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ABSTRACT 
This paper presents a new approach to use prosodic information for 
the integration of acoustic and linguistic knowledge in continuous 
Mandarin speech with very large vocabulary. Since the overhead 
computation incurred from unification of search space is confined 
to the syllable boundaries, the use of prosodic information to 
reduce the syllable boundary hypotheses as well as the syllable 
matching length is shown to be effective. The inherent complexity 
with the very large vocabulary is also reduced by the use of phrase 
boundary hypotheses conjectured via the phrase-final lengthening. 
Experimental results show a 47.2% recognition time save with only 
5.67% error rate increase using the syllable and phrase boundary 
hypotheses conjectured from prosodic information. 

1. INTRODUCTION 
The recognition of continuous Mandarin speech with very large 
vocabulary has had a paradigm of separation of knowledge usage. 
Consider, for example [1][2], the speech recognizer with the twe 
staged architecture. First the syllable lattice is prepared by the use 
of Viterbi algorithm, then out ofthe syllable lattice a word lattice is 
constructed with the help of lexical access, and finally a linguistic 
decoder is employed to find the best word sequence as the 
recognition result. For another example [3], a coarse acoustic 
model is first applied to generate a larger syllable lattice, then after 
the word lattice is again constructed a detailed acoustic model is 
used together with the language model to seareh for the best word 
sequence. The suocess of these architectures in OOntinuous 
Mandarin speech for fast recognition is obvious due to the plurality 
of infomatiion carried by the syllables, i.e. all the characters in 
Chinese are monosyllabic and the total number of syllables is quite 
limited. However, the potential loss herein is not neghgible. Not 
only we lose the frame synchronism due to repeated optimization 
stages, but end up with local optima for lack of interaction among 
knowledge sou~ces. The deficiency would be significant when the 
acoustic model is not reliable, and the propagation of erron floods 
as the number of stages increases. 

In this paper, instead of constructing separate search spaces 
bridged by lexical access, the search with acoustic and linguistic 
models is unified in a common space spanned by the lexicon for 
one-stagcd recognition. Though more than 80,000 commonly used 
words arc compiled in the lexicon, the complexity increase is 
modcrated by the use of syllable and phrase boundary hypotheses 
conjectured from prosodic information. 

2. INTEGRATION OF ACOUSTIC AND 
LINGUISTIC KNOWLEDGE 

It is difficult to use same units both for amustic and linguistic 
models in continuous speech with very large vocabulary, so the 
lexicon plays a critical role if acoustic and linguistic knowledge is 
to be unified in a single stage with efficiency. 

2.1. Lexicon Organization 
After transcribing all the lexical enmes into their character 
sequences, the lexicon is ready to be organized as a forward tree 
data structure. The root is a null character and every other node of 
the tree stands for a character with a unique pronunciation label as 
Figure 1 shows. Some nodes are terminals (circles with solid line) 
and some are not (circles with dashed line); any path starting from 
the root to a terminal srands for a lexical word. For the lexicon with 
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Figure 1: Tree lexicon structure 

84,480 enmes, the total number of nodes in the tree is 103,109, 
which means in average, for the 14.21 1 characters in the lexicon, 
every character is shared by 7.26 nodes due to different context 
inside the words. Compared with the search space comtn~cted by 
1,345 syllables in the nvo-staged architecture, the search space is 
now 76.66 times of it. 

2.2. Search Strategy 
The search for optimal word sequence is divided into two parallel 
modules: the lattice for syllable recognition, and the tree for word 
score accumulasion. For the lattice module, a concatenated syllable 
matching (CSM) algarithm [2] is used such that recognition for 
isolated syllables is required for every possible syllable interval 
determined by Lpc gain dips and syllable duration constraints. 
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This implies the search for the optimal path inside a syllable is not 
complicated in this search algorithm. For the tree module, the score 

voiced/unvoiced decision, or a measure of the probability of 
voicing, is necessary if better boundary hypothesis is desired. 

Figure 2 shows such a configuration where the dashed lines 
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Figure 2: Search with two modules 
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Figure 3 Real-time recurrent network configuration 

adopted for the purpose of providing reliable voiWunvoiced 
decision. Three features relevant to tht probability of voicing are 
used as network input: zercmossing rate (ZCR), low-band energy 
below 4ooHt (LBE), and the fint reflection coefficient from LPC 
analysis O. Output from a 
algorithm is taken to guide the network in the learning phase. 

indicate syllable boundary hypotheses. For a l l  words reaching their 
terminal nodes, acoustic scores as well as the linguistic scores are 

Unlike most other tree search algorithms [4], the incorporation of 

pitch 

to the receiving words during the word mitian. Sample output fram the weu-aned network may like Figure 
language model parameten is not delayed until the identity of the 
receiving words is known. By using word class bigram based on 
startindending characters [5],  it is possible to apply exact word 
class bigram value at the word boundary even when the exact word 
that followed is not known, because words with same starting 
characters are grouped in a class. It is also noteworthy that since the 
score of the word is only important when being transferred to 
following words, the accumulation for word scores is thus delayed 
to the hypothesized syllable boundaries, instead of frame-by-frame 
computation. In this way, the burden of maintaining the word 
scores of the very large vocabulary size is amortized over the frame 
separation of adjacent syllable boundary hypotheses, which is to be 
minimized by the use of prosodic information. 

3. USE OF SYLLABLE BOUNDARY 
Though quantity of the syllable boundary hypotheses conjectured 
via LPC gain dips is satisfactory [2]. the quality is not. Thus 
syllable boundary conjectured &om other reliable sources will be 
used to strip off the unpromising dips for the purpose of speedup. 

3.1. The Probability of Voicing 
The particular EWIAUFNAL structure of the Mandarin syllable 
is quite helpful as a cue of syllable boundary; because all the 
FINAL'S in Mandarin are voiced speech, and most of the 
"s are unvoiced, the presence of unvoiced segment in the 
speech is presumed to be the syllable starting NI" s as well as 
the pause between syllables for breathing. Consequently a 
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Fignre 4: Sample output from the real-time recurrent network 

4 where it is evident that despite the rugged contours of the three 
input features, the network output is quite smooth. Moreover. 
althougsl the presence of some syllable boundaries may not be so 
prominent viewing from individual input feature, the information 
in collaboration gives a solid decision. 

3.2. Pruning Techniques 
After imposing proper threshold on the network output, the syllable 
boundary is set to the h e  when contour of the probability of 
voicing falls from 1 to 0. Since boundaries thus obtained are 
presumed reliable, dips around these syllable boundaries within 
the reach of minimum syllable duration are no longer valid 
hypotheses and are removed. 
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In addition to the removal of unpromising dips, these syllable 
boundaries are used to cut off the residual path for optimal state 
sequence search inside a syllable as Figure 5 shows. For example, 

I u v  W 
> frame 

min duration 

max duration 

Figure 5: Use of syllable boundary to Cut off residual path 

if frame v in Figure 5 is a reliable syllable boundary hypothesis, 
the Viterbi path starting from t is Cut at frame v, instead of frame 
w as is required by the concatenated syllable matching algorithm 
[2]. The computation thus saved would be significant if the 
maximum syllable duration constraint is set too long, which is 
often the case for most of the syllables. 

4. USE OF PHRASE BOUNDARY 
Since the presence of a phrase bounda~~ is often marked by 
phrase-final lengthening m, the duration of each recognized 
syllable is investigated to check for possible phrase boundaries. If 
the duration of the recognized syllable is, say 2, standard 
deviations away from its mean value, this syllable is presumed to 
be a phrase final, and the score accumulation for words crossing 
this syllable is stopped. To view it in another way, if a node 
(chamacr) in the tree is presumed to be a phrase-final, aIl its 
children nodes will not be traversed, instead, a compulsory word 
transition will OCCUT at this phrase-final node. For example, if 
node C in Figure 6 is a phrase final, words terminated at node E 
and F will be invalidated thus are discarded without completing 

Figure 6 Use of phrase boundary to prune word candidates 

the scores. On the other hand, since node B is not a phrase final, 
the score accumulation of the words terminated at node D will 
continue. Though this may seem hazardous because words are 
pruned prematurely before complete scores are known, it is not 
detrimental. Even correct word is chopped mistakenly due to a 

false phrase boundary hypothesis, by taking every character as a 
monosyllabic word in our lexicon, it will be promisingly 
recovered by the language model later on. 

5. EXPERIMENTAL RESULTS 

5.1. Speech Database 
The speech database is recorded using a noisecanceling 
headphone with I6wIz sampling frequency in a quiet office 
environment. On these digitized speech the Lpc analysis is 
performed to prepare appropriate feature vectors for the acoustic 
modeling of 416 base syllables and 5 lexical tones: i.e., 149 intra- 
syllable right-contextdependent (RCD) phone-like units for base 
syllable [I ] and 23 contextdependent models for tone [2]. Speech 
of isolated syllables and phonetically balanced sentences from 40 
male speakers is used to train the speaker-independent acoustic 
model. Results presented in this section are averaged by 3 serious 
male speakers reading articles excerpted from local newspapers of 
about 1,500 charamn for each speaker. The language model 
applied is the word class bigram based on startinglending 
characters as mentioned in section 2.2. 

5.2. Integration of Acoustic and Linguistic 
Knowledge 

A -staged recognition architecture [2] is taken as the baseline 
system in this experiment. Compared to the baseline system, a 
error reduction rate of 43.5% is observed when acoustic and 

Table 1: Average character accuracy for the 3 male speakers 
with speaker independent acoustic model. 

linguistic knowledge is integrated in a single stage as Table 1 
lists. Although the two-staged architecture can attain satisfactory 
performance [2] when the acoustic model is reliable, this is not 
the case for poor acoustic model as this experiment shows, w h m  
the importance of the integrated architecture is justified. 

5.3. Use of Boundary Conjectures 
The results of using prosodic information for syllable and phrase 
boundary conjectures arc graphed in Figure 7. About 36% time 
save is achieved with only 4.85% error rate innease when the 
probability of voicing is used to hypothesize the syllable 
boundaries. The speedup can also be explicated comparing the 
number of syllable boundary hypotheses in these two cases. For 
the case when syllable boundary hypotheses are conjectured via 
LFT gain dips only, the number is 4.43 hypotheses per actual 
syllable boundary; yet the number reduces to 1.49 hypotheses per 
actual syllable boundary when the probability of voicing is used to 
prune unpromising syllable boundary hypotheses- 66.37% of the 
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boundary hypotheses by LPC gain dips are removed. 

If the phrase boundary conjectured via phrase-final lengthening is 
also used, another 17.5% speedup is observed in this experiments, 
with only, as expected, 0.79% error rate increase. Undeniably, the 
result is the art of tradeoff the more conservative we set the 
duration threshold hence the less the accuracy degrades, the less 
obvious the speedup is observed. 

Accuracy vs. Time 
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Figure 7: Comparison of character accuracy (~100%) vs. 
relative recognition time (No Boundnry as 1) using prosodic 
information; No Boundary stands for the case when syllable 
boundary hypotheses are conjectured via LPC gain dips only. 

6. CONCLUSIONS AND rmTuRE WORKS 
The use of prosodic infomation to integrate acoustic and 
linguistic knowledge in continuous Mandarin speech recognition 
with very large vocabulary is shown in this paper to be effective 
for complexity reduction but with only minimal accuracy 
degradation. Though phrase boundary hypotheses conjectured via 
phrase-final lengthmng do help prune unpromising words, it is 
beneficial if more prosodic information, like FO declination, can 
be used in collaboration for more efficient and reliable phrase 
boundary hypotheses. To further reduce the complexity incurred 

beam search are desirable. 
from the unification of search space, algorithms for fast match or 
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