
Removing CSC violations in asynchronous circuits by
delay padding

K.-J.Lin
C.-S. Lin

Indexing terms: Asynchronous circuits, Signal transition graphs

Abstract: A novel alternative for removing CSC
(complete state coding) violations in
asynchronous circuit synthesis for STGs (signal
transition graphs) is presented. The main feature
of the work is to exploit delays in the physical
circuit to remove CSC violations. Its main
advantages are that it (i) does not need to obey
the noninput constraint and (ii) saves area
overhead when a CSC violation in the state graph
does not actually appear in the physical circuit.
The delay constraint for removing each CSC
violation is formulated. Then an algorithm is
proposed to derive a consistent set of constraints
to ensure that all violations are removed. If a
consistent set exists, it is shown that those
constraints can always be satisfied by padding
delays during hazard analysis, and therefore
hazard-free circuits without any CSC violation
can be derived. Based on this approach, the
marked-graph benchmarks, hitherto unsolvable
due to the noninput constraint in existing
methods, are now resolved.

1 Introduction

Asynchronous design has received much attention in
recent years. A considerable number of proposals have
been made to automatically synthesise hazard-free
asynchronous circuits starting from newly developed
event-based or state-based specifications [11. In the
existing methods, a prerequisite for realising circuits is
to satisfy the so-called CSC (complete-state-coding)
property. Violation rectification must be completed
before circuit realisation. To satisfy such a property,
arcs (for removing states) and/or internal state signals
are inserted into the original specification without
changing the observable behaviour of the environment
[2-51. Generally, signal insertion can deal with a wider
range of violations, while arc insertion may save area.

However, there are two main drawbacks in the exist-
ing methods for removing CSC violations: (i) the
inserted arcs and signals must not be connected to an
0 IEE, 1996
IEE Proceedings online no. 19960634
Paper first received 4th December 1995 and in revised form 14th May
1996
The authors are with the Department of Electrical Engineering, National
Taiwan University, Taipei, Taiwan, Republic of China

input transition, that is, the insertion must obey the
noninput constraint; some benchmark examples, there-
fore, cannot be solved under such a constraint; (ii) even
though violations exist in the state graph, those prob-
lematic states may not appear in the physical circuit
because of the inherent delay, hence, the area and/or
performance overheads to remove such physically non-
existent CSC violations are wasted.

In this paper we propose a novel alternative for
removing CSC violations in asynchronous circuit syn-
thesis for STGs under the bounded delay model. The
key idea is to pad delays selectively to slow down some
transitions in order to render some problematic states
unreachable in the physilsal circuit. We first formulate
the constraint for delays 1 o remove each CSC violation.
Then an algorithm is proposed to derive a consistent
set of constraints to remove all violations. If a consist-
ent set exists, we show that those constraints can
always be satisfied by padding delays during hazard
analysis and therefore halzard-free circuits without any
CSC violation can be derived. The proposed approach
is not burdened with the two main drawbacks of the
existing methods. First, the delay padding can be used
to delay the input signal i o affect the outputs, since this
just slows down circuit response while it does not
change the causal relations among signal transitions.
Therefore, the delay padding does not need to obey the
noninput constraint. Secondly, it is possible that no
delay padding is needed when CSC violations in the
state graph do not actually appear in the physical
circuit. Based on this approach, we have been able to
resolve those unsolvabk marked-graph benchmarks
due to the noninput constraints in the existing
methods.

A related work is [6], which pointed out the unreach-
ability of some legal states in timing STG. Those
unreachable states reduce the possibilities of CSC vio-
lation and also reduce the implementation area. How-
ever, their work needs predefined timing among signal
transitions and thus cons trains the subsequent synthesis
work. Nevertheless, this predefined timing information
may not be satisfied after hazard removal. Iterations
between CSC satisfaction and circuit implementation
may occur. In addition, it did not provide any method
to remove CSC violations.

2 Preliminaries

A signal transition graph, STG, can be viewed as an
interpreted Petri net in which each transition is inter-
preted as a physical sign a1 transition of asynchronous
behaviour [7]. A Petri net (PN) is a 4-tuple N = < P, T,

413 IEE Proc.-Comput. Digit. Tech.. Vol. 143, No. 6, November 1996

F, mo >, where P is a set of places, T i s a set of transi-
tions, mo is the initial marking and F c (P x T) v
(TxP) is the flow relation. A place p is a fanin of a
transition t, and t is a fanout of p , if (p, t) E F. Con-
versely, a transition t is a fanin of p , and p is a fanout
of t , if (t , p) E F. The execution of a PN starts from the
given initial marking mo. A marking is a set of tokens
upon a set of places. A transition is enabled when all
its fanin places carry tokens. Then it can be fired. The
firing of a transition is to remove one token from each
of its fanin places and add one token to each of its
fanout places. After a transition is fired, a new marking
is reached. A marking m is called live if each transition
can always be enabled in some marking reachable from
m. A net is live if its initial marking is live. A marking
m is called safe if no place can ever carry more than
one token after any sequences from m. A PN is safe if
its initial marking is safe. Under our current considera-
tion, the STG class has an underlying live and safe
marked graph, in which each place has at most one
fanin and at most one fanout. For simplicity, places are
removed, that is, each arc in an STG originally carries
a place. Furthermore, we restrict ourselves to strongly
connected nets. This means the considered STG can
execute infinitely.

'R i+

I
i 1 Ro+

RO- - c
A i -
I

a

'Ro +

'Ri- ' A I +

l A i -
'Ri +

2Ri- 2A i+

'i"
2Ai-

b
Fig. 1
a STG; b two-period unfolding

STG of PLA interface circuit and its two-periodr unfolding

The STG naturally captures the characteristics of a
general timing waveform. A simple STG from [2] is
shown in Fig. la. The transitions of a signal x, denoted
by X+ and x-, are the rising (0 -+ 1) and falling (1 + 0)
transitions, respectively. Henceforth, x* will denote a
certain transition of signal x (i.e. either an x+ or an x-
) and x" will denote its inverse transition (i.e. either an
x- or an x+). The signal behaviour described in the
STG is according to the Petri net firing rules. If two
transitions can be enabled at the same time, they are
concurrent. Otherwise they are ordered. In an STG, an
arc between two ordered transitions may be redundant.
An arc xi* -+ xj* is not redundant only if there exists a
marking in which all input arcs to xi* except this carry
tokens. For such a marking, if xi* IS fired, xj* can'be
enabled immediately. We call xi* (xi) an enabling tran-
sition (signal) of xj*. In this paper we assume that all
redundant arcs in the STG have been removed.

The STG has an equivalent finite-state-machine rep-
resentation called a state graph (SG). The SG is a
directed graph, in which each vertex (i.e. a state) is in
one-to-one correspondence with a marking reachable
from the initial marking, and each arc s1 $ s2 repre-
sents that t* is enabled in s1 and s2 can be reached from
s1 through the firing of t*. The SG represents STG
concurrency as an interleaving of transitions. That is,
in each state concurrently enabled transitions can be
fired in any order, but only one is fired at a time to
reach a new state. Note that actual orders among sig-
nals in the physical circuit may not completely follow
the sequence of the state graph due to the circuit
delays. Since the underlying net of the considered STG
is live, safe and strongly connected, the SG is strongly
connected. The SG of the STG in Fig. l a is shown in
Fig. 2. The SG captures the state of all signals (input,
output and internal signals) in a circuit. As the total-
state model in the classical asynchronous design, all
signals are considered as state variables, and their
Boolean values are used to encode states. For each s1 %
s2 (sl +s2) arc, the value of x in the coding is 0 (1) in s1
and 1 (0) in s2, while all other signals must have the
same value in both states. To ensure that the state
assignment is consistent, a transition x+ (x-) can be
enabled only in a state whose code for x is 0 (1). The
following requirement is proposed to have a consistent
state assignment by [7].

R o -
R o -
I s':B A i -

/ 'Ri + pi+

/Ro + /Rot

/ i -

A I t

Fig.2 SG of STG of PLA intevface circuit

Definition (Ziveness) [7]: An STG is live iff
(i) the underlying Petri net is live and safe
(ii) for each signal a, a+ and a- occur alternately, and
no two transitions of a are concurrent.
Fig. 3 shows the SG with a consistent state assignment.
From the consistently encoded SG of an STG, we can
define the output function (or next-state function in [8])
of each noninput signal. For each noninput signal, if its
transition is enabled in a state, then its output function
has a different Boolean value from the state code.
Otherwise, it is the same as the state code. All signals
are the input variables to the output function. The
current state code corresponds to an input vector to
excite the output function. The output function for Ro
in Fig. l a is also shown in Fig. 3. In a live STG, two
different states may have the same state code. To
ensure each state code (input vector) to predict a

IEE Proc -Cornput Digit Tech, Vol 143, No 6, November 1996 414

deterministic output value, the following property is
required.

R i A i Rol Ro
Fig. 3
s4 is the initial state

SG labelled with state-code/output-junction

Definition (complete state coding (CSC)): A live STG
has a CSC property iff any two states which enable dif-
ferent sets of noninput signal transitions have distinct
state codings.

Fig. 3 gives examples of CSC violations. Both states
s l and s5 are assigned the same binary label 110 but s5
enables the output transition Ro+ while sl does not
(thus s5 predicts Ro = 1 while s l predicts 0). Clearly,
we cannot have a logic implementation which accepts
the same state code but produces different outputs. The
main concern of this paper is to remove CSC viola-
tions.

3 Delay arc

Our key idea to remove a CSC violation is to force a
pair of concurrent transitions to affect outputs in some
definite order such that problematic states cannot be
reached in the physical circuit. This constraint can be
represented as a delay-arc between the transition pair
in the original STG. The state sequence (firing order of
transitions) is expected to follow those added delay
arcs, while the enabling order is not changed. In the
physical circuit, a constraint is achieved by inherent
delays or padded delays to slow down a transition
related to the other one. In Section 5 we show how to
achieve the constraint during hazard analysis. This Sec-
tion will show how to find a delay arc for removing a
certain problematic state. Because of the different types
of concurrent behaviour, the effect of a delay arc
between two concurrent transitions may be different.
We will summarise the kinds of arcs that are permissi-
ble for our problem.

It is important to note the difference between the reg-
ular arc used in the existing methods and the delay arc.
A regular arc forces two originally concurrent transi-
tions to be enabled in order, while a delay arc only
forces them to fire in order. Therefore, the expected
state graphs are both the same, but a regular arc
changes the output function while a delay arc retains
the original specification. Furthermore, since a regular
arc changes the enabled order (i.e. changes the causal

IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 6, November 1996

relation), it must not be directed to an input transition,
unless modification of the input specification is
allowed. On the other hand, the delay arc only delays
the effect of an input t:ransition passed to some out-
puts. This does not change the specification and hence
is permissible.

We now show how to .find a delay arc for removing a
problematic state. To remove a state si, all possible fir-
ing sequences from the initial marking to si must be
removed. We check wh.ether there exists one of the
fanin transitions of si w'hich is concurrent with any of
its fanouts. If such a transition pair exists, a delay arc
can be inserted between them to ensure that, from each
state enabling both of them, the fanin transition always
fires after that fanout transition, and therefore all the
state sequences to reach si will not occur. Otherwise, if
si has only one predecessor state, we try to find such
pairs from its predecessor state (our current method
discards the search if si lhas more than one predecessor
state). For instance, if we want to remove s1 in Fig. 3,
the pair (Ri-, Ro-) is :found and arc Ri- -+ Ro- is
inserted to attain our goal. However, in certain condi-
tions, an arc added between two concurrent transitions
may be redundant (does not remove any state) or may
render the STG nonlive, which clearly is not allowed.
The different effects of arcs result from the different
types of concurrent behaiviour. The following will show
the classification of concurrent behaviour, which is a
basis to select correct d'elay arcs in the following Sec-
tion. The classification in fact is also applicable to the
regular arc for removing states. To the best of our
knowledge, no previous work has ever addressed this
classification.

The classification for concurrent behaviour is based
on the impact of an added arc between two concurrent
transitions. Since the impact depends on the placement
of the initial marking, we exploit the two-period
unfolding of an STG for the analysis. The unfolding
has been used to analyse the transition relation in an
efficient way [9]. It can be seen as an acyclic process in
which each transition corresponds to a single
instantiation of a transition in the original STG. Let x*
be a transition in the original STG. We denote its kth
occurrence in the unfolding as kx*. It was proved that
the first two periods of the unfolded STG are enough
to derive all precedence relations in O(N3) complexity
with respect to the number of transitions N . Fig. l b
shows the unfolding of Fig. la. Henceforth, we use a
to denote the partial-order relation and 1 1 the
concurrent relation in the unfolding of an STG. We
now recall a result from [9], that two transitions ti and
tj are concurrent in an STG iff there exist k'ti and k2tj
such that klti 1 1 btj in the unfolding of the STG. We
then classify the concurrent relations to four types as
shown in the Table 1. The arcs ti -+ in the first three
types and arc ti + ti in type 1 are permissible. The arc
ti + $($ + ti) removes those states with t . as a fanin
and ti as a fanout (ti as ,a fanin and tj as a fianout). The
arc tj + ti in type 2 is redundant, because from the
initial marking the relation '$ 3 Iti already exists,
while it does not force the required relation 2tj Iti.
For example, for removing s4, we find the arc Ri+ +
Ai-. However, it cannot force Ri+ to fire always before
Ai- in s3 and thus cannot remove s4. Hence, such an
arc is not permissible. In type 3, the arc tj + ti is also
not allowed. Because ti may fire twice while ti keeps
enabled, such an arc is not enough to force them to be

415

ordered. For example, even added to Ri- + Ai-, the
two transitions Ri- + Ai- are still concurrent.
Actually, this arc renders the STG unsafe. As for type
4, with the same reasoning as type 3, no arc is
permissible. In our procedure, all added delay arcs
belong to those permissible arcs in Table 1.

Table 1: Classification of concurrent behaviour

Types Conditions Permissible Examples
arcs in Fig. 1

11: concurrent relation. 3: ordered relation. n: and-operation

4 Consistent delay-arc set

Requirements must be satisfied when more than one
delay arc is needed to remove all CSC violations, to
retain the observed behaviour of the environment and
to ensure that the relations specified by the selected
arcs can be met in the physical circuit and a hazard-
free circuit can be derived. We firstly formulate those
requirements. Then, we propose an algorithm to derive
a consistent set of delay arcs, i.e. a set satisfying all
requirements, for removing all CSC violations.

The first requirement for a consistent set is formu-
lated as follows.
Liveness-and-environmentprequirement: Let G be a live
STG with initial marking mo and G' be the one
modified from G by adding with a set of arcs: (i) all
added arcs are restricted to the permissible arcs of the
three types of concurrent behaviour in Table 1, and (ii)
each directed cycle in G' carries at least one token when
given the initial marking rnfo which is composed of all
tokens in mo and one token for each inserted
permissible arc of type 2.

The initial token placement for G' is intended for
STG liveness. Since tj is enabled before ti from mo in
the type 2 concurrent behaviour, the underlying net
cannot be live without a token on the arc ti + 5.

The following theorem shows the desirable property
from the requirement.
Theorem 1: If G' satisfies the liveness-and-environ-
ment-requirement, it is live and does not change the
behaviour observed by the environment (see proof in
Appendix 8.1).

The second requirement for a consistent set is to
ensure that all specified relations by the set can be met
in the later hazard-removal step. For a delay arc t i -+ ti
we need to perform timing analysis to check if the
order is met in the physical circuit. If required, an
actual delay value is determined and padded to slow
down tj. Although these tasks can be performed exactly
only after physical circuits are realised, from the STG
we can derive a set of transitions whose implemented
circuits dominate the timing analysis. This prerealisa-
tion information can help us to check beforehand if the
delay arc can be met after circuit realisation by delay
padding. The following definitions introduce such a set
of transitions.
Dejinition (reference-cut set): A set of transitions R in a
live STG is a reference-cut set with respect to a delay

416

arc ti + tj if (i) R cuts all directed cycles containing ti,
(ii) all transitions of R are concurrent and (iii) each
transition in R is ordered with both ti and ti.

We define the following assuming that each
individual transition of a signal can be slowed down
separately in the circuit implementation.
Definition (reference set): Let R be a reference-cut set
with respect to a delay arc ti -+ 9. Given R, the refer-
ence set with respect to ti + $ is composed of the ti and
the set of transitions residing between R and ti. The ref-
erence set is called mimimal if no other set derived
from other reference-cut sets with respect to ti + tj is
its subset. The corresponding reference-cut set is also
called mimimal.

Now we formulate the second requirement for a con-
sistent delay-arc set. The corresponding circuit of the
minimal reference set dominates the delay analysis for
a delay arc. Whether the order of a delay arc t i + tj is
met in the physical circuit can be determined by check-
ing the delay difference between ti and tj starting from
the corresponding circuit of the minimal reference-cut
set. We need to calculate two bounds for two circuit
paths: a lower bound on the delay from the minimal
reference-cut set to tj and an upper bound on the delay
from the minimal reference-cut set to ti. It will be evi-
dent in the following Section that we must ensure that
the upper bound is less than the lower bound. Hence,
the circuit delay of each transition in the minimal refer-
ence set (involving the upper bound) must be fixed
before considering delays padded to 5. Such constraints
among transitions constrain the evaluation-order
among delay arcs (evaluating whether the specified
relation of a delay arc is satisfied and delays are pad-
ded if it is not met). That is, if transition t, belongs to
the minimal reference set of arc ti + tj, then each arc
pointing to t, must be treated before ti + tj. Clearly, if
such orders among a set of arcs are cyclic, the set may
not be satisfied simultaneously in the physical circuit.
Therefore, we have the following requirement.
Select-Consistent-Arc-Set():
(Given a live STG, its SG and the set of state-pairs V which cause CSC violations.
Initialise the arc-set A to he empty.)
1. Foreach violation vi in V

Find candidate arcs, A(v,);
Let A = A U A(&);

Let the set of violations removed by arc ak, V(uk), be empty;
Foreach violation vL in V

2. Foreach arc uk in A

if v, can be removed by adding ah to the STG, let v, E V(uh);
3. Foreach arc ah in A, find the minimal reference-cut set and minimal reference set;
4. Construct Evaluation-Order-Graph, EOG;
5. Find a minimal subset A' of A such that Vv,, 3uh E A'

6. Derive an evaluation order for A';/* i.e. a topological order in the EOG */
7. Return the A' and the evaluation order.

Y, E V(ak),
and the subgraph of EOG induced by the vertex-set representing A' is acyclic;

Fig.4
CSC violations

Algorithm to select a consistent set of delay arcs which remove all

Acyclic-requirement: The evaluation-order among the
selected delay arcs cannot be cyclic.

Fig. 4 presents an algorithm which selects a
consistent delay arc set for removing all CSC
violations, i.e. a set which satisfies the
liveness-and-environment-requirement and the
acyclicrequirement. The first step finds candidate arcs
for removing each violation according to the rules
described in the preceding Section. For each conflict
state pair, we can remove any of them or both them.
Furthermore, a state may have more than one pair of
concurrent fanout and fanin transitions. Hence, the

IEE Proc -Cornput Digit Tech, Vol 143, No 6, November 1996

Table 2: CSC violations and their corresponding candidate arcs

CSC violations Candidate arcs

Items State pairs Items Arcs S(a,) V(aJ Min-cut Min-ref

Ri- -+ Ro- ~ 1 , ~2 v,, V, Ro+ Ri-, (Ri+)

a2 Ai- -+ Ri+ s,, q, ~ 1 0 V I , ~ 3 , V, Ro- A;, (Ai+)

Ri- + Ro- SI, SZ v,, V, Ro+ Ri-, (Ri+)

v,, v4 Ro- Ai-, (Ai+)

VI (s1, SJ a1

v, (s,, si) a;
v3 (S7, s,) a3 Ai- Ro+ s,, sl0

v4 b-10, s12) a5 R e + Ri- ~ 1 2 , ~ i i r S i 0 V4 No

a4 Ri- -+ Ai+ s,, sl, s2 v,, v,, v, Ro+ Ri-, (Ri+)

a; Ai- + Ro+ s,, ~ 1 0 v,, V, Ro- Ai-, (Ai+)

S(aJ = set of states removed by a,; V(a,) = set of CSC violations removed by a,; Min-cut
= minimal reference-cut set; Min-ref = minimal reference set (transitions in the bracket
are included if the delays of transitions x+ and F cannot be considered separately); + =

no permissible arc for s,; *= al(a3) is found for removing the predecessor state of s2(sI0)

number of candidate arcs for removing a violation is
generally more than one. Furthermore, if a predecessor
state of the removed target can give delay arcs
removing fewer states, these arcs are also candidates. In
step 2, we check the covering relation between each arc
derived in step 1 and each violation. Although an arc
a k is not derived for some violation, it can also remove
this violation. If such, the violation is also put into the
set of violations removed by a k , V(ak). Step 3 then
derives the minimal reference set for each candidate arc
(the algorithms proposed in [6, 101 which can evaluate
the actual delay difference between two concurrent
transitions in a timing STG can be modified for our
purpose). Then we can check the evaluation order
among delay arcs and creat a directed graph,
Evaluation-Order-Graph (EOG), whose vertices
represent the delay arcs derived in step 1, and an arc
exists from vertex (a1 -+ a2) to vertex (6, -+ 6,) if a2
belongs to the minimal reference set of arc b1 -+ b2. In
the EOG, a vertex subset which induces an acyclic
subgraph represents an arc set satisfying the
acyclic-requirement. Note that if the selected arcs
satisfy the acyclic-requirement, the resultant STG
automatically satisfies Step 2 in the
liveness-and-environment-requirement. With the EOG
and all V(ak) we can derive solutions. A solution is an
arc subset A’ of A whose V(A’) covers (removes) all
violations and their corresponding vertices in the EOG
from an acyclic graph. When there is more than one
solution in the EOG, a minimal cover is derived in our
algorithm. Finally, the selected delay arcs with an
evaluation order are returned for later hazard analysis.
Note that a solution does not always exist for this
algorithm to remove all CSC violations (due to no
reference-cut set for some necessary arc or no
consistent delay arc set). Our algorithm then reports
the subset of CSC violations which can be removed by
delay padding.

Let us take the the STG of Fig. l a to illustrate the
algorithm. Table 2 shows the derived delay arcs for all
CSC violations and the corresponding minimal refer-
ence set for each arc. Fig. 5a and b show the two EOGs
for the arc set in Table 2 based on two different design
considerations. Let us derive a solution from Fig. 5b,
which could be either {al, u3) or {a3, u4} since both
cover all violations and meet the acyclic-requirement,
but not {a4, a2}, since they violate the requirement.
Finally, the required evaluation order (i.e. a topological
order in the selected subgraph) is determined. In the

IEE Proc -Cornput Digit Tech, Vol 143, No 6, November 1996

example of { a l , a?}, both al -+ a3 and a3 -+ al are
allowed.

a1 “1

..c-
“2 “3 “4 “2 03 a4

I t
a b

Fig. 5 Evaluation Order Graph derived assuming that rising and falling
transitions can be Zowedsepavately, and the one derived without the
assumption
a With assumption; h without assumption

The complexity of this algorithm depends on the
number of CSC violatioiis V and of candidate arcs C.
After the preprocessing for all transition relations [9],
the first two steps traverse the SG at most O(V + C)
times. Step 3 needs to traverse the STG at most O(C)
times. However, the constrained minimal covering
problem in step 5 is not a polynomial. For a larger set
of CSC violations, efficient heuristics still need to be
explored.

5 Delay padding for removing CSC violations

In this Section we show that a hazard-free circuit can
always be derived if a consistent delay-arc set exists for
all CSC violations. A procedure will be proposed to
satisfy all delay arcs by delay padding and produce a
hazard-free circuit. This procedure is modified from the
procedure for hazard removal in [8]. Basically, the
detection for all possible hazards directly adopts the
method in [SI, but the hazard removal needs some
modification.

All possible causes of CSC violations in the physical
circuit can be discovered by using the existing hazard-
detection procedure in [8]. A hazardous case is detected
in that procedure if the STG-specified order of two
transitions could be reversed to cause the cubes of
some signal circuits to be turned on and off in the
wrong order. Specifically, the disordering causes an
unspecified state-sequence to excite an unexpected
output (a hazard). For an STG with delay arcs, the
disordering may occur hetween two transitions whose
order is specified by a (delay arc. Such a disordering
recovers a problematic state to affect noninput circuits.

417

Thus, a CSC violation in the physical circuit appears.
Procedure 7.1 of [SI detects all transition pairs whose
disorderings cause hazards on some outputs, and
checks with some timing inequalities to make sure
whether the disorderings do occur (thus hazards do
occur) in the physical circuit. Using its detection part
for all outputs, we can also identify all those reversed
transition pairs, each of which is ordered due to a delay
arc. These identified pairs will be the input to our
procedure Eliminate-Hazard().

a+ - b + - - - - - c +

a

rnax Dac < rnin C -t Dbc rnin aP b

Fig. 6
a STG segment; b corresponding circuit; c delay inequality

An STG segment, the corresponding circuit and delay inequality

However, the analysis of delay inequalities and the
delay padding for removing hazards in [8] cannot be
directly applied for delay arcs. We firstly recall their
technique. Fig. 6a shows an STG segment, in which a
hazard in circuit c occurs if the order a+ -+ b+ is
reversed. To ensure the order a+ + b+ in affecting c,
an upper bound on the delay from a to c, DEF, must
be less than a lower bound on the delay from a,
through b, to c, D r + D T . If the inequality is not
satisfied, delays must be padded in the output terminal
of b to slow down b. The way to pad delays does not
introduce any new hazard since the inequality will not
be changed by any subsequent delay padding. The rea-
sons are that (i) if a is slowed down later, it affects
both sides of the inequality with the same value such
that the inequality is retained, and (ii) if b is slowed,
this only enlarges the value on the right-hand side of
the inequality. All hazards caused by the disordering of
any two transitions can be removed by such rules.
These, however, cannot be applied directly to the haz-
ard cases resulting from delay arcs. The reason is that a
delay arc x* -+ y* does not imply that x will be an
input signal to the circuit of signal y to produce transi-
tion y*, unlike a regular arc in the STG. Therefore, the
calculation of delay difference between x* and y" can-
not be the same as in [SI.

We now present the algorithm Eliminate-Hazards in
Fig. 7, which accepts all possible causes to hazards due
to CSC violations, and finds out all actual hazard cases
and then eliminates them. Before this procedure, we
need to use the procedure in [SI to remove all those
hazards caused by the disordering of any two
transitions ordered in the original STG. This procedure
can then ensure that all CSC violations are removed
and produce a hazard-free circuit. For each hazard case
(an ordered transition pair x* y* due to a delay arc
and a signal c which has a hazard if their order is
reversed) there are four main steps. First, an upper
bound on the delay along the circuit path from the
minimal reference-cut set to x is derived. The
calculation is completed by a recursive procedure
upper-bound(), as shown in Fig. 8. First it ensures that
enabling signals arrive at the output c no earlier than
all the other signals ordered with them. This allows us
to determine an upper bound from those enabling
signals. The ensured relation is true if the inequality
(Dc;x < DFjx + Dr) is satisfied for each enabling

418

transition d". Delays are padded to satisfy it only if it
is not true. It is important to note that the inequality
will not be changed by any subsequent padded delays
for other hazardous cases. The reasons are that (i) if w
increases delays, it affects both sides with the same
value and hence does not change the inequality, and (ii)
if d increases delays, it enlarges the right-hand side and
hence also keeps the inequality unchanged. This
inequality is easier to meet than those from regular
hazards (not from CSC violations). It is reasonable
that this inequality is generally satisfied automatically
and thus actually delay padding for this is not frequent.
Note also that since the inequality henceforth retains
unchanged, we need to perform the check only once for
any transition. The second part of the upper-bound()
then derives the bound. Since the enabling signals have
dominated the bound calculation, the minimal
reference-cut set in the STG corresponds to a cut set of
all critical circuit paths to x* in the physical circuit.
Therefore, the largest one among those circuit paths
derived from the cut set to x* is a correct upper bound.

Eliminate_Hazard():
(Given a live STG G with initial marking m,, a circuit implementation OS G,
a consistent delay-arc set A derived form Selecf_Cons~rent_Arc_Sel// and the set of
transition pairs Teach of which is ordered due to a delay arc and will cause hazards if
their order is reversed. Let A = {ai, a2, U"} , where the index denotes their evaluation
order.)
Foreach delay arc a,, i = 1, 2, ..., n

Foreach transition pair (x* - y') E T ordered due to U,
Foreach noninput c which has a hazard if X* - y. is reversed

Let R = {q., r2., ..., rml) be the minmal reference-cut set of a,:

/* Derive an upper bound on the delay for x* along the circuit path from R to x * i

Foreach rha. k = I , 2, ..., rn
Let D,","' = 0;

tern = upper_bound(rk,, x*);
If (fern > Or:?, D,"=" = fern:

1% Derive a lower bound on the delay for y* along the circuit path from R to y *I
Let 0:" = irfiirrife;
Foreach rh., k = 1, 2, ..., m

tern = lower-bound(rk., y.);
If (tern < LIT?), DY? = fern;

/ * Check delay inequality and pad delays to satisfy it if it is not met */
Let D ! p be an upper bound on the delay along the circuit path from I to c,
Let q p be a lower bound on the delay along the circuit path from y to c,
If (D p + D p < DE";" + E$'"), no hazard exists;
Else pad delay I Dr:x + D F - 0:";" - YF I to the output terminal ofy;
I* Consider the first run from the initial marking *I
Let P be the minimal reference set of a,;
If me enables a transition E P.

Let R be the set of transitions E P and enabled in rn,:
Rederive a lower bound on the delay for y* along the circuit path from R to y .
Recheck delay inequality and pad delays if required.

Fig.7
physical circuit

Algorithm to eliminate all hazards caused by CSC violations in

Upper-hound(r*, P):
If (x' == r') return (0);
Let T be the set of all enabling transitions of x' in STG,
/* Ensure & E T arrive x no earlier than a signal ordered with d- *I
If the following have never been done for x*,

Foreach w* B T but w is an input in the circuit to exite I-
Let & s T and be ordered with w*;

Let D:;x be an upper bound on the delay for X' along the circuit path from I S to I;
Let DTtX be an upper bound on the delay for x* along the circuit path from d to .x:
Let D,:rx be an upper bound on the delay So1 de along the circuit path Srom I? to d;
If (D:;x > D,",Y. + D,TF)

Pad delay I D,:;:,"" - D,:f" ~ DE" I to the output terminal of d:
1' Derive an upper bound on the delay for x' along the circuit path from r to .L *i
Let DE","" = 0;
Foreach f* c T

If I* is concurrent with I * , rem = -;
Else fem = upper_bound(r*, 1');

Let DZ"" be an upper bound on the delay for X* along the circuit path from f to T:
If (02" < tern + D?;?, D?;x = tern + D T E

Return (0%').

Fig.8
X *

Procedure to calculate an upper bound on the deluy fvom rk* to

The second step is to derive a lower bound on the
delay along the circuit path from the minimal
reference-cut set to y . The procedure is similar to the

IEE Proc.-Comput. Digit Tech., Vol. 143, No. 6, November 1996

upperbound(), and thus is not presented here.
Actually, the derivation of a lower bound is easier than
an upper bound. Only enabling signals are sufficient to
determine a lower bound for y* (other signals cannot
decrease the bound), since y* could occur only if all its
enabling signals arrive at y . The derived bound may be
conservative. After these two bounds are derived, we
check a delay inequality to detect whether the
disordering of x* 3 y* could occur. Delays will be
padded to satisfy the inequality if it is not met. The
final step is needed if the initial marking is between the
reference-cut set and these two transitions x* and y*.
As such, the timing difference between x* and y* in the
first run could be incorrect. We recalculate a lower
bound to ensure their relation.

The correctness of this overall algorithm is
established by the following theorem.
Theorem 2: If a consistent delay-arc set exists for all
CSC violations, all delay-arc orderings can always be
satisfied by delay padding with the procedure
Eliminate-Hazards() (see proof in Appendix 8.2).

The worst-case running time of the algorithm can be
estimated as follows. Suppose that the STG has n
signals and O(n) transitions. The number of hazard
cases is at most O(n3) (all transition pairs cause hazards
on all signals). To eliminate a hazard, it requires
traversing the STG at most O(n) times to calculate the
time separation between two transitions. Thus, in the
worst case, it takes O(n3) complexity to eliminate a
hazard. In practice, the number of hazards is far less
than O(n3).

6 Results and conclusion

The proposed method has been evaluated with the
benchmark in sis (a CAD tool of UC Berkeley).
Table 3 shows a comparison between the three
methods: signal insertion, arc insertion and delay
padding. The results of signal insertion and arc
insertion are taken from sis, which are optimal designs
derived by expert designers or from the literature. For
comparison, we assume that each signal is implemented
with a complex gate and each transition has a delay
ranging from 1 to 2 units. The performance
degradation is evaluated in terms of the maximum
delay of the longest cycle in an STG. The experimental

IEE Proc.-Comput. Digit. Tech., Vol.

result shows that the delay padding does not
significantly cause more degradation than the other
two methods. In the case of atod.g, it is even the best.
As for applicability, the delay padding is able to
resolve CSC violation b1:tter than arc insertion. The
three cases (sendr-done.g. at0d.g and subf-ram-write.g)
which cannot be resolved by the arc-insertion method
due to the noninput constraint have been resolved by
the delay padding method. For comparison with the
signal-insertion method, the only failed case, due to the
noninput constraint, is resolved successfully by the
delay padding method. However, the delay padding
method fails for three cases. The vbe6a.g involves cyclic
independencies such that a consistent delay-arc set does
not exist. The other two failed cases, nak-pa.g and
master-read.g, are caus1:d by certain states which
cannot be removed from the original STG. The typical
problem in these two STiGS is as follows: sl "4 s2 " 2
s3 b; s4 sl, with sl and s3 violating CSC. Since
neither one can be removed, there is no solution by
delay padding or arc insertion. Note that for the
successful cases the signal-insertion method results in
increased hardware, unlike the delay-padding method,
which may resolve CSC problems with the inherent
circuit delays without any extra hardware.
Furthermore, the delay-padding method can resolve the
cases which defy other methods [2, 31 due to the
noninput constraint.

We have proposed a novel alternative to remove
CSC violations by exploiting delays in the physical
circuit. It circumvents the two main drawbacks in the
existing methods: the noninput constraint and the
possible waste of overhead. The constraints for
padding delays to remove CSC violations have been
formulated. An algorithm has been proposed to derive
a consistent set of constraints to remove all CSC
violations. It has been shown that those constraints can
always be satisfied by ouir proposed hazard-elimination
algorithm and a hazard-fee circuit can be derived. The
result stated above has shown the applicability of our
approach. In the future, ithe approach will be extended
to more complex models of STGs and other
specifications such as the burst-mode and state-based
model.

Table 3: Experimental results

STGs Signal-insertion Arc-insertion Delay-padding+
-

pd transition# pd arc# pd dela,y#

sendr-d0ne.g F* - F* - 29% 2

vbe4a.g 11% 2 20% 3 16% 4
at0d.g 18% 2 F* - 10% 2

n0usc.ser.g 33% 2 33% 2 33% 2

n0usc.g 0 2 0% 2 10% 2

nak-pa.g -
vbe6a.g -

master-read.g - 8 F

subf-ram-write.g 25% 4 F* - 25% 13
- F

F
F

- 4 F

4 F* - -
- - -

F = failed; F" = failed due to the non input constraint; pd = ratio of
performance degradation (increased delayhew total delay); transitian#
= number of inserted transitions; arc# = number of inserted arcs; delay#
= unit number of padded delays; + = it is possible that no actual delay-
padding is needed

143, No. 6, November 1556 419

~

7

1

2

3

4

5

6

7

8

9

10

11

8

HAUCK, S.: 'Asynchronous design methodologies: An overview',
Proc. IEEE, 1995, 83, (11, pp. 69-93
LAVAGNO, L., MOON, C.W., BRAYTON, R.K., and SAN-
GIOVANNI VINCENTELLI. A.: 'An efficient heuristic moce-
dure for solving the state assignment problem for event:based
specifications', IEEE Trans. Cornput.-Aided Des. Integr. Circuits
Syst., 1995, 14, pp. 45-60
VANBEKBERGEN, P., CATTHOOR, F., VAN MEERBER-
GEN, J., and DE MAN, H.: 'Optimized synthesis of asynchro-
nous control circuits from graph-theoretic specifications'.
Proceedings of the International Conference on Computer-aided
design, 1990, pp. 184-187
VANBEKBERGEN, P., LIN, B., GOOSSENS, G., and DE
MAN, H.: 'A generalized state assignment theory for transfonna-
tions on STGs'. Proceedings of the International Conference on
Computer-aided design, 1992, pp. 112-1 11
YKMAN-COUVREUR, CH., VANBEKBERGEN, P., and
LIN B.: 'Concurrency reduction transformations on state graphs
for asynchronous circuit synthesis'. International Workshop on
Logic Synthesis, 1993
MYERS, C.J., and MENG, T.H.: 'Synthesis of time asynchro-
nous circuits', IEEE Trans. VLSI Syst., 1993, 1, pp. 106-119
CHU, T.A.: 'Synthesis of self-timed control circuits from graphi-
cal specifications'. PhD thesis, MIT, June 1987
LAVAGNO, L., KEUTZER, K., and SANGIOVANNI, VIN-
CENTELLI, A.: 'Synthesis of hazard-free asynchronous circuits
with bounded wire delays', IEEE Trans. Cornput.-Aided Des.
Integr. Circuits Syst., 1995, 14, pp. 61-86
KISHINEVSKY, M.A., KONDRATYEV, A.Y., and
TAUBIN, A.R.: 'Specification and analysis of self-timed circuits',
J. VLSI Signal Process., 1994, 7, pp. 117-135
AMON, T., HULGAARD, H., BURNS, S.M., and
BORRIELLO, G.: 'An algorithm for exact bounds on the time
separation of events in concurrent systems'. Proceedings of
International conference on Cornouter desinn. 1993. uu. 166-173
COMMONER, F., and HOLT, A.W.: 'Mirked direited graphs',
J. Comput. Syst. Sci., 1971, pp. 511-523

8. I Proof of theorem I
We first show that G ' with m'o has an underlying live
and safe net. Since each directed cycle has at least one
token, the net is live [ll]. To show the safeness, we
recall that a live marking is safe iff every arc is in a
directed cycle with token count 1 [ll]. Since G (the
original one) has an underlying live and safe net and no
arc is removed from it, each original arc in G is still in
a directed cycle with token count 1 such that it does
not cause unsafeness to G'. In other words, only the
added arcs may cause unsafeness. If an added arc t, 4
tJ can carry more than one token through some firing
sequence from m6, then in G, t, can fire twice while ti
keeps enabled. Such an arc is not permissible in the
type-3 concurrent behaviour and will not be selected by
our algorithm. In other words, G ' does not contain
such an arc. Consequently, no arc can carry more than
one token after any firing sequence from m6, and the
underlying net of G' is safe.

Furthermore, all the added arcs do not remove any
ordering relation between transitions from G. Those
added arcs, except for type 2, also do not carry any
token in m6, so that the firing orders from the initial
marking in G are preserved in G'. As a result, G' speci-

fies a subset of all possible transition sequences speci-
fied by G from mo. That is, behaviour observed by the
environment from mo remains the same. Consequently,
this also ensures that the rising and falling transitions
of a signal occur alternatively as G. Since the underly-
ing net has already been proved live and safe, G ' is
therefore live.

8.2 Proof of theorem 2
The proof is based on the bounds derived from
upper-bound() and from lowerbound(). We compare
all those upper bounds from all transitions in R (the
minimal reference-cut set) to x* and then select the
largest one as D r Similarly, we select the smallest
one a s D Y from those lower bounds from all
transitions in R to y*. If the inequality OFx + Ox","" <

+ D Y is met, then for each k* E R, an upper
bound U(rk*) on the delay for x* along the circuit path
from rk, through x, to c, is less than a lower bound
L (y k *) on the delay for y* along the circuit path from
y k , through y , to e. This ensures the relation x* * y* in
affecting output c. If the inequality is not satisfied (a
hazard exists), then delays are padded to satisfy it. This
hazard will never occur if the relation U(vk*) < L(rk*)
for each yk* will not be changed by any subsequent
padded delays for other hazardous cases. If this is the
case, we can also state that the delays padded for OFx
+ D,"," < D T + D Y do not introduce new hazards
elsewhere. Therefore, the key proof is to show that the
relation u(rk*) < L(rk*) for each Yk* henceforth
remains unchanged.

First we show that the delay inequality (D E x +
D E x < D T + DF) will not be changed by any sub-
sequent padded delays if no delays are padded to the
circuits of R. Note that the delay inequality keeping
unchanged is sufficient to ensure that U(%*) < L(rk*)
for each rk* is retained. Since those hazards caused by
the disordering of any two transitions in the original
STG have been removed, we only need to consider the
cases of delay arcs. If all the delay arcs are treated
according to the evaluation order derived in the algo-
rithm in Fig. 4, the circuit delays on all signals of the
minimal reference set for a delay arc will not be modi-
fied by any subsequent processes for other hazardous
cases. Hence, the left-hand side of the delay inequality
will retain unchanged. If delays are increased on D T
or D Y , this only enlarges the right-hand side. Hence,
the inequality is still retained. Furthermore, delays
increased on the output c do not affect the inequality.
In summary, the inequality will not be changed by any
subsequent padded delays for other hazardous cases.

We now consider the case of delays increased on
some rk* E R. These increased delays actually affect the
upper bound from rk to x and the lower bound from rk
to y both with the same value. Hence, the relation x*
3 y* in affecting output c still holds.

D mm
rY

420 IEE Proc.-Comput. Digit. Tech., Vol. 143, No. 6, November 1996

