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Abstract: A novel alternative for removing CSC 
(complete state coding) violations in 
asynchronous circuit synthesis for STGs (signal 
transition graphs) is presented. The main feature 
of the work is to exploit delays in the physical 
circuit to remove CSC violations. Its main 
advantages are that it (i) does not need to obey 
the noninput constraint and (ii) saves area 
overhead when a CSC violation in the state graph 
does not actually appear in the physical circuit. 
The delay constraint for removing each CSC 
violation is formulated. Then an algorithm is 
proposed to derive a consistent set of constraints 
to ensure that all violations are removed. If a 
consistent set exists, it is shown that those 
constraints can always be satisfied by padding 
delays during hazard analysis, and therefore 
hazard-free circuits without any CSC violation 
can be derived. Based on this approach, the 
marked-graph benchmarks, hitherto unsolvable 
due to the noninput constraint in existing 
methods, are now resolved. 

1 Introduction 

Asynchronous design has received much attention in 
recent years. A considerable number of proposals have 
been made to automatically synthesise hazard-free 
asynchronous circuits starting from newly developed 
event-based or state-based specifications [ 11. In the 
existing methods, a prerequisite for realising circuits is 
to satisfy the so-called CSC (complete-state-coding) 
property. Violation rectification must be completed 
before circuit realisation. To satisfy such a property, 
arcs (for removing states) and/or internal state signals 
are inserted into the original specification without 
changing the observable behaviour of the environment 
[2-51. Generally, signal insertion can deal with a wider 
range of violations, while arc insertion may save area. 

However, there are two main drawbacks in the exist- 
ing methods for removing CSC violations: (i) the 
inserted arcs and signals must not be connected to an 
0 IEE, 1996 
IEE Proceedings online no. 19960634 
Paper first received 4th December 1995 and in revised form 14th May 
1996 
The authors are with the Department of Electrical Engineering, National 
Taiwan University, Taipei, Taiwan, Republic of China 

input transition, that is, the insertion must obey the 
noninput constraint; some benchmark examples, there- 
fore, cannot be solved under such a constraint; (ii) even 
though violations exist in the state graph, those prob- 
lematic states may not appear in the physical circuit 
because of the inherent delay, hence, the area and/or 
performance overheads to remove such physically non- 
existent CSC violations are wasted. 

In this paper we propose a novel alternative for 
removing CSC violations in asynchronous circuit syn- 
thesis for STGs under the bounded delay model. The 
key idea is to pad delays selectively to slow down some 
transitions in order to render some problematic states 
unreachable in the physilsal circuit. We first formulate 
the constraint for delays 1 o remove each CSC violation. 
Then an algorithm is proposed to derive a consistent 
set of constraints to remove all violations. If a consist- 
ent set exists, we show that those constraints can 
always be satisfied by padding delays during hazard 
analysis and therefore halzard-free circuits without any 
CSC violation can be derived. The proposed approach 
is not burdened with the two main drawbacks of the 
existing methods. First, the delay padding can be used 
to delay the input signal i o  affect the outputs, since this 
just slows down circuit response while it does not 
change the causal relations among signal transitions. 
Therefore, the delay padding does not need to obey the 
noninput constraint. Secondly, it is possible that no 
delay padding is needed when CSC violations in the 
state graph do not actually appear in the physical 
circuit. Based on this approach, we have been able to 
resolve those unsolvabk marked-graph benchmarks 
due to the noninput constraints in the existing 
methods. 

A related work is [6], which pointed out the unreach- 
ability of some legal states in timing STG. Those 
unreachable states reduce the possibilities of CSC vio- 
lation and also reduce the implementation area. How- 
ever, their work needs predefined timing among signal 
transitions and thus cons trains the subsequent synthesis 
work. Nevertheless, this predefined timing information 
may not be satisfied after hazard removal. Iterations 
between CSC satisfaction and circuit implementation 
may occur. In addition, it did not provide any method 
to remove CSC violations. 

2 Preliminaries 

A signal transition graph, STG, can be viewed as an 
interpreted Petri net in which each transition is inter- 
preted as a physical sign a1 transition of asynchronous 
behaviour [7]. A Petri net (PN) is a 4-tuple N = < P, T, 
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F, mo >, where P is a set of places, T i s  a set of transi- 
tions, mo is the initial marking and F c (P x T) v 
(TxP)  is the flow relation. A place p is a fanin of a 
transition t, and t is a fanout of p ,  if (p, t )  E F. Con- 
versely, a transition t is a fanin of p ,  and p is a fanout 
of t ,  if (t ,  p )  E F. The execution of a PN starts from the 
given initial marking mo. A marking is a set of tokens 
upon a set of places. A transition is enabled when all 
its fanin places carry tokens. Then it can be fired. The 
firing of a transition is to remove one token from each 
of its fanin places and add one token to each of its 
fanout places. After a transition is fired, a new marking 
is reached. A marking m is called live if each transition 
can always be enabled in some marking reachable from 
m. A net is live if its initial marking is live. A marking 
m is called safe if no place can ever carry more than 
one token after any sequences from m. A PN is safe if 
its initial marking is safe. Under our current considera- 
tion, the STG class has an underlying live and safe 
marked graph, in which each place has at most one 
fanin and at most one fanout. For simplicity, places are 
removed, that is, each arc in an STG originally carries 
a place. Furthermore, we restrict ourselves to strongly 
connected nets. This means the considered STG can 
execute infinitely. 

'R i+  

I 
i 1 Ro+ 

RO- - c 
A i -  
I 

a 

'Ro + 

'Ri- ' A I +  

l A i -  
'Ri + 

2Ri-  2A i+  

'i" 
2Ai- 

b 
Fig. 1 
a STG; b two-period unfolding 

STG of PLA interface circuit and its two-periodr unfolding 

The STG naturally captures the characteristics of a 
general timing waveform. A simple STG from [2] is 
shown in Fig. la. The transitions of a signal x, denoted 
by X+ and x-, are the rising (0 -+ 1) and falling (1 + 0) 
transitions, respectively. Henceforth, x* will denote a 
certain transition of signal x (i.e. either an x+ or an x- 
) and x" will denote its inverse transition (i.e. either an 
x- or an x+). The signal behaviour described in the 
STG is according to the Petri net firing rules. If two 
transitions can be enabled at the same time, they are 
concurrent. Otherwise they are ordered. In an STG, an 
arc between two ordered transitions may be redundant. 
An arc xi* -+ xj* is not redundant only if there exists a 
marking in which all input arcs to xi* except this carry 
tokens. For such a marking, if xi* IS fired, xj* can'be 
enabled immediately. We call xi* (xi) an enabling tran- 
sition (signal) of xj*. In this paper we assume that all 
redundant arcs in the STG have been removed. 

The STG has an equivalent finite-state-machine rep- 
resentation called a state graph (SG). The SG is a 
directed graph, in which each vertex (i.e. a state) is in 
one-to-one correspondence with a marking reachable 
from the initial marking, and each arc s1 $ s2 repre- 
sents that t* is enabled in s1 and s2 can be reached from 
s1 through the firing of t*. The SG represents STG 
concurrency as an interleaving of transitions. That is, 
in each state concurrently enabled transitions can be 
fired in any order, but only one is fired at a time to 
reach a new state. Note that actual orders among sig- 
nals in the physical circuit may not completely follow 
the sequence of the state graph due to the circuit 
delays. Since the underlying net of the considered STG 
is live, safe and strongly connected, the SG is strongly 
connected. The SG of the STG in Fig. l a  is shown in 
Fig. 2. The SG captures the state of all signals (input, 
output and internal signals) in a circuit. As the total- 
state model in the classical asynchronous design, all 
signals are considered as state variables, and their 
Boolean values are used to encode states. For each s1 % 
s2 (sl +s2) arc, the value of x in the coding is 0 (1) in s1 
and 1 (0) in s2, while all other signals must have the 
same value in both states. To ensure that the state 
assignment is consistent, a transition x+ (x-) can be 
enabled only in a state whose code for x is 0 (1). The 
following requirement is proposed to have a consistent 
state assignment by [7]. 
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Fig.2 SG of STG of PLA intevface circuit 

Definition (Ziveness) [7]: An STG is live iff 
(i) the underlying Petri net is live and safe 
(ii) for each signal a, a+ and a- occur alternately, and 
no two transitions of a are concurrent. 
Fig. 3 shows the SG with a consistent state assignment. 
From the consistently encoded SG of an STG, we can 
define the output function (or next-state function in [8]) 
of each noninput signal. For each noninput signal, if its 
transition is enabled in a state, then its output function 
has a different Boolean value from the state code. 
Otherwise, it is the same as the state code. All signals 
are the input variables to the output function. The 
current state code corresponds to an input vector to 
excite the output function. The output function for Ro 
in Fig. l a  is also shown in Fig. 3. In a live STG, two 
different states may have the same state code. To 
ensure each state code (input vector) to predict a 
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deterministic output value, the following property is 
required. 

R i  A i  Rol Ro 
Fig. 3 
s4 is the initial state 

SG labelled with state-code/output-junction 

Definition (complete state coding (CSC)): A live STG 
has a CSC property iff any two states which enable dif- 
ferent sets of noninput signal transitions have distinct 
state codings. 

Fig. 3 gives examples of CSC violations. Both states 
s l  and s5 are assigned the same binary label 110 but s5 
enables the output transition Ro+ while sl does not 
(thus s5 predicts Ro = 1 while s l  predicts 0). Clearly, 
we cannot have a logic implementation which accepts 
the same state code but produces different outputs. The 
main concern of this paper is to remove CSC viola- 
tions. 

3 Delay arc 

Our key idea to remove a CSC violation is to force a 
pair of concurrent transitions to affect outputs in some 
definite order such that problematic states cannot be 
reached in the physical circuit. This constraint can be 
represented as a delay-arc between the transition pair 
in the original STG. The state sequence (firing order of 
transitions) is expected to follow those added delay 
arcs, while the enabling order is not changed. In the 
physical circuit, a constraint is achieved by inherent 
delays or padded delays to slow down a transition 
related to the other one. In Section 5 we show how to 
achieve the constraint during hazard analysis. This Sec- 
tion will show how to find a delay arc for removing a 
certain problematic state. Because of the different types 
of concurrent behaviour, the effect of a delay arc 
between two concurrent transitions may be different. 
We will summarise the kinds of arcs that are permissi- 
ble for our problem. 

It is important to note the difference between the reg- 
ular arc used in the existing methods and the delay arc. 
A regular arc forces two originally concurrent transi- 
tions to be enabled in order, while a delay arc only 
forces them to fire in order. Therefore, the expected 
state graphs are both the same, but a regular arc 
changes the output function while a delay arc retains 
the original specification. Furthermore, since a regular 
arc changes the enabled order (i.e. changes the causal 
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relation), it must not be directed to an input transition, 
unless modification of the input specification is 
allowed. On the other hand, the delay arc only delays 
the effect of an input t:ransition passed to some out- 
puts. This does not change the specification and hence 
is permissible. 

We now show how to .find a delay arc for removing a 
problematic state. To remove a state si, all possible fir- 
ing sequences from the initial marking to si must be 
removed. We check wh.ether there exists one of the 
fanin transitions of si w'hich is concurrent with any of 
its fanouts. If such a transition pair exists, a delay arc 
can be inserted between them to ensure that, from each 
state enabling both of them, the fanin transition always 
fires after that fanout transition, and therefore all the 
state sequences to reach si will not occur. Otherwise, if 
si has only one predecessor state, we try to find such 
pairs from its predecessor state (our current method 
discards the search if si lhas more than one predecessor 
state). For instance, if we want to remove s1 in Fig. 3, 
the pair (Ri-, Ro-) is :found and arc Ri- -+ Ro- is 
inserted to attain our goal. However, in certain condi- 
tions, an arc added between two concurrent transitions 
may be redundant (does not remove any state) or may 
render the STG nonlive, which clearly is not allowed. 
The different effects of arcs result from the different 
types of concurrent behaiviour. The following will show 
the classification of concurrent behaviour, which is a 
basis to select correct d'elay arcs in the following Sec- 
tion. The classification in fact is also applicable to the 
regular arc for removing states. To the best of our 
knowledge, no previous work has ever addressed this 
classification. 

The classification for concurrent behaviour is based 
on the impact of an added arc between two concurrent 
transitions. Since the impact depends on the placement 
of the initial marking, we exploit the two-period 
unfolding of an STG for the analysis. The unfolding 
has been used to analyse the transition relation in an 
efficient way [9]. It can be seen as an acyclic process in 
which each transition corresponds to a single 
instantiation of a transition in the original STG. Let x* 
be a transition in the original STG. We denote its kth 
occurrence in the unfolding as kx*. It was proved that 
the first two periods of the unfolded STG are enough 
to derive all precedence relations in O(N3) complexity 
with respect to the number of transitions N .  Fig. l b  
shows the unfolding of Fig. la. Henceforth, we use a 
to denote the partial-order relation and 1 1  the 
concurrent relation in the unfolding of an STG. We 
now recall a result from [9], that two transitions ti and 
tj are concurrent in an STG iff there exist k'ti and k2tj 
such that klti 1 1  btj in the unfolding of the STG. We 
then classify the concurrent relations to four types as 
shown in the Table 1. The arcs ti -+ in the first three 
types and arc ti + ti in type 1 are permissible. The arc 
ti + $($ + ti) removes those states with t .  as a fanin 
and ti as a fanout (ti as ,a fanin and tj as a fianout). The 
arc tj + ti in type 2 is redundant, because from the 
initial marking the relation '$ 3 Iti already exists, 
while it does not force the required relation 2tj Iti. 
For example, for removing s4, we find the arc Ri+ + 
Ai-. However, it cannot force Ri+ to fire always before 
Ai- in s3 and thus cannot remove s4. Hence, such an 
arc is not permissible. In type 3, the arc tj + ti is also 
not allowed. Because ti may fire twice while ti keeps 
enabled, such an arc is not enough to force them to be 
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ordered. For example, even added to Ri- + Ai-, the 
two transitions Ri- + Ai- are still concurrent. 
Actually, this arc renders the STG unsafe. As for type 
4, with the same reasoning as type 3, no arc is 
permissible. In our procedure, all added delay arcs 
belong to those permissible arcs in Table 1. 

Table 1: Classification of concurrent behaviour 

Types Conditions Permissible Examples 
arcs in Fig. 1 

11: concurrent relation. 3: ordered relation. n: and-operation 

4 Consistent delay-arc set 

Requirements must be satisfied when more than one 
delay arc is needed to remove all CSC violations, to 
retain the observed behaviour of the environment and 
to ensure that the relations specified by the selected 
arcs can be met in the physical circuit and a hazard- 
free circuit can be derived. We firstly formulate those 
requirements. Then, we propose an algorithm to derive 
a consistent set of delay arcs, i.e. a set satisfying all 
requirements, for removing all CSC violations. 

The first requirement for a consistent set is formu- 
lated as follows. 
Liveness-and-environmentprequirement: Let G be a live 
STG with initial marking mo and G' be the one 
modified from G by adding with a set of arcs: (i) all 
added arcs are restricted to the permissible arcs of the 
three types of concurrent behaviour in Table 1, and (ii) 
each directed cycle in G' carries at least one token when 
given the initial marking rnfo which is composed of all 
tokens in mo and one token for each inserted 
permissible arc of type 2. 

The initial token placement for G' is intended for 
STG liveness. Since tj is enabled before ti from mo in 
the type 2 concurrent behaviour, the underlying net 
cannot be live without a token on the arc ti + 5. 

The following theorem shows the desirable property 
from the requirement. 
Theorem 1: If G' satisfies the liveness-and-environ- 
ment-requirement, it is live and does not change the 
behaviour observed by the environment (see proof in 
Appendix 8.1). 

The second requirement for a consistent set is to 
ensure that all specified relations by the set can be met 
in the later hazard-removal step. For a delay arc t i  -+ ti 
we need to perform timing analysis to check if the 
order is met in the physical circuit. If required, an 
actual delay value is determined and padded to slow 
down tj. Although these tasks can be performed exactly 
only after physical circuits are realised, from the STG 
we can derive a set of transitions whose implemented 
circuits dominate the timing analysis. This prerealisa- 
tion information can help us to check beforehand if the 
delay arc can be met after circuit realisation by delay 
padding. The following definitions introduce such a set 
of transitions. 
Dejinition (reference-cut set): A set of transitions R in a 
live STG is a reference-cut set with respect to a delay 
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arc ti + tj if (i) R cuts all directed cycles containing ti, 
(ii) all transitions of R are concurrent and (iii) each 
transition in R is ordered with both ti and ti. 

We define the following assuming that each 
individual transition of a signal can be slowed down 
separately in the circuit implementation. 
Definition (reference set): Let R be a reference-cut set 
with respect to a delay arc ti -+ 9. Given R, the refer- 
ence set with respect to ti + $ is composed of the ti and 
the set of transitions residing between R and ti. The ref- 
erence set is called mimimal if no other set derived 
from other reference-cut sets with respect to ti + tj is 
its subset. The corresponding reference-cut set is also 
called mimimal. 

Now we formulate the second requirement for a con- 
sistent delay-arc set. The corresponding circuit of the 
minimal reference set dominates the delay analysis for 
a delay arc. Whether the order of a delay arc t i  + tj is 
met in the physical circuit can be determined by check- 
ing the delay difference between ti and tj starting from 
the corresponding circuit of the minimal reference-cut 
set. We need to calculate two bounds for two circuit 
paths: a lower bound on the delay from the minimal 
reference-cut set to tj and an upper bound on the delay 
from the minimal reference-cut set to ti. It will be evi- 
dent in the following Section that we must ensure that 
the upper bound is less than the lower bound. Hence, 
the circuit delay of each transition in the minimal refer- 
ence set (involving the upper bound) must be fixed 
before considering delays padded to 5. Such constraints 
among transitions constrain the evaluation-order 
among delay arcs (evaluating whether the specified 
relation of a delay arc is satisfied and delays are pad- 
ded if it is not met). That is, if transition t, belongs to 
the minimal reference set of arc ti + tj, then each arc 
pointing to t, must be treated before ti + tj. Clearly, if 
such orders among a set of arcs are cyclic, the set may 
not be satisfied simultaneously in the physical circuit. 
Therefore, we have the following requirement. 
Select-Consistent-Arc-Set( ): 
(Given a live STG, its SG and the set of state-pairs V which cause CSC violations. 
Initialise the arc-set A to he empty.) 
1. Foreach violation vi in V 

Find candidate arcs, A(v,);  
Let A = A U A(&); 

Let the set of violations removed by arc ak, V(uk), be empty; 
Foreach violation vL in V 

2. Foreach arc uk in A 

if v, can be removed by adding ah to the STG, let v, E V(uh); 
3. Foreach arc ah in A, find the minimal reference-cut set and minimal reference set; 
4. Construct Evaluation-Order-Graph, EOG; 
5. Find a minimal subset A' of A such that Vv,, 3uh E A' 

6. Derive an evaluation order for A';/* i.e. a topological order in the EOG */ 
7. Return the A' and the evaluation order. 

Y, E V(ak), 
and the subgraph of EOG induced by the vertex-set representing A' is acyclic; 

Fig.4 
CSC violations 

Algorithm to select a consistent set of delay arcs which remove all 

Acyclic-requirement: The evaluation-order among the 
selected delay arcs cannot be cyclic. 

Fig. 4 presents an algorithm which selects a 
consistent delay arc set for removing all CSC 
violations, i.e. a set which satisfies the 
liveness-and-environment-requirement and the 
acyclicrequirement. The first step finds candidate arcs 
for removing each violation according to the rules 
described in the preceding Section. For each conflict 
state pair, we can remove any of them or both them. 
Furthermore, a state may have more than one pair of 
concurrent fanout and fanin transitions. Hence, the 
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Table 2: CSC violations and their corresponding candidate arcs 

CSC violations Candidate arcs 

Items State pairs Items Arcs S( a,) V(aJ Min-cut Min-ref 

Ri- -+ Ro- ~ 1 ,  ~2 v,, V, Ro+ Ri-, (Ri+) 

a2 Ai- -+ Ri+ s,, q, ~ 1 0  V I ,  ~ 3 ,  V, Ro- A;, (Ai+) 

Ri- + Ro- SI, SZ v,, V, Ro+ Ri-, (Ri+) 

v,, v4 Ro- Ai-, (Ai+) 

VI (s1, SJ a1 

v, (s,, si) a; 
v3 (S7, s,) a3 Ai- Ro+ s,, sl0 

v4 b-10, s12) a5 R e  + Ri- ~ 1 2 ,  ~ i i r  S i 0  V4 No 

a4 Ri- -+ Ai+ s,, sl, s2 v,, v,, v, Ro+ Ri-, (Ri+) 

a; Ai- + Ro+ s,, ~ 1 0  v,, V, Ro- Ai-, (Ai+) 

S(aJ = set of states removed by a,; V(a,) = set of CSC violations removed by a,; Min-cut 
= minimal reference-cut set; Min-ref = minimal reference set (transitions in  the bracket 
are included if the delays of transitions x+ and F cannot be considered separately); + = 

no permissible arc for s,; *= al(a3) is found for removing the predecessor state of s2(sI0) 

number of candidate arcs for removing a violation is 
generally more than one. Furthermore, if a predecessor 
state of the removed target can give delay arcs 
removing fewer states, these arcs are also candidates. In 
step 2, we check the covering relation between each arc 
derived in step 1 and each violation. Although an arc 
a k  is not derived for some violation, it can also remove 
this violation. If such, the violation is also put into the 
set of violations removed by a k ,  V(ak). Step 3 then 
derives the minimal reference set for each candidate arc 
(the algorithms proposed in [6, 101 which can evaluate 
the actual delay difference between two concurrent 
transitions in a timing STG can be modified for our 
purpose). Then we can check the evaluation order 
among delay arcs and creat a directed graph, 
Evaluation-Order-Graph (EOG), whose vertices 
represent the delay arcs derived in step 1, and an arc 
exists from vertex (a1 -+ a2) to vertex (6, -+ 6,) if a2 
belongs to the minimal reference set of arc b1 -+ b2. In 
the EOG, a vertex subset which induces an acyclic 
subgraph represents an arc set satisfying the 
acyclic-requirement. Note that if the selected arcs 
satisfy the acyclic-requirement, the resultant STG 
automatically satisfies Step 2 in the 
liveness-and-environment-requirement. With the EOG 
and all V(ak) we can derive solutions. A solution is an 
arc subset A’ of A whose V(A’) covers (removes) all 
violations and their corresponding vertices in the EOG 
from an acyclic graph. When there is more than one 
solution in the EOG, a minimal cover is derived in our 
algorithm. Finally, the selected delay arcs with an 
evaluation order are returned for later hazard analysis. 
Note that a solution does not always exist for this 
algorithm to remove all CSC violations (due to no 
reference-cut set for some necessary arc or no 
consistent delay arc set). Our algorithm then reports 
the subset of CSC violations which can be removed by 
delay padding. 

Let us take the the STG of Fig. l a  to illustrate the 
algorithm. Table 2 shows the derived delay arcs for all 
CSC violations and the corresponding minimal refer- 
ence set for each arc. Fig. 5a and b show the two EOGs 
for the arc set in Table 2 based on two different design 
considerations. Let us derive a solution from Fig. 5b, 
which could be either {al, u3)  or {a3, u4} since both 
cover all violations and meet the acyclic-requirement, 
but not {a4, a2}, since they violate the requirement. 
Finally, the required evaluation order (i.e. a topological 
order in the selected subgraph) is determined. In the 
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example of { a l ,  a?}, both al -+ a3 and a3 -+ al are 
allowed. 

a1 “1 

..c- 
“2 “3 “4 “2 03 a4 

I t 
a b 

Fig. 5 Evaluation Order Graph derived assuming that rising and falling 
transitions can be Zowedsepavately, and the one derived without the 
assumption 
a With assumption; h without assumption 

The complexity of this algorithm depends on the 
number of CSC violatioiis V and of candidate arcs C. 
After the preprocessing for all transition relations [9], 
the first two steps traverse the SG at most O(V + C )  
times. Step 3 needs to traverse the STG at most O(C) 
times. However, the constrained minimal covering 
problem in step 5 is not a polynomial. For a larger set 
of CSC violations, efficient heuristics still need to be 
explored. 

5 Delay padding for removing CSC violations 

In this Section we show that a hazard-free circuit can 
always be derived if a consistent delay-arc set exists for 
all CSC violations. A procedure will be proposed to 
satisfy all delay arcs by delay padding and produce a 
hazard-free circuit. This procedure is modified from the 
procedure for hazard removal in [8]. Basically, the 
detection for all possible hazards directly adopts the 
method in [SI, but the hazard removal needs some 
modification. 

All possible causes of CSC violations in the physical 
circuit can be discovered by using the existing hazard- 
detection procedure in [8]. A hazardous case is detected 
in that procedure if the STG-specified order of two 
transitions could be reversed to cause the cubes of 
some signal circuits to be turned on and off in the 
wrong order. Specifically, the disordering causes an 
unspecified state-sequence to excite an unexpected 
output (a hazard). For an STG with delay arcs, the 
disordering may occur hetween two transitions whose 
order is specified by a (delay arc. Such a disordering 
recovers a problematic state to affect noninput circuits. 
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Thus, a CSC violation in the physical circuit appears. 
Procedure 7.1 of [SI detects all transition pairs whose 
disorderings cause hazards on some outputs, and 
checks with some timing inequalities to make sure 
whether the disorderings do occur (thus hazards do 
occur) in the physical circuit. Using its detection part 
for all outputs, we can also identify all those reversed 
transition pairs, each of which is ordered due to a delay 
arc. These identified pairs will be the input to our 
procedure Eliminate-Hazard(). 

a+ - b +  - - - -  - c +  

a 

rnax Dac < rnin C -t Dbc rnin aP b 

Fig. 6 
a STG segment; b corresponding circuit; c delay inequality 

An STG segment, the corresponding circuit and delay inequality 

However, the analysis of delay inequalities and the 
delay padding for removing hazards in [8] cannot be 
directly applied for delay arcs. We firstly recall their 
technique. Fig. 6a shows an STG segment, in which a 
hazard in circuit c occurs if the order a+ -+ b+ is 
reversed. To ensure the order a+ + b+ in affecting c, 
an upper bound on the delay from a to c, DEF, must 
be less than a lower bound on the delay from a, 
through b, to c, D r  + D T .  If the inequality is not 
satisfied, delays must be padded in the output terminal 
of b to slow down b. The way to pad delays does not 
introduce any new hazard since the inequality will not 
be changed by any subsequent delay padding. The rea- 
sons are that (i) if a is slowed down later, it affects 
both sides of the inequality with the same value such 
that the inequality is retained, and (ii) if b is slowed, 
this only enlarges the value on the right-hand side of 
the inequality. All hazards caused by the disordering of 
any two transitions can be removed by such rules. 
These, however, cannot be applied directly to the haz- 
ard cases resulting from delay arcs. The reason is that a 
delay arc x* -+ y* does not imply that x will be an 
input signal to the circuit of signal y to produce transi- 
tion y*, unlike a regular arc in the STG. Therefore, the 
calculation of delay difference between x* and y" can- 
not be the same as in [SI. 

We now present the algorithm Eliminate-Hazards in 
Fig. 7, which accepts all possible causes to hazards due 
to CSC violations, and finds out all actual hazard cases 
and then eliminates them. Before this procedure, we 
need to use the procedure in [SI to remove all those 
hazards caused by the disordering of any two 
transitions ordered in the original STG. This procedure 
can then ensure that all CSC violations are removed 
and produce a hazard-free circuit. For each hazard case 
(an ordered transition pair x* y* due to a delay arc 
and a signal c which has a hazard if their order is 
reversed) there are four main steps. First, an upper 
bound on the delay along the circuit path from the 
minimal reference-cut set to x is derived. The 
calculation is completed by a recursive procedure 
upper-bound(), as shown in Fig. 8. First it ensures that 
enabling signals arrive at the output c no earlier than 
all the other signals ordered with them. This allows us 
to determine an upper bound from those enabling 
signals. The ensured relation is true if the inequality 
(Dc;x < DFjx + Dr) is satisfied for each enabling 
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transition d". Delays are padded to satisfy it only if it 
is not true. It is important to note that the inequality 
will not be changed by any subsequent padded delays 
for other hazardous cases. The reasons are that (i) if w 
increases delays, it affects both sides with the same 
value and hence does not change the inequality, and (ii) 
if d increases delays, it enlarges the right-hand side and 
hence also keeps the inequality unchanged. This 
inequality is easier to meet than those from regular 
hazards (not from CSC violations). It is reasonable 
that this inequality is generally satisfied automatically 
and thus actually delay padding for this is not frequent. 
Note also that since the inequality henceforth retains 
unchanged, we need to perform the check only once for 
any transition. The second part of the upper-bound() 
then derives the bound. Since the enabling signals have 
dominated the bound calculation, the minimal 
reference-cut set in the STG corresponds to a cut set of 
all critical circuit paths to x* in the physical circuit. 
Therefore, the largest one among those circuit paths 
derived from the cut set to x* is a correct upper bound. 

Eliminate_Hazard(): 
(Given a live STG G with initial marking m,, a circuit implementation OS G, 
a consistent delay-arc set A derived form Selecf_Cons~rent_Arc_Sel// and the set of 
transition pairs Teach of which is ordered due to a delay arc and will cause hazards if 
their order is reversed. Let A = {ai, a2, .... U"} ,  where the index denotes their evaluation 
order.) 
Foreach delay arc a,, i = 1, 2, ..., n 

Foreach transition pair (x* - y') E T ordered due to U, 
Foreach noninput c which has a hazard if X* - y. is reversed 

Let R = {q., r2., ..., rml) be the minmal reference-cut set of a,: 

/* Derive an upper bound on the delay for x* along the circuit path from R to x * i  

Foreach rha. k = I ,  2, ..., rn 
Let D,","' = 0; 

tern = upper_bound(rk,, x*); 
If (fern > Or:?, D,"=" = fern: 

1% Derive a lower bound on the delay for y* along the circuit path from R to y *I 
Let 0:" = irfiirrife; 
Foreach rh., k = 1, 2, ..., m 

tern = lower-bound(rk., y.); 
If (tern < LIT?), DY? = fern; 

/ *  Check delay inequality and pad delays to satisfy it if it is not met */ 
Let D ! p  be an upper bound on the delay along the circuit path from I to c, 
Let q p  be a lower bound on the delay along the circuit path from y to c, 
If ( D p  + D p  < DE";" + E$'"), no hazard exists; 
Else pad delay I Dr:x + D F  - 0:";" - YF I to the output terminal ofy;  
I* Consider the first run from the initial marking *I 
Let P be the minimal reference set of a,; 
If me enables a transition E P. 

Let R be the set of transitions E P and enabled in rn,: 
Rederive a lower bound on the delay for y* along the circuit path from R to y .  
Recheck delay inequality and pad delays if required. 

Fig.7 
physical circuit 

Algorithm to eliminate all hazards caused by CSC violations in 

Upper-hound(r*, P): 
If (x' == r') return (0); 
Let T be the set of all enabling transitions of x' in STG, 
/* Ensure & E T arrive x no earlier than a signal ordered with d- *I  
If the following have never been done for x*, 

Foreach w* B T but w is an input in the circuit to exite I- 
Let & s T and be ordered with w*; 

Let D:;x be an upper bound on the delay for X' along the circuit path from I S  to I; 
Let DTtX be an upper bound on the delay for x* along the circuit path from d to .x: 
Let D,:rx be an upper bound on the delay So1 de along the circuit path Srom I? to d; 
If (D:;x > D,",Y. + D,TF) 

Pad delay I D,:;:,"" - D,:f" ~ DE" I to the output terminal of d: 
1' Derive an upper bound on the delay for x' along the circuit path from r to .L *i 
Let DE","" = 0; 
Foreach f* c T 

If I* is concurrent with I * ,  rem = -; 
Else fem = upper_bound(r*, 1'); 

Let DZ"" be an upper bound on the delay for X* along the circuit path from f to T: 
If (02" < tern + D?;?, D?;x = tern + D T E  

Return (0%'). 

Fig.8 
X *  

Procedure to calculate an upper bound on the deluy fvom rk* to 

The second step is to derive a lower bound on the 
delay along the circuit path from the minimal 
reference-cut set to y .  The procedure is similar to the 
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upperbound(), and thus is not presented here. 
Actually, the derivation of a lower bound is easier than 
an upper bound. Only enabling signals are sufficient to 
determine a lower bound for y* (other signals cannot 
decrease the bound), since y* could occur only if all its 
enabling signals arrive at y .  The derived bound may be 
conservative. After these two bounds are derived, we 
check a delay inequality to detect whether the 
disordering of x* 3 y* could occur. Delays will be 
padded to satisfy the inequality if it is not met. The 
final step is needed if the initial marking is between the 
reference-cut set and these two transitions x* and y*. 
As such, the timing difference between x* and y* in the 
first run could be incorrect. We recalculate a lower 
bound to ensure their relation. 

The correctness of this overall algorithm is 
established by the following theorem. 
Theorem 2: If a consistent delay-arc set exists for all 
CSC violations, all delay-arc orderings can always be 
satisfied by delay padding with the procedure 
Eliminate-Hazards() (see proof in Appendix 8.2). 

The worst-case running time of the algorithm can be 
estimated as follows. Suppose that the STG has n 
signals and O(n) transitions. The number of hazard 
cases is at most O(n3) (all transition pairs cause hazards 
on all signals). To eliminate a hazard, it requires 
traversing the STG at most O(n) times to calculate the 
time separation between two transitions. Thus, in the 
worst case, it takes O(n3) complexity to eliminate a 
hazard. In practice, the number of hazards is far less 
than O(n3). 

6 Results and conclusion 

The proposed method has been evaluated with the 
benchmark in sis (a CAD tool of UC Berkeley). 
Table 3 shows a comparison between the three 
methods: signal insertion, arc insertion and delay 
padding. The results of signal insertion and arc 
insertion are taken from sis, which are optimal designs 
derived by expert designers or from the literature. For 
comparison, we assume that each signal is implemented 
with a complex gate and each transition has a delay 
ranging from 1 to 2 units. The performance 
degradation is evaluated in terms of the maximum 
delay of the longest cycle in an STG. The experimental 
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result shows that the delay padding does not 
significantly cause more degradation than the other 
two methods. In the case of atod.g, it is even the best. 
As for applicability, the delay padding is able to 
resolve CSC violation b1:tter than arc insertion. The 
three cases (sendr-done.g. at0d.g and subf-ram-write.g) 
which cannot be resolved by the arc-insertion method 
due to the noninput constraint have been resolved by 
the delay padding method. For comparison with the 
signal-insertion method, the only failed case, due to the 
noninput constraint, is resolved successfully by the 
delay padding method. However, the delay padding 
method fails for three cases. The vbe6a.g involves cyclic 
independencies such that a consistent delay-arc set does 
not exist. The other two failed cases, nak-pa.g and 
master-read.g, are caus1:d by certain states which 
cannot be removed from the original STG. The typical 
problem in these two STiGS is as follows: sl "4 s2 " 2  
s3 b; s4 sl, with sl and s3 violating CSC. Since 
neither one can be removed, there is no solution by 
delay padding or arc insertion. Note that for the 
successful cases the signal-insertion method results in 
increased hardware, unlike the delay-padding method, 
which may resolve CSC problems with the inherent 
circuit delays without any extra hardware. 
Furthermore, the delay-padding method can resolve the 
cases which defy other methods [2, 31 due to the 
noninput constraint. 

We have proposed a novel alternative to remove 
CSC violations by exploiting delays in the physical 
circuit. It circumvents the two main drawbacks in the 
existing methods: the noninput constraint and the 
possible waste of overhead. The constraints for 
padding delays to remove CSC violations have been 
formulated. An algorithm has been proposed to derive 
a consistent set of constraints to remove all CSC 
violations. It has been shown that those constraints can 
always be satisfied by ouir proposed hazard-elimination 
algorithm and a hazard-fee circuit can be derived. The 
result stated above has shown the applicability of our 
approach. In the future, ithe approach will be extended 
to more complex models of STGs and other 
specifications such as the burst-mode and state-based 
model. 

Table 3: Experimental results 

STGs Signal-insertion Arc-insertion Delay-padding+ 
- 

pd transition# pd arc# pd dela,y# 

sendr-d0ne.g F* - F* - 29% 2 

vbe4a.g 11% 2 20% 3 16% 4 
at0d.g 18% 2 F* - 10% 2 

n0usc.ser.g 33% 2 33% 2 33% 2 

n0usc.g 0 2  0% 2 10% 2 

nak-pa.g - 
vbe6a.g - 

master-read.g - 8 F 

subf-ram-write.g 25% 4 F* - 25% 13 
- F 

F 
F 

- 4 F 

4 F* - - 
- - - 

F = failed; F" = failed due to  the non input constraint; pd = ratio of 
performance degradation (increased delayhew total delay); transitian# 
= number of inserted transitions; arc# = number of inserted arcs; delay# 
= unit number of padded delays; + = it is possible that no actual delay- 
padding is needed 
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8. I Proof of theorem I 
We first show that G '  with m'o has an underlying live 
and safe net. Since each directed cycle has at least one 
token, the net is live [ll]. To show the safeness, we 
recall that a live marking is safe iff every arc is in a 
directed cycle with token count 1 [ll]. Since G (the 
original one) has an underlying live and safe net and no 
arc is removed from it, each original arc in G is still in 
a directed cycle with token count 1 such that it does 
not cause unsafeness to G'. In other words, only the 
added arcs may cause unsafeness. If an added arc t, 4 
tJ can carry more than one token through some firing 
sequence from m6, then in G, t, can fire twice while ti 
keeps enabled. Such an arc is not permissible in the 
type-3 concurrent behaviour and will not be selected by 
our algorithm. In other words, G '  does not contain 
such an arc. Consequently, no arc can carry more than 
one token after any firing sequence from m6, and the 
underlying net of G'  is safe. 

Furthermore, all the added arcs do not remove any 
ordering relation between transitions from G. Those 
added arcs, except for type 2, also do not carry any 
token in m6, so that the firing orders from the initial 
marking in G are preserved in G'. As a result, G'  speci- 

fies a subset of all possible transition sequences speci- 
fied by G from mo. That is, behaviour observed by the 
environment from mo remains the same. Consequently, 
this also ensures that the rising and falling transitions 
of a signal occur alternatively as G. Since the underly- 
ing net has already been proved live and safe, G '  is 
therefore live. 

8.2 Proof of theorem 2 
The proof is based on the bounds derived from 
upper-bound() and from lowerbound(). We compare 
all those upper bounds from all transitions in R (the 
minimal reference-cut set) to x* and then select the 
largest one as D r  Similarly, we select the smallest 
one a s D Y  from those lower bounds from all 
transitions in R to y*. If the inequality OFx + Ox","" < 

+ D Y  is met, then for each k* E R, an upper 
bound U(rk*) on the delay for x* along the circuit path 
from rk,  through x, to c, is less than a lower bound 
L ( y k * )  on the delay for y* along the circuit path from 
y k ,  through y ,  to e. This ensures the relation x* * y* in 
affecting output c. If the inequality is not satisfied (a 
hazard exists), then delays are padded to satisfy it. This 
hazard will never occur if the relation U(vk*) < L(rk*) 
for each yk* will not be changed by any subsequent 
padded delays for other hazardous cases. If this is the 
case, we can also state that the delays padded for OFx 
+ D,"," < D T  + D Y  do not introduce new hazards 
elsewhere. Therefore, the key proof is to show that the 
relation u(rk*) < L(rk*) for each Yk* henceforth 
remains unchanged. 

First we show that the delay inequality ( D E x  + 
D E x  < D T  + DF ) will not be changed by any sub- 
sequent padded delays if no delays are padded to the 
circuits of R. Note that the delay inequality keeping 
unchanged is sufficient to ensure that U(%*) < L(rk*) 
for each rk* is retained. Since those hazards caused by 
the disordering of any two transitions in the original 
STG have been removed, we only need to consider the 
cases of delay arcs. If all the delay arcs are treated 
according to the evaluation order derived in the algo- 
rithm in Fig. 4, the circuit delays on all signals of the 
minimal reference set for a delay arc will not be modi- 
fied by any subsequent processes for other hazardous 
cases. Hence, the left-hand side of the delay inequality 
will retain unchanged. If delays are increased on D T  
or D Y ,  this only enlarges the right-hand side. Hence, 
the inequality is still retained. Furthermore, delays 
increased on the output c do not affect the inequality. 
In summary, the inequality will not be changed by any 
subsequent padded delays for other hazardous cases. 

We now consider the case of delays increased on 
some rk* E R. These increased delays actually affect the 
upper bound from rk to x and the lower bound from rk 
to y both with the same value. Hence, the relation x* 
3 y* in affecting output c still holds. 

D mm 
rY 
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