
A Checkpointing Tool for Palm Operating System

Chi-Yi Lin and Sy-Yen Kuo
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan

sykuo 0 cc. ee.ntu. edu. tw

Abstract

It is foreseeable that handheld devices will be involved
in the arena of distributed computing in the near future.
To provide a dependable computing environment, check-
pointing arid rollback recovery is a useful and important
technique for fault-tolerant distributed computing systems.
For the most popular platform among handhelds - Palm
OS, its built-in HotSync tool can take a partial snapshot
of a system state, but it synchronizes only the static data
in the handheld with a PC. All dwamic data of
applications are lost $ a failure occurs and the Palm OS
is reset. In order to accommodate mobile computing
devices with checkpointing and rollback recovery
capability, dynamic data such as global variables should
be checkpointed to tolerate system reset/crasli failure.
Therefore, we developed a checkpointing tool, which
provides a set of APIs to checkpoint Palm applications.
Using the checkpointing tool, dynamic data in a Pahi
device can be saved and recovered from a system reset. In
this paper, we describe the tool and demonstrate its
usefulness in four popular Palm applications.

1. Introduction

As computer and wireless communication technology
advance, not only the computing capability of palm-sized
computers is getting more powerful, but also more and
more handheld devices are becoming network-accessible.
The observation leads to a definite trend: in the near
future, handheld/mobile devices will be qualified to be
participants in a distributed computation [11.

To make distributed computing viable, i t is necessary
to ensure the reliability of the computing environment. It
is well known that checkpointing and rollback recovery is
a useful and important technique for fault-tolerant distri-
buted computing systems. In order to provide a robust
computing environment composed of handheld/mobile
devices, i t is reasonable to apply checkpointing and
rollback recovery mechanism to these gadgets. Among
the popular handheld devices, a recent study shows that

* The work was completed when the author was in AT&T Labs, NJ

Yennun Huang*
PreCache Inc

555 Madison Avenue,
New York, NY 10022

yhuang @precache.com

up to 75 percents of them are equipped with the Palm OS
[2] . Therefore, we chose Palm OS as our targeting
platform to provide a generic checkpointing tool for
various applications.

The Palm OS divides the total available RAM space
into two logical areas: dynamic RAM and storage RAM.
The two memory areas are analogous to the RAM and the
disk storage of a typical desktop system, respectively [3].
The data in the storage RAM can be synchronized with a
PC via the built-in HotSyic tool. That is, HotSync tool
can take a partial snapshot of a system state. But all
dynamic data of applications are lost if a failure occurs
and the Palm OS is reset. From this point of view, Palm
OS is not reliable enough to be used in a dependable
distributed computation. If the data in dynamic RAM
such as global variables can be checkpointed during
program execution, the failures of system resetkrash can
be tolerated. Therefore, we developed a checkpointing
tool, which provides a set of APIs to checkpoint Palm
applications. Using the checkpointing tool, dynamic data
in a Palm OS device can be saved and recovered from a
system reset. To the best of our knowledge, this is the first
checkpoint and recovery tool in Palm OS.

The rest of this paper is organized as follows. Section
2 introduces the Palm OS and the concept of mobile
computing with checkpointing. Section 3 describes the
checkpointing mechanisms of our checkpointing tool.
Section 4 demonstrates the experiments and gives some
discussions. Finally, Section 5 concludes our work.

2. Preliminaries

2.1. Palm Operating System Overview

Palm OS runs on top of a preemptive multitasking
kernel [4]. One task runs the user interface, while other
tasks handle things like monitoring input from the hard
buttons or handwriting area. Since the user interface
permits only one application to be open at a time, the
currently opened application has control over the entire
screen. As a result, applications run within the single-user
interface thread and therefore they cannot be multithreaded.

0-7695-1101-5/01 $10.00 0 2001 IEEE
71

mailto:precache.com

Similar to other platforms, Palm OS applications are
event driven. The application fetches events from the
event queue and dispatches them appropriately [5] .

2.1.1. Memory Architecture. Each Palm OS device has a
memory module known as a card which contains ROM,
RAM, or both [3]. The main suite of applications
provided with each Palm OS device is built into ROM,
while additional applications and system extensions can
be loaded into RAM. The RAM store is divided into two
logical areas: dynamic RAM and storage RAM. Dynamic
RAM is mainly for temporary allocations, and storage
RAM stores application programs and database records.

The entire dynamic RAM is used to implement a
single heap - dynamic heap, which provides memory for
dynamic allocations, including global variables, system
dynamic allocations, application stacks, temporary
memory allocations, and application dynamic allocations.
From Palm OS 3.0 and above, the storage RAM is also
configured as a single heap called storage heap.

In the Palm OS environment, all data are stored in
memory chunks. A chunk is an area of contiguous
memory allocated by the Palm OS memoty manager.
There are two kinds of chunks - relocatable chunks
(called handles) and nonrelocatable chunks (called
pointers). A relocatable chunk is a chunk that the memory
manager can move it around as necessary in order to keep
free memory space contiguous. Since the physical address
of a handle may not be fixed, a master pointer table is
responsible for translating a handle value to its physical
address containing the chunk. For nonrelocatable chunks,
there is no need to do address translation and thus the
master pointer table contains no entry for them.

The data manager is responsible for managing memory
in the storage heap 161. The allocated memory that holds
storage data is a record in a database. In Palm OS, a
database is a list of memory chunks and associated
database header information. Since that the storage heap
is hardware write-protected, changes to the databases can
only be made through the data manager APIs.

2.1.2. Event Loop. The Palm OS event loop gets events
in the event queue and then handles events according to
the event type. The loop terminates when it gets an
appStopEvent from the event queue. Listing 1 shows a
sample of a typical event loop.

The nested ifstatements constitute the main part of the
loop. The first routine SysHandleEvent provides function-
ality common to all Palm applications such as the event
that a hardware button is pressed. The second routine
MenuHandleEvent handles events involving menus. The
third routine ApplicationHandleEvent is responsible for
loading forms and associating an event handler with the
form. The last routine FrmDispatchEvent in the event loop
indirectly provides form-specific handling, such as

copy/paste in the text fields of a form, by calling the
form’s event handler.

static void EventLoop (void)
I

EventType event;
do I

EvtGetEvent (&event, evtwaitforever);
if (! SysHandleEvent (&event))

if (! MenuHandleEvent (NULL, &event, &error))

FrmDispatchEvent (&event);
if (! ApplicationHandleEvent (&event))

) while (event.eType != appStopEvent);
1

Listing 1. Sample code of an event loop

2.1.3. System Resets. There are two different levels of
system resets that impose different effects on the memory
storage. A soft reset clears the entire dynamic heap, while
leaving storage heap untouched [7] . The operating system
restarts from scratch with new stacks, new global
variables, restarted drivers, and a reset communication
port. On the other hand, a hard reset not only clears the
dynamic heap, but also erases the whole storage heap.

2.1.4. The Built-in HotSync Tool. Palm OS provides a
built-in synchronization tool - HotSync, which synchro-
nizes the storage RAM with a PC. Databases in the
storage heap such as application programs and records are
backed up in the PC, but HotSync does not save and
recover the dynamic heap. For example, if the Palm OS
device undergoes a hard reset that clears all contents in
the RAM store, the applications installed can be restored
from a HotSync synchronization, but the dynamic data in
the dynamic heap cannot be recovered. To sum up, with
only the HotSync tool, the Palm OS device will lose its
current program state if a failure occurs accidentally.

2.2. Mobile Computing and Checkpointing

Mobile computing makes it possible for us to access
and exchange information while we travel. Since mobile
computing devices are getting more powerful, they will
be able to participate in various applications of distributed
computing, such as information gathering and processing.
But mobile devices suffer from failures very easily,
compared to fixed hosts connected with each other
through hard-wired networks [8]. The failures include
physical damage, power shortage, loss of network
connectivity, or even devices got lost or stolen. As a result,
a proper fault-tolerant mechanism is essential to ensure
the reliability in a mobile computing environment.

It is well known that checkpointing and rollback
recovery techniques provide fault-tolerant capability for
distributed computing systems. A complete introduction to
these techniques can be found at [9]. Recently, many
checkpointing and rollback recovery protocols for mobile
computing systems have been proposed [10-121. These

72

protocols focus mostly on avoiding the need for a system-
wide synchronization during checkpoint collection, while
keeping the recovery procedure efficient. The storage
management for checkpoints is also discussed [121 which
makes best use of the limited storage space on base stations.

The essence of the dependable mobile computing using
Palm devices is the checkpoint mechanism for Palm OS,
which is described in the next section.

3. A Checkpointing Tool for Palm OS

3.1. The Basic Concept of Our Approach

In order to survive the dynamic data of a running
application, i t is necessary to save the data into a database
in the storage heap, which is not cleared during system
soft reset. The saved data is a record in a database, which
serves as a checkpoint for later recovery. Also, through
HotSync that synchronizes the handheld device with a PC,
the checkpoint record can be further copied to the non-
volatile storage on a PC. Once the handheld device
undergoes system hard reset, i t can recover the whole
storage heap from synchronization with a PC, and then
the specific application state can be recovered from the
saved checkpoint.

3.2. Getting Bounds of Global Variables

Since most applications utilize global variables to save
their application state, we have to capture and then restore
these global variables in order to recover the application
state. Global variables are allocated by Palm OS, and
there is no built-in API to get the bounds of these
variables. Our experiment shows that global variables are
allocated sequentially in the dynamic heap, so we added
two dummy variables that are declared as the first and the
last global variable, respectively. By passing the bounds
as parameters to our checkpointing API, we are able to
save and then recover the correct range within the
dynamic heap. Listing 2 shows part of the MirzeHunt
application in which two dummy variables are declared.

// Private global variables
static Ulnt32 GlobalStart; // dummy variable 1 as the first

static GameType Game;
static MinePrefType MinePref;
static Intl6 PieceBitmapTable[lastSquareGraphic] =
{

global variable

CoveredSquareBitmap,

1;
static Ulntl6 SoundAmp;
static Ulnt32 GlobalEnd; //dummy variable 2 as the last

global variable

Listing 2. Two dummy variables declared to locate the
bounds of global variables

3.3. Launching Checkpointing Tool

In Figure 1 (a), a menu item CkpTool/Launch is added
in the MineHunt application that launches our check-
pointing tool. The checkpointing tool is running as a
subroutine of its caller; i.e., the execution of. the caller
application is suspended, but not quitted. This is done by
calling a system function SysAppLaunch that launches a
specified application as a subroutine of the caller [13].
SysAppLaunch takes four in parameters and one out
parameter, among which the fourth in parameter is a
memory pointer that points to the launch code parameter
block. The launch code parameter block is utilized to pass
the global variable bounds of the current application to
our checkpointing tool. Figure 1 (b) shows the main form
of the checkpointing tool. The first button takes a snap-
shot of the application’s dynamic data; the second button
performs recovery from the snapshot; the third button
deletes the snapshot saved in the checkpoint database; and
the last button terminates the checkpointing tool.

Figure 1. (a) A menu option that launches the
checkpointing tool

(b) Main form of the checkpointing tool

Another system function SysUIAppSwitch can also be
used to launch another application programmatically [131.
But using SysUlAppSwitch will terminate the currently
running application because SysUlAppSwitch sends the
current application an appStopEvent and then starts the
specified application. This is not our case, since we need to
resume execution of the checkpointed application after
doing memory manipulations in our checkpointing tool.

3.4. Checkpointing Procedure

As Section 3.2 mentioned, we capture the global
variable bounds of the current application by acquiring the
addresses of the two dummy variables. By calculating the
difference between the two addresses, we get the record
size (globalsize in the source code) needed to save these
global variables. Following is the procedure of taking a
checkpoint. Firstly, the checkpointing tool looks up the
storage heap if the checkpoint database exists. If the
database is not found, the procedure creates a new database

73

and then proceeds. Secondly, the number of records in the
database is checked; if none exists, a record of size
globalSize is allocated. Finally, with the starting address of
the global variable bounds (ParentGlobalBound.start), we
use the system function DmWrite to do memory copy from
dynamic heap to storage heap. Listing 3 shows the major
part of the CkpTake procedure in our program.

// Compute the size needed to save the checkpoint.
globalSize =ParentGlobalBound.end-ParentGlobalBound.start+l;
// Get the checkpoint database; if not found, create one.
gDB = DmOpenDatabaseByTypeCreator (myDBType,

if (!gDB) (
myCreaterName, dmModeReadWrite);

error = DmCreateDatabase (0, myDBName,

ErrFatalDisplaylf (error, “Couldn’t create new database.”);
gDB = DmOpenDatabaseByTypeCreator (myDBType,

myCreaterName, dmModeReadWrite);
1
// Get # of records in the database; if none, allocate one.
numRecordslnDB = DmNumRecords (gDB);
if (numRecordslnDB == 0) (

myCreaterName, myDBType, false);

Ulntl6 chunkRecNum = dmMaxRecordlndex;
handle = DmNewRecord (gDB, &chunkRecNum, globalsize);

1
//Acquire a mem ptr to the record and do memory copy
recordH = DmGetRecord (gDB, 0);
recordP = MemHandleLock (recordH);
status = DmWrite (recordP, 0, (Ulnt32*)

ParentGlobalBound.start, globalSize);

Listing 3. Sample code of the checkpointing
procedure CkpTake

3.5. Recovery Procedure

As we can see, the bounds variable (ParentGlobalBound)
of the checkpointed application is not saved along with the
memory content in the checkpointing procedure. In fact, we
don’t need to save it because the bounds may shift at each
time the application is loaded. The last given bounds might
be invalid at this time when the application is running again,
no matter if the device got reset or not. The correct
procedure is to get the current global variable bounds of the
application, pass it to the checkpointing tool, and then
restore the checkpoint to the new bounds in the dynamic
heap. It will lead to system crash if we restore the
checkpoint to an invalid memory address. Figure 2 is an
illustration of the scenario. When the checkpoint is taken,
the global variable bounds couple is (x, y) ; when the state is
being recovered, the bounds couple becomes (x’, y ’).

The recovery procedure works as follows. Firstly, it
acquires a reference to the checkpoint database. If the
database cannot be found, a “database missing” alert is
shown and the procedure quits. Secondly, i t checks the
number of records in the database. If the number is zero,
it means no previous checkpoint exists, so a “no record
found” alert is shown, and then the procedure quits.
Finally, the system function MemMove performs memory

copy from the checkpoint database to the current global
variable bounds. Listing 4 shows the sample code.

Taking a checkpoint Recovering from a checkpoint

I X

Dynamic j Y Dynamic 1 x ’
Heap j Heap i

1
Storage j Storage I
Heap j Heap j

Figure 2. Illustration of bounds shift between
checkpoint taking and recovering

// Open the ckpt db. If db is not found, display alert and return 0.
gDB = DmOpenDatabaseByTypeCreator (myDBType,

if (!gDB) (

1
// Get # of records in the db. If # = 0, display alert and return 0.
numRecordslnDB = DmNumRecords (gDB);
if (numRecordslnDB == 0) {

myCreaterName, dmModeReadW rite);

FrmAlert(DBMissingA1ert); return 0;

FrmAlert(NoRecordAlert); return 0;
1
//Get a ptr to the ckpt record, then overwrite the global bounds
recordH = DmGetRecord (gDB, 0) ;
recordP = MemHandleLock (recordH);
status = MemMove ((Ulnt32’) ParentGlobalBound.start,

recordP, globalSize);

Listing 4. Sample code of the recovery procedure
CkpRecover

3.6. Returning to the Caller Application

When the checkpointing tool as a subroutine quits,
program execution returns to the caller application. At
this point, we need to get the display of the caller
application redrawn, because once the subroutine quits,
the system loses its active form; i.e., the system has no
idea which form it should load. So we send a “form load
event” (frmLoadEvent) with the appropriate form ID to
the event queue. Then we use another system function
FrmUpdateForm to make an explicit redraw of the form
that is loaded into memory. Listing 5 is the sample code
that does form redraw.

if(dblD) //Call the checkpointing tool as a subroutine
error = SysAppLaunch(cardNum, dblD, 0, . . .);

//Assign frmLoadEvent type to myFormEvent, specify the form

myFormEvent.eType = frmLoadEvent;
myFormEvent.data.frmLoad.formID = MainForm;
EvtAddEventToQueue (&myForm Event);
// Request to redraw the whole form
FrmUpdateForm (MainForm, frmRedrawUpdateCode);

Listing 5. Sample code handling form redraw after
returning to caller application

ID, then add it to event queue

74

4. Experiments and Discussions

Example
Applications

MineHunt
Puzzle

HardBall
Raptoids

4.1. Experiment Environment

Checkpoint Time for Time for
CkpTake CkpRecover

(Kbyte) (millisecond) (millisecond)
Size

0.497 9.25 8.70
0.023 8.92 8.19
0.459 9.24 8.73
2.897 12.20 11.51

For the hardware equipments, we use one Palm Vx
and one Palm VIIx, both with 8MB RAM. For the
software development environment, we use Metrowerks
CodeWarrior for Palm OS R6 with SDK 3.5 support and
Palm Emulator 3.0a7, both running on Microsoft Windows
98. The operating system on the Palm device is Palm OS
3.5. For all Palm OS function calls and important data
structures, a complete reference can be found at [141.

Example
Applications

4.2. Example Applications

Time for Effective Time for

(Kb te) (second) (second)
CkpTake CkpRecover Size

Palm Inc. provides some application source codes that
are downloadable through their website [151. Among
them we chose four popular games - MineHunt, Puzzle,
HardBall, and Raptoids as our examples. The example
source codes come with the format of CodeWarrior
project files. In the source files, we added two dummy
global variables and a menu option that launches our
checkpointing tool. The database name of the tool is
CkpLib and the compiled size is 5KB.

MineHunt is similar to the Minesweeper in Microsoft
Windows. The application state includes the status of
each block, the number of mines left, game sound
amplitude, and the preference of game difficulty. The
checkpoint size is 497 bytes.
Puzzle is a board game that the blocks with numbers
need to be sorted in ascending order. The application
state is the distribution of the 15 numbered blocks and
the empty position. The checkpoint size is 23 bytes. . HardBall is an animated game that a bouncing ball
breaks the bricks on the top. The game state includes
the position of the ball and the pad, the direction and
speed of the ball, status of the bricks, game level, and
the score. The checkpoint size is 459 bytes.
Raptoids is a shooting game that the aircraft moves
around and shoots the flying rocks. The game state
includes the directiodpositiodspeed of the aircraft and
the rocks, the number of aircrafts left, the size of a rock,
the positions of bullets, and the score. The checkpoint
size is 2.897 Kbytes.

With very minor modifications to the source code of
these example applications, our experiment shows that
using the checkpointing tool, the program states of all the
applications can be saved, and then be recovered correctly.

4.3. Evaluations

The overhead introduced by our checkpointing tool
includes the time needed to take or recover from a check-

point on a Palm OS device, and the power consumption of
the checkpointing procedures.

The Palm OS device maintains a system tick count that
starts at 0 when the device is reset [7]. The system tick is
a 0.01-second timer, which can be used to calculate the
time required taking or recovering from a checkpoint. We
get the result by comparing the tick counts returned by the
system function TimGetTicks before and after the check-
pointing procedure.

The initial result shows that.it takes only one system
tick, or I O milliseconds, checkpointing or recovering for
the four examples. To make the measurement more
accurate, we modified the two procedures CkpTake and
CkpRecover to be looped for 1000 times, and then we
derived the average value. The result is shown in Table 1.

Table 1. The execution time of CkpTake and
CkpRecover for the example applications

From Table 1, we can find that our checkpointing tool
brings barely overhead to a relatively slow Palm OS
device, when the checkpoint size is only a couple of
Kbytes. For the case that the checkpoint size is much
larger, we modified the checkpointing procedure to do
memory copy for 1000 times continuously (only DmWrite
and MemMove are looped), to simulate the condition.
Table 2 lists the result when the effective checkpoint size
is 1000 times larger for the four examples. It is shown that
when the checkpoint size is as large as 3 Mbytes, i t takes
less than 4 seconds to finish checkpointing. From the
perspective of time efficiency, we believe that our check-
pointing tool is viable.

Table 2. The execution time of CkpTake and
CkpRecover with large checkpoint size

I MineHunt I 497 I 0.98 I 0.59

I Puzzle I 23 I 0.45 I 0.08
I HardBall I 459 I 0.94 1 0.55

I Raptoids I 2897 I 3.66 I 3.15

The other important consideration is the power
consumption of taking a checkpoint. According to [7], the

75

current battery level information can only be obtained
through the SysBatterylnfo routine. So we use the system
function to detect battery levels before and after taking a
checkpoint. The retumed value of the battery level is an
integer, e.g., battery level 100 represents a fully charged
battery, while battery level 35 represents that only 35% of
the power is available. Since the battery level is not
precise enough, our experiment shows that the battery
level is not changed after taking a checkpoint. Even if we
modified the code to make CkpTake be executed 10000
times continuously, the battery level is still unchanged.
This means that taking a checkpoint consumes only very
tiny amount of the power that we can hardly tell.

4.4. Discussions

Our tool provides a generic checkpointing mechanism
for various Palm applications without checkpointing
capability. Since it is required to modify the source code
of an application in order to execute our tool, the tool is
meant for Palm application developers. The checkpoint-
ing mechanism is not automated because we would like
the checkpointing APIs be utilized in a mobile computing
application, and then a proper checkpointing and rollback
recovery protocol determines the right time for check-
point taking or recovery. A mobile computing application
using Palm OS devices can be a joint statistical compu-
tation between several mobile devices equipped with a
wireless network interface.

In Section 4.3, we measured the execution time when
the effective checkpoint size is as large as 3 Mbytes. For a
real Palm application, its dynamic data cannot be that
large because the dynamic heap is only 256 Kbytes. It is
expected that, with newer versions of Palm OS, the
limitation will be lifted when the physical memory size of
a Palm OS device is also enlarged.

5. Conclusions

In this paper, we described the importance of assuring
the reliability of a distributed computing system. Since a
mobilehandheld device suffers from limited vulnerable
storage and power limitations easily, i t is essential to keep
the computing state when a mobile/handheld device is
participating in a dependable distributed computation.
Once a failure occurs, the device can recover from its last
checkpoint, and then resume computation. For this reason,
we developed a generic checkpointing tool for the most
popular operating system - Palm OS, among handheld
devices. With the checkpointing tool, an application can
take a snapshot of its executing state, save it as a record in
the storage heap, and then further saved onto a PC by
taking a synchronization with the built-in HotSync tool.
Or, with the IrDA functionality on the handheld, we can

transmit the checkpoint to another handheld, and then
restore execution on that handheld.

To the best of our knowledge, our tool is the first
checkpoint and recovery tool in Palm OS. We applied the
checkpointing tool to four popular Palm applications. The
result showed that our tool is very useful. Because of its
generality, we believe that our checkpointing tool can be
applied to many other Palm applications and will become
a popular tool to be used in dependable mobile computing
research.

6. References

E. A. Brewer, et al., “A Network Architecture for
Heterogeneous Mobile Computing,” IEEE Personal
Communications, Vol. 5 , No. 2, pp. 8-24, 1998.
IDC, Personal Companion Market, 1999.
Palm Inc., “Chapter 6, Memory,” Palm OS Programmer’s
Companion, 2000.
Neil Rhodes and Julie McKeehan, “Chapter 2, Development
Environments and Languages,” Palm Progratnming - The
Developer’s Guide, Is‘ Ed., O’Reilly, 1999.
Palm Inc., “Chapter 4, Event Loop,” Palm OS
Programmer’s Companion, 2000.
Palm Inc., “Chapter 7, Files and Databases,” Palm OS
Programmer’s Companion, 2000.
Palm Inc., “Chapter 8, Palm System Features,” Palm OS
Programmer’s Companion, 2000.
B. R. Badrinath, A. Acharya, and T. Imielinski, “Impact of
Mobility on Distributed Computations,” SIGOPS Review,

E. Elnozahy, L. Alvisi, Y.M. Wang and D.B. Johnson, “A
Survey of Rollback Recovery Protocols in Message Passing
Systems,” Technical Report CMU-CS-99-148 School of
Computer Science, Carnegie Mellon University, June 1999.

Vol. 27, NO. 2, pp. 15-20, 1993.

[lo] R. Prakash and M. Singhal, “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,’’ IEEE
Trans. on Parallel and Distributed Systems, Vol. 7, No. 10,

[I I] N. Neves, W. Kent Fuchs, “Adaptive Recovery for Mobile
Environments,” Communications of the ACM, Vol. 40, No.
I , pp 68-74, January 1997.

[I21 K. F. Ssu, B. Yau, W. K. Fuchs, N. Neves, “Adaptive
Checkpointing with Storage Management for Mobile
Environments,” IEEE Transactions on Reliability, Vol. 48,
No. 4, pp 315-324, December 1999.

[131 Palm Inc., “Chapter 3, Application Startup and Stop,”
Palm OS Programmer’s Companion, 2000.

[I41 Palm Inc., Palm OS SDK Reference, 2000.
[I51 “Palm OS SDK version 3.5,”

httn://wrvw.nalnios. con1/dev/tech/tools/sdk35. cni

pp. 1035-1048, 1996.

Acknowledgement

The authors would like to thank Chung-Yi Wang for his
helpful discussions.

76

