving the group. Conse-
quently, distributing new group keys to group members will
take place often in dynamic groups in which membership
changes frequently. Our goal is to have a way to distribute
the new group key securely and efficiently.
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Figure 1. A requirement for a secure muiticas-
ting environment

In recent years, some efforts have been done to achieve
secure multicasting. In some static key management proto-
cols [, 2, 3], all members obtain a permanent group key
as they join the group. These schemes do not apply to dy-
namic groups. Chiou et al. [4] proposed a scheme called
secure lock to broadcast securely, which is implemented
using Chinese Remainder Theorem (CRT); only authorized
members can extract the group session key from the secure
lock. Performance issue becomes an important concern in
this scheme, since CRT requires complex computation. Io-
lus [5] divides a large dynamic group into subgroups. Each
subgroup requires an extra agent to deal with“key transla-
tion.” Moreover, Iolus needs some intermediate nodes, say
GSls, GSAs, GSCs, to support its framework. The key man-
agement schemes for secure multicasting in [6, 7, 9] re-
quire each of the N members to store log(IV) + 1 keys. As
the group size grows, the system requires a large amount
of keys and it is difficult to manage so many keys while



keeping the system secure. Cliques [8] provides a way to
distribute group session keys in dynamic groups. However,
it does not scale well to a large group. Molva et al. [10]
proposed a scalable solution for dynamic groups. Neverthe-
less, the scheme has to modify the structure of intermediate
components of the multicast communication such as routers
or proxies. Waldvogel et al.  [11] proposed a scalable
scheme for dynamic groups such that each member holds
fixed number of keys even if the number of members is al-
tered. In this scheme, if the system uses k bits to represent
a member ID, then each member holds k£ + 1 keys. It is
obviously that the system can have up to 2¥ members. The
system has to be reorganized if the number of members ex-
ceeds 2¥; on the other hand, if the number of members is
far less than 2%, each member will hold relatively too many
keys. Besides, the methods in [10, 11] may suffer from the
collusion attack. However, a very low-overhead operation
exists to shrink the key space as the system grows. Wu
et al. [13] proposed a scheme to distribute the new group
key through a special function called secure filter. While
rckeying, it largely reduces the number of multicast mes-
sages. However, it needs a great deal of computation when
the group size becomes large.

We present a framework using onc multicast rekeying
message and the message size will not grow with the group
size. Especially when the group size is large, our frame-
work largely reduces the traffic in the network. Besides,
no intermediate nodes will be employed in our framework.
And our framework can be easily applied to the multicast-
ing environments and other group communication protocols
without any modification of network hardware. Above all,
our framework can resist the collusion attack.

Generally speaking, most solutions to the key manage-
ment problems in the secure multicasting environment are
based on number theory and basic logical operations. In this
paper, we propose a new framework for key management in
a secure multicasting environment, in which each member
is assigned a private key. When a user joins or leaves the
group, the group manager will multicast only one message
to all members. On receiving it, members can use their own
private keys to retrieve the new group key from the message.

Below we give a detailed description of the key distribu-
tion problem in secure multicasting environment. We will
then define our framework formally. Two concrete solu-
tions are given in section 4, one is based on geometry and
the other on linear algebra. To our best knowledge, they
are the first one that employs geometry and linear algebra,
respectively, to solve these kinds of problems. Section 5
concludes this paper.

381

Figure 2. A secure multicasting environment.

2 Key management in secure multicasting

A sccure multicasting environment consists of users and
securc multicasting groups. Each user m; has a private se-
cret key k; to perform secure point-to-point communica-
tion. A secure multicasting group consists of more than one
user. Each secure multicasting group g; is associated with
a group key K g;. Members of g; are capable of using K g;
to perform secure multicasting. Note that a user can be a
member of many secure multicasting groups.

There is an example illustrated in Figure 2. In the figure
the secure multicasting environment has six users mg, 71,
..., ms. A secure multicasting group go with three mem-
bers m., Tng and ms is also defined. Each user m; has a
private sccret key k; and the secure multicasting group go
has a group key K gg. To perform secure multicasting, .,
without loss of generality, first encrypts the multicast mes-
sages using K go, and then sends them to m3 and ms. On
receiving the encrypted messages from my, m3 and mj use
K go to decrypt them.

Problems arise if the membership of a secure multicas-
ting group is changed. When a user joins a secure multi-
casting group, it has to acquire the associated group key to
further deal with multicast messages. However, it is possi-
ble that the user uses the group key to access past messages
that were sent before joining the group. This is not allowed
since the user is not an authorized recipient of the old mes-
sages as they were sent. Similarly, if a member leaves a se-
cure multicasting group, it is no longer authorized to access
the multicast messages. It is also possible that the member
uses the group key to access the messages that are sent after
it leaves the group. Again, this is not allowed since it is no
longer a member. This is illustrated in Figure 1.



Figure 3. A group configuration C

6
{K1, K2, K3, Ky, K5, Kg}, Ue = | K
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Therefore. group keys should be changed if some mem-
bers join or lecave the secure multicasting groups. How to
distribute new group keys to group members is therefore
an important design issuc in dynamic groups whose mem-
bership changes frequently. Our goal is primarily aimed
at finding a way to distribute the new group key securely
and efficiently. Moreover, the scheme should be scalable in
large dynamic groups.

Our framework to the key distribution problem is pre-
sented in the next section. The scheme scales and works
well without the help of the trusted third-party  [5. 10].
Morcover, the scheme is independent of physical commu-
nication environment. We will introduce two solutions of
this framework, namely, closed curve solution (CCS) and
perpendicular space solution (PSS).

3 A key management framework

The design goal for our framework is that authorized
members can obtain the group key efficiently, while the oth-
ers cannot. We assume that anyone can access the data of
the multicasting group only by use of the group key.

In our framework, the private key of a group member
is represented as a subset of S, where S is the underlying
space. That is, each member in the multicast group is as-
signed a private key K;, where K; € 25* A group config-
uration C = {K |, K»,..., K, } consists of the private keys
for each member as illustrated in Figure 3, where n € N
is the number of group members. The group manager com-
putes I¢, Uc, and O¢ for the generation of the group key:

425 is the set of all subsets of S.
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Thus. we can detine the rekeying history ‘R as

a sequence of pairs of configurations ¢; and pub-
lic sets G; used to generate group keys: R
((Cr, GO (Ca, Ga)y o (€ G), <) where |G < oo,

At cach time of rekeying. the group manager will multicast

only a public set (75 to all members. Here G, should satisty
the following requirements:

Ginle, £ 0
GinWe, —1Ie)) = 0
Gin ()(;. ?é 0.

When a user receives the public set Gy, a point of G
will be regarded as an inner point if it belongs to its private
key. All others arc outer points. Thus, a member can utilize
its private key to partition the elements in G; into two sets:
the inner-point set and the outer-point set. These two sets
can then be used to generate the new group key according to
different implementations. Without knowing these two sets,
any unauthorized user should not know the group key. The
security of the framework is based on the difficulty of find-
ing the two sets, which is quite implementation-dependent.
The notion of the framework is illustrated in Figurc 4, and
we will give two solutions in the next section.

Moreover, the size of G; does not depend on the group
size except at reorganizing. The size of our rekeying mes-
sage will not increase with the growing of the group size.
Therefore, our framework saves morc bandwidth as the
group size becomes larger. The group manager has to de-
cide the size of the public set GG;. Especially, for example,
for an environment requiring higher sccurity, it is not ap-
propriate to have a small G;. Otherwise, it is likely to be
vulnerable to brute force attacks.

For the sake of security, special attentions must be paid
on the choice of the group keys. For a rekeying history



R = ((C1,G1), (C2,G2), ..., (Cs,Gy), .. .), where (C;, G;)
corresponds to time period T}, we must have

Gin(Ue; —Ic;) #0  foralli # j.

Otherwise, all legal members at time T; can access the
messages multicast during T3, while not all of them are legal
members at time T;.

Actually, if the membership of any two time periods dif-
fer for more than one member, we further require the fol-
lowing: for any ex-member or any new member with pri-
vate key K, if the membership is not valid at time T}, then
the inner point set of G; should not be a subset of K. Oth-
erwise, the ex-member or the new member can access some
multicased messages of T; for which it is not authorized.

It is worth mentioning that our framework resist collu-
sion attacks under proper implementations. For a multicast
message at a fixed time 7; with a corresponding C;, because
the private keys held by unauthorized users are not in C; and
the choice of G; is based on C;, they cannot collude to get
the group key through the collection of their private keys.

4 Solutions

We now show two concrete solutions to illustrate the
framework.

4.1 Closed Curve Solution (CCS)

In the solution, each private key is represented as a
closed curve on a fixed underlying plane. The group man-
ager holds all closed curves.

Let C denote the set of private closed curves held by all
members in this group. Let I denote the area bounded by
all the closed curves ¢’s in C. We require that I cannot be an
empty set. Let U denote the area of the union of all areas by
all the closed curves ¢’s in C. Let O denote the complement
of U on the plane.

Thus, for a multicasting group of n members,

C={a,c,...,cn},
where ¢; is a closed curve, 1 < ¢ < n, such that
I:ClﬂCQO"'ﬂCn#@.S

When rekeying, the group manager chooses a public set
of points G = {p1,p2,...,Pa+s} such that there are «
points in I and B points in O. The group manager then
sends G to all the group members.

When an authorized member m; with private key c; re-
ceives G, m; can separate the points in G into two sets by

5For the sake of brevity, we also use ¢ to denote the region it bounds.
For example, (c1 N c2) means the area intersected by ¢1 and c2.
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Q|

Figure 5. An example of CCS with its C =
{01762,63}

the following rule. If a point is inside ¢;, it will be put into
the inner-point set Py. Otherwise it will be put into the
outer-point set Po. The user then uses the results to gener-
ate the correct group key.

The security of this solution is based on the difficulty of
separating the points in G into correct Py and Py. There
are several ways to ensure this. First of all, the number
of inner points can be randomly decided and all the points
are equally distributed. Secondly, the intersection I may
be disconnected and have many components, which means
that inner points and outer points can be mixed on the plane.
Thus we can have the inner points not clustering together.
This makes brutal attacks not feasible. If an intruder u tries
to find the K g in a brute-force way, u needs O(2*+9) times
of trials. For example, if G has 100 points, an intruder needs
O(21°) times of trials.

Now suppose that a user m; with private key c; leaves
the group, the group manager will choose some points lo-
cated inside ¢; but not inside any other c; for i # j. Hence
these point are in the new O and thus are outer points. The
system manager will also choose some points outside ¢; but
inside any other ¢; for i # j. Hence these points are in the
new I and thus are inner points. This makes m; not capable
of using ¢; to distinguish the correct inner points and outer
points.

On the other hand, suppose that m; joins the group. The
system manager assigns a private key c; to m; with the fol-
lowing consideration: ¢; can not be used to correctly sepa-
rate the inner points and outer points for any previous public
set G.

We now give formal procedures of CCS as follows.

Procedure CCSJOIN(m;) for Joining Operation
begin
m; is assigned a closed curve ¢;;
C=CU{e}; '
I=1Nc;



U=UuUg;
0 =Us
select a + (3 points to form a point set G, such that
|GNI|=aand |GNO| =4
send G to all group members;
end

Procedure CCSLEAVE(m;) for Leaving Operation
begin

C=C\{g}
I= ﬂ Ck;
ck€C
U= U Ck,
ck€C

0 =U¢%

select a + (3 points to form a point set G, such that
IGNIl=aand |[GNO|=0;
send G to all group members;
end

Note that we do not specify a way to construct group
keys using the inner points and outer points. There are many
possible approaches, such as XOR all inner points, or put all
inner points into an one-way function.

4.2 Perpendicular Space Solution (PSS)

In this solution, each private key is represented asa k x 1
vector £ over ZI’”;, where p is a large prime and & is an integer.
The dimension of its corresponding perpendicular spacef ¢+
over Z isk — 1.

Note that a vector ¥ € t* if and only if ¥ is orthogonal to
t. This means that that the inner product of ¥ with t is zero.
We can therefore use this property to separate the vectors.

Let C denote the set of the perpendicular spaces corre-
sponding to the vectors held by each member. Let I denote
the intersection space by all the perpendicular spaces of the
members. Let U denote the union by all the perpendicular
spaces of the members. Let O denote the complement of U.

Thus, for a group of n members,

tEY,

where ¢ is the perpendicular space with respect to £; such
that

C = {ti ty,..

I=tiNtyn---Ntr #0.

When rekeying, the group manager finds a set of vectors
G={01, U2, ..., Ua+p} such that there are a vectors in I and
B vectors in O. The group manager then sends G to all the
group members.

A perpendicular space ¢t~ is a collection of all the vectors perpendic-
ular to ¢. Since tL comes with £, we can hence take t+ as user’s private
key abstractly for consistency with our framework.
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When an authorized member m; receives this public set
G, it uses its vector #; to perform the inner product of #;
with each vector in G. If the result equals zero, the vector
then belongs to tX. m; then put this kind of vectors into the
inner-vector set while other vectors are put into the outer-
vector set. The user then uses the results to generate the
correct group key.

The analysis of security for the PSS is the same as for
the CCS. We will now only give formal procedures for the
PSS here.

Procedure for PSSJOIN(m;) for Joining Operation
begin
m; is assigned a k x 1 vector t; over ZZ,‘, where
p is a large prime; k is an integer;

C=CuU{tt});
I=1Int

U=UuUtt;
0 =U¢

select a + 3 vectors to form a vector set GG, such that
|[GNIl=aand |GNO| = 6;
send G to all group members;
end

Procedures PSSLEAVE(m;) for Leaving Operation
begin

C=C\{t;}
I = ﬂ tﬁ“;
ttec
U = U t;L;
ttec

0o=U¢%

select a + 3 vectors to form a vector set G, such that
|IGNI|=aand |GNO|=0;
send G to all group members;
end

5 Conclusions

In this paper we have proposed a novel framework for
key management in the secure multicasting environments.
When rekeying, the group manager will multicast a public
set to all the members. On receiving the public set, a mem-
ber can use its private key to separate the elements in the
public set and use the results to generate the new group key.
We also give two solutions of the framework, which have
different properties, but rely on the same basic principle.
One of which is closed curve solution (CCS), and the other
is perpendicular space solution (PSS).

One benefit of our framework is that we need only one
multicast rekeying message, say the public set, and hence
the message size can be a constant. Furthermore, compared
with the related work, our framework applies well to other



group communication protocols because it does not need
a third trusted party (such as proxy, router, or some inter-
mediate nodes). Above all, this methodology shown in our
framework is useful and meaningful. We give solutions us-
ing the concept of geometry and linear algebra. By this, we
believe it is worth trying to find other interesting mathemat-
ical properties for solving the secure multicasting problem.
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