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Abstract 

In an asynchronous transfer mode (ATM)-based 
broadband integrated services digital network (BIS- 
DN), an ATM adaptation layer (AAL) is needed 
to adapt each non-ATM application to the ATM 
layer. This paper proposes an abstract AAL log- 
ic design methodology which combines the concept 
of ‘quotient problem’ defined by Calvert and Lam, 
1987, with the concept of supervisory control in the 
context of discrete event system theory. A 5-step 
AAL synthesis algorithm is developed. It is shown 
that if an AAL does exist, then the algorithm in- 
deed finds a desired AAL FSM. Analysis also indi- 
cates that the synthesis algorithm is of polynonmi- 
a1 computation time complexity, which lays a foun- 
dation for future extension to  realistic applications. 

1 Introduction 

A BISDN supports various types of applications 
such as voice, video and data services on a uniform 
transmission network based on asynchronous transfer 
mode(ATM) [l]. Each application has its own ser- 
vice requirement and traffic characteristics. An ATM 
adaptation layer(AAL) is needed between the ATM 
layer and higher application layers to adapt non-ATM 
services to the ATM layer and to enhance the service 
provided by the ATM layer for supporting the higher 
layer [l]. As there is a large variety of services and an 
AAL design is needed for each service, it is desirable 
to have the synthesis of AAL protocols automated. 

This paper focuses on the logical aspect of AAL 
protocol design. In terms of finite state machine (FS- 
M) formalism for protocol design [2], the AAL is a FS- 
M that interconnects between the FSM of ATM layer 
protocol and the FSM of application layer protocol so 
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that a specific service can be supported. Mathemati- 
cally, the design of an AAL can be viewed as finding a 
FSM that is the ‘quotient’ of the service specification 
over the composition of the FSM’s of ATM and ap- 
plication layer protocols [3]. From supervisory control 
theoretic point of view [4], AAL is a ‘supervisor’ that 
provides and supervises the interacting events with the 
application layer FSM and ATM FSM so that  the ser- 
vice specification is satisfied. 

In the literature, protocol synthesis is a less cul- 
tivated area than other areas in protocol engineering 
[5]. Merlin and Bochmann [6] presented a method to 
synthesize the FSM of a missing system submodule 
from the given system specification and FSM’s of oth- 
er known submodules. However, their method dealt 
only with the safety requirement of protocol design. 
Calvert and Lam conducted a series of research on 
protocol conversion [3][7] [8]. Among their research re- 
sults, they formulated the design of a protocol conver- 
tor as a ‘quotient problem’ in [3 and proposed a qu* 

and progress requirements. They pointed out that the 
algorithm is computationally hard. Qin and Lewis [9] 
considered the same problem as a facterization prob- 
lem, where the goal is to construct a submodule X 
so that the composition of X with all the other given 
submodules conforms to a given system specification. 
An algorithm was presented and proved correct to find 
the most general specification of X but it may create 
many undesirable states at the initial stages of the 
algorithm. 

The AAL logic design problem can also be abstract- 
ed as a facterization problem in which the submodule 
XI i.e., AAL, lies between the application FSM and 
ATM FSM and does not directly support the system 
specification. Exploiting such a problem structure and 
combining the concept of quotient problem and the 
concept of supervisory control theory, we develop an 
AAL logic synthesis methodology which consists of 5- 
steps. Our methodology synthesizes a FSM of AAL 
to interconnect between the FSMs of the application 
and the ATM layers so that the composition of the 
three does not generate any behaviors beyond those 
specified by the service specification (i.e., satisfies safe- 
ty property) but generates all the specified behaviors 
(i.e., satisfies the progress property). 

The 5-step algorithm that realizes the methodolo- 

tient algorithm that explicitly d eals with both safety 
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gy first composes FSM’s of the application and ATM 
layer protocols into a communicating FSM B. A FSM 
G is then constructed through a modified composition 
between B and the FSM of service specification Ps, 
which simulates the behaviors of B confined by Ps. 
Along with the construction of GI states that must be 
unsafe and that may be nonprogressive are identified. 
After deleting all the unsafe states from G, we synthe- 
size a safe FSM of AAL from the remaining FSM of 
G based on the admissible events of AAL. Progress is 
finally checked over all the may-be-nonprogressive s- 
tates; actually non-progressive states are further delet- 
ed from the safe FSM of AAL. It is shown that if a 
nonempty FSM of AAL is obtained, it is a desired 
AAL logic design. Computational complexity analy- 
sis shows that this algorithm is of polynonmial time 
complexity. 

The remainder of the paper is organized as follows. 
Section 2 presents the abstract quotient problem for- 
mulation of AAL design. Section 3 lays the foundation 
for synthesieing AAL. In Section 4, a safe AAL is first 
constructed and then its progress property is checked. 
Section 5 sketches both the correctness proof and com- 
putational complexity analysis of the algorithm. Fi- 
nally, Section 6 concludes the paper. 

2 Problem Formulation 

A few basic definitions about communicating FSM 
(CFSM) are given as follows [3]. 

Definition 1 A CFSM is a five-tGple (S, C, T ,  A, 
qo), where S is a nonempty finite set of states, C is  
a finite set of observable events, T c S x C x S is 
the observable transition set, X C S x {r} x S is  the 
unobservable transition set with I- denoting the unob- 
servable event, and qo E S is the initial state. 
Let a E C U {T} .  Denote s 3 s’ if (s, a, s’) E Tu A, 

s 5 * i f s  5 s’ for some st E S and s f* * if there is 
no s’ E S such that s 3 s’. Define 3 as an indefinite 
sequence of unobservable transitions, (:)*, 5 as 5: 
for o E E, $(s) E {U E EIS -% *} for s E S and 
*(s) E {U E CIS 4 s‘ E S} for s E S. 
Definition 2 Let C and D be two CFSMs. The com- 
position operation, (1, operates on two CFSMs into 
one C F S M B  = CllD = (SCXSD,  EB, TB, AB, ( q O c r  

a 

m D ) )  where 
1. C B  = (CC U ED) - (CC n C O ) ,  

2. TB = { ( ( c , ~ ) , o , ( c ’ , ~ ’ ) )  : o E E B  A 

( ( c  = d A d  5 d’) V (d  = d’ A c 5 c‘))},  

3. ~ g = { ( ( C , d ) , I - , ( C ’ , d ’ ) ) : ( C = C ’ A d  d ’ ) v  
(d  = d’ A c c‘) V 

(30 : CT E cc n cD A c 5 CI ~d 5 &)}. 

Definition 3 A CFSM (S, Cl T, A, 90) i s  determin- 
istic iff A = 0 and when CT E E, s, s’, s“ E S, s 5 s‘ 
a n d  s .% s”, it must have s’ = s”. 

Figure 1: AAL Logic Design Problem 

Definition 4 A trace(or behavior) of a CFSM M 
consists of a finite sequence of observable events(with 
T ignored) generated b y  M .  The language of M ,  de- 
noted b y  L ( M ) ,  i s  defined as the set of all traces(or 
behaviors) of M. Let w be a trace o f  M .  Define IwI as 
the number o f  events in w .  If lwl = 0 ,  w=c. Denote 
s x s ’  ifs‘ i s  reachable f r o m  s via the occurrence of w .  

Let A = ( S A ,  CA,  TA, A A ,  @ A )  and B = ( S B ,  E B ,  
TB, AB,  qFB) be the CFSM representations of a service 
specification and a protocol system respectively. 
Definition 5 A and B are observation equivalent and 
denoted b y  A x B i f f  f o r  each w E L ( A )  n L ( B ) ,  V qA 
E SA : qo, H qA,  and v qB E : qoB E QB i m p l y  

W 

that * ( q A )  = * ( q B ) .  

Definition 6 B satisfies A with respect t o  safety iff 
L ( B )  c L ( A ) .  

Definition 7 B satisfies A with respect to progress iff 
f o r  each w E L ( A )  n L ( B ) ,  V qA E SA : qoA q A  and 
v qB E SB : qog E QB imply that * ( q A )  c * ( q B ) .  

If A is deterministic, it is straight forward to conclude 
from Definitions 5, 6 and 7 that B satisfies A with 
respect to both safety and progress iff B x A. 

In the AAL logic design problem as shown in Fig- 
ure 1, there are two parts of consideration: the trans- 
mitting end and the receiving end. Protocol entities 
involved include the application protocol(AP) entities 
P i p  and P i p ,  AAL protocol entities PiAL and P;AL 
and ATM protocol entities PiTM and P i T M .  Let the 
service specifications be PJ and P’. In the remain- 
der of this paper, all these protocoq entities and ser- 
vice specifications are modeled as deterministic CF- 
SMs. Given the transmitting(receiving) end CFSMs 
P i p ( P i p ) ,  PiTM(PiTM) and Pi (P; ) ,  an AAL CF- 
SM PiAL(PJIAL) needs to be constructed such that 
when P i J ( P i p k  P i A L ( P h L )  and PiTM(PiT 1 are 
compose toget er, the composite system satis& the 
service specification Pt(P;)  with respect to both safe- 
ty and progress. In otier words, an AAL logic design 
problem can be formulated as follows. 
AAL Logic Design Problem: 

Given CFSMs P i p l  PiTM and P i ,  find a deter- 
ministic CFSM PIAL such that CPiA,,, n C . = 0 
and (PiPIIPiALIIPiTM) x P i ,  for i = t and r .  

pi 
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3 Basis of AAL Synthesis 

As was defined in Section 2, our logic design prob- 
lem is to find a PAAL so that  P A P ~ ~ P A A L ~ ~ P A T M  x Ps.  
Our approach for synthesizing PAAL first composes 
PAP and PATM into a CFSM, say B .  The observable 
events of B can be classified into the set of ezternal 
events(Ext), through which B directly supports Ps, 
and the set of internal events(Int), through which the 
desired PAAL communicates with B .  According to the 
role of an AAL, the observable events of PAAL should 
only consist of I n t  but not Ext  of B .  If the desired 
PAAL exists, B ~ ~ P A A L  should result in a CFSM whose 
observable events consist of Ext  only and all events of 
Int  become unobservable after the composition and 
that B ~ ~ P A A L  x Ps.  

Let the language of B after projection onto Ext  be 
Since there may exist unsafe 

behaviors in L(B Pt. l ~ ~ t  with respect to L(Ps) ,  Ps is 
denoted by L ( B )  

used to constrain the occurrence sequences of B’s ex- 
ternal transitions to generate a FSM G with properties 
L\G) C_L(B) and ’L( G )  l ~ z t  G L ( B )  I E ~ ~  nL( Ps )U ( Ps ) . 
Aong with the construction of GI we detect and 
mark states of G that may result in unsafe behav- 
iors as must-be-unsafe and that are likely to result in 
nonprogressive behaviors as may-be-nonprogressive. 
The must-be-unsafe states of G are then removed 
to get a FSM R with properties L(R)CL(G) and 
L(R)~E,~SL(G)IE~~GL(PS), i.e., safe with respect to 
Ps.  This FSM R serves as the basis for constructing 
a safe and progressive PAAL in the next Section. The 
steps for finding R are described as follows. 
3.1 Step 1: Compose PAP and PATM into 

Let us first take the composition BEPAPI~PATM 
(page 177 in [2]). The resultant CFSM B has no un- 
observable events since there are no direct interactions 
between PAP and PATM and neither PAP nor PATM 
has unobservable events. Thus, all events in B are 
observable events and are classified into internal and 
external events. 
3.2 Step 2: Confine Behaviors of B under 

PS 

As there may be some unsafe behaviors in L ( B ) I E , ~  
with respect to Ps, Ps is used to determine the inhi- 
bition of some B’s external transitions such that B’s 
external behaviors after the restriction are confined to 
the behaviors of Ps.  This goal is achieved by conduct- 
ing a modified composition of PS and B to create a 
FSM G which simulates the behavior of B restricted 
by p s .  

Let a be a state of Ps and b be a state of B and 
define a pair ( a ,  b )  as a state of G. In constructing G, 
the procedure starts with Ps and B staying at their 
respective initial states, a0 and bo.  Let ( a o ,  bo) be the 
initial state of G .  
Step 2 Algorithm 

2.0: Let SG = { ( a o , b o ) ) ,  N E W  = ( ( a 0 , b o ) ) .  

2.1: Take a state ( a , b )  E N E W .  

B 

Set 
=G = 0 and 196 = 0. 

If the set of ad- 
missible external events under b in B ,  denoted 

- 

by $ E ~ ~ V ) ,  is not contained in the set $ ~ + t ( a ) ,  
then (a, ) is marked as must-be-unsafe because 
an unsafe event may occur from (a, b ) .  No new 
transitions and states are generated from (a, b ) .  

2.2.1: If $ g z t ( b )  c $ ~ ~ ~ ( a ) ,  then (a,  b )  is marked 
as may-be-nonprogresswe because a non- 
progress condition may occur from a, b ) .  De- 
fine %((a, b ) )  = $ E + t ( a )  - $ ~ ~ t ( b  \ . 

2.2.2: For each a E $ ~ ~ ~ ( b ) ,  if a z a’ and b 5 b’, 
then an external transition ( a ,  b) 5 (a’, b’) is 
defined and added to  the set s. If (a‘, b’) 4 
SG, ( a ’ ,  b’) is added to  Sc and N E W .  

2.2.3: For each event a E $ m t ( b ) ,  if b 5 b’, then an 
internal transition ( a ,  b )  (a, b’) is defined 
and added to the set 9 ~ .  If ( a , b ’ )  4 SG, 
(a,  b’) is added to  SG and N E W .  

2.3: Remove state (a,  b )  from N E W .  If N E W  = 8, 
then go to Step 3; otherwise, go to Step 2.1. 

A formal definition of the modified composition op- 
eration is given as follows. For simplicity of notations, 
Ps is replaced by A. 
Definition 8 The modified composition operation, 
@, operates on two CFSM entities into a FSM 
G=A@B=(Sc ,  CG, ZG, 9 ~ ,  q O o ,  AG, l?G, O G )  where 

2.2: If $ E z t ( b )  C_ $ E + t ( a ) ,  then 

1. SG = S A  x s B I  

2. CG = C A  U C B  = Cg (since Cg = Int  U E z t  and 
C A  = E x t ) ,  

3. EG = { ( ( a , b ) , a , ( a ’ , b ’ ) )  : $ E z t ( b )  C_ $ ~ ~ t ( a )  A 
a E Ext  A a -% a’ A b 5 a’};  in  other words, 
a transition in  EG simulates that A and B can 
transit concurrently via the same event a E E x t ,  

4 .  9~ = ( ( ( a , b ) , a ,  ( a , b ’ ) )  : $ p Z t ( b )  C_ $ ~ ~ t ( a )  ~a E 
Int  A b -% b‘} ;  in  other words, a transition in  d~ 
simulates that A stays at the same state while B 
makes a state transition via an event a E I n t ,  

5. qoo is the initial state of G and qoo = ( a o ,  b o ) ,  
6.  AG = { ( a ,  b )  : $ E Z t ( b )  $~. t (a) } ,  which i s  the 

set of all must-be-unsafe states, 
7. rc = { ( a ,  b)  : $ E z t ( b )  C $ E , t ( a ) } ,  which i s  the 

set of all may-be-nonprogresszve states, 
8 .  OG : I’G - 2Ezt with O G ( ( a ,  b ) )  = $+*(a) - 

$ E Z t ( b ) ;  hence, for 4 may-be-nonprogresstve state 
( a ,  b ) ,  O G ( ( ~ ,  b ) )  is a set of ezternal events which 
are admissible under a E SA but not under b E 
S B  . 

Remarks: 
1. 

2. 

Since Ps and B are both finite state machines, 
the set of ( a ,  b)  pairs is also finite and the above 
procedure will terminate in at  most ISp, I x ISg I 
steps. 
The FSM G thus constructed has properties L(G)  
2 L ( B )  and L ( G ) I E , ~  C L(Ps)  n L ( B ) I E , ~  C 
L(PS).  
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3.3 Step 3: Remove Unsafe States 

Must-be-unsafe states in AG are undesirable and 
should be removed from G .  I f s  is a state of G ,  S$AG 
but there exists a sequence of Ext events that brings s 
to a state s‘EAG, then the state s and the intermediate 
states along the transition sequence from s to d are 
essentially unsafe and should also be deleted. This is 
because if G stays at either of these states, G may 
evolve through the occurrence of external transitions, 
which are not controllable by the design of PAAL, to 
the must-be-unsafe state s‘ and then violate the safety 
condition. 

If there are two states s and s’ of G with 9, safe but 
si unsafe and an event uEInt such that s+s’, then 
the transition s-%‘ must be removed from G because 
G may go to  an unsafe state si from a safe state s 
via an internal event U. Such internal transitions are 
collected in a set 6,,,,fe and will be used by PAAL 
design in the next Section. 

To identify the essentially unsafe states, a proce- 
dure is developed that traces in the backward direc- 
tion of external transitions going into each state in 
AG, identifies the intermediate upstream states and 
add these states into the to-be-removed-state set R M .  
Step 3 Algorithm 

3.0: 

3.1: 

3.2: 

3.3: 

3.4: 

Let S, = AG and RM = AG. 

Take a state sES,. If 3’5s and aEExt and 
s’@RM, then add the state si to RM and S,. 
Remove state s from S,. If S,=0, then go to Step 
3.3; otherwise, go to Step 3.1. 
Remove the states in RM and all of their asso- 
ciated transitions from G.  If a removed internal 
transition brings a safe state to an unsafe state, 
then add this internal transition to 6,,,,fc. 
If the initial state of G is unsafe and hence re- 
moved, then report ‘PAAL does not exist’, set R=8 
and STOP; otherwise, go to Step 4. 

Remarks: 
1. The reduced transition diagram, R,  thus ob- 

tained has the properties L(R)CL(G)CL(B)  and 
L(R)IE,,CL(G)IE~~SL(PS), since all unsafe s- 
tates and their associated transitions are removed 
from G .  

2. If the initial state of G is not removed, the s- 
mallest safe PAAL is a CFSM with a single state 
and without any transitions. Thus, the necessary 
and sufficient condition for the existence of a safe 
PAAL is that R # 0. 

3.4 Example 

The following simple example illustrates the key 
ideas and application of our protocol adaptation al- 
gorithm developed so far. 
Example 
CFSM of P A P :  

P A  

A I  

TA A 4  

P 

(p=a 
0 2  

Figure 2: PAP, PATM, Ps 

CFSM of PATM: 
SPAT, = { O i l ,  21, CPAT, = ( 0 2 ,  A31 A411 
T P A T M  = {(O,A3, I), (1 ,A4 ,2 ) ,  ( 2 , 0 2 , 0 ) 1 ,  
X P A T M  - 0 and qoPATM = 0. 

SP5 = {0,1}, CP5 = {01,021, 

- 
CFSM of Ps: 

T P 5 = { ( 0 , 0 1 ,  I ) ,  ( 1 , 0 2 , 0 ) } ,  XP,=@,  QOps=o* 
Diagrammatic illustrations of CFSMs P A P ,  PATM 

and PS are given in Figure 2, where a circle repre- 
sents a state, an internal transition is labeled by A# 
and an external transition by O#. The resultant CF- 
SM B by composing PAP and PATM is shown in Fig- 
ure 3. Note that X,=8. The FSM G shown in Fig- 
ure 4 is Ps@B,  where heavily-dotted states are must- 
be-unsafe states and lightly-dotted states are may- 
be-nonprogressive states. Note that every must-be- 
unsafe state has no outgoing transitions. An emanat- 
ing arrow from any lightly-dotted state (u,b) is la- 
beled by an external event which is not admissible 
under b in FSM B but is admissible under a in FSM 

0 , 2  , (0 ,4 ) ,  (0,5 \\ . The FSM R is circled by the 
dotted line in Figure 4. In this example, unsafe s- 
tates of G are exactly those marked must-be-unsafe. 

PS. @G((a,b))={02}when (a ,b)E{(1 ,1) i (1 ,2) ,  
and @ G  U, b ) ) = { 0 1 }  when (a ,  b ) ~ {  [L 51) 

A2 
~ u ~ ~ ~ ~ ~ = { ( ~ l ~ ) ~ ( ~ l ~ ) ,  ( 1 , 5 ) 2 ( 1 , 3 ) ,  ( 1 , 8 ) 2 ( 1 , 6 ) ,  
(0,3)%, 61, (ol4)a,4(0, 7)) (0,5)%4 8))- 

4 Construction of AAL Protocol 

Recall that a safe PAAL exists iff R # 0 and the s- 
mallest safe PAAL is a CFSM of a single state without 
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must-be-unsafe 

0 may-be-nonprogressive 

Figure 4: G = P s @ B  

transitions. In this Section, a method is first devel- 
oped to construct the largest safe PAAL for the case 
R # 0 by starting from the smallest PAAL and grad- 
ually adding transitions and states to it. This largest 
PAAL is then checked to see if it is progressive. 
4.1 

This step constructs the largest safe PAAL, :ay 
PiAL, from R such that (BIIPiAL)  satisfies Ps with 
respect to safety. Recall that the observable events of 
B are classified into two classes of Ext  and Int  events 
and that an AAL has only access observation and 
control) to the Int  events in B .  T 6 e role of PAAL 
is to properly enable or disable the occurrence of Int  
events in B based on the observed state information 
from R so that  L BIIPAAL) g L ( P s ) .  So, from su- 

supervisor of the discrete event system B ,  to which Int  
events are both observable and controllable while E x t  
events are neither observable nor controllable. Due to 
the limited observability of B to P A A L ,  PAAL cannot 
observe all the individual states of B.  

As states of R reachable from a state r of R 
through purely Ext  transitions are not distinguishable 
by PAAL,  such a subset of states in R may correspond 
to a state in PAAL.  Motivated by this observation, we 
first make the following definitions to assist in defining 
PAAL states. 
Definition 9 Let r and r‘ be two states of R .  Denote 
r Zk r’ if  r’ is reachable from r via purely external 
transitions. Define .E;(.) = {r’ : r Zkr’} U { r } .  
If ‘IrE;(r) is not a singleton, one state in ra; (r )  is not 
distinguishable from another by the supervising PAAL. 
By Definitions 9, we define qop,,, z rz;(rO), where 
ro = (ao, bo) is the initial state of R. The smallest safe 
PAAL is a CFSM with a single state qop,,,. 
Definition 10 Let q be a set of states of R and U E 
I n t .  Define U t o  be admissible under q iff there as not 
a state r in q such that ( r ,u , r ’ )  E 6,,,,,,. Denote 
$J,(q) the set of admissible events under q .  

Step 4: Construct a Safe PAAL 

pervisory control t 6 eoretic point of view, PAAL is the 

Definition 11 States of a nonempty PAAL are de- 
fined iteratively as follows: 

I .  qopAAL i s  a state of P A A L .  

2. Let q be a state of PAAL and U E $,(a). Then, 
cj  E U{nE;(+)>lr E q,r  -% F} is  abo a state of 
PAAL if  4 # 0. 

To construct P i A L  with five-tuple (Sp,,, , Cp,,,, 

XPAAL = 0, qop,,, = rz;(ro), TPAAL = 0 and SPA,, 
TP,+,, 9 X P A A L  1 q O p A A L ) I  we begin with C P A A L  = I n t ,  

- - {qop,,,}. Based on the above iterative definition, 
steps for constructing P i A L  from R are summarized 
as follows. 
Step 4 Algorithm 

4.0: Let qOPAAL = ~ z ; ( ( a o , b o ) ) .  Let Sp,,, = N E W  
- - {qOp, , , }*  Set TP,,, = X P A A L  = 0 and C P A A ~  

= I n t .  
4.1: Take a state q E N E W .  For every pair of states 

(a, b) and (a’, b’) E q, create a link labeled U from 
state (ala) to  state (a’,b’) in q if (a ,b)  4 (a’,b’) 
and U E E x t .  

4.2: For each event U E Int  that is admissible under g 
and cj  E U(rz ; ( i ) l r  E q, r 5 i} # 0, do Step 4.2.1 
to Step 4.2.3: 

4.2.1: A transition q 5 4 is defined and added to 

4.2.2: If (a,b) E q and b 5 b’, create a link labeled 

4.2.3: If 6 4 Sp,,, , 4 is added to Sp,,, and N E W .  

4.3: Remove state q from N E W .  If N E W  = 0, then 

the set Tp,,, . 

U from (a, b) in q to (a, b’) in 4. 

go to Step 5 ;  otherwise, go to Step 4.1. 

Remarks: 
A state q of P i  corresponds to a set of states 
in RI which can%e called ‘detailed states’ of q. 

A state in R may be one of the detailed states for 
more than one P i A L  states. 
The introduction of detailed states and the con- 
struction of links among them maintain the de- 
tailed CFSM structural information about the re- 
lation between P i A L  and R. 

4.2 Step 5: Check the Progress Property 

By construction in Step 4, P i A L  satisfies 
L(BIIPd ) C L ( P s ) .  Moreover, if any other PAAL 
satisfies L BIIPAAL) 
L(BIIPiAL . - This step checks the progressiveness of 
P i A L .  Since a state q of P i A L  corresponds to a sub- 
set of states in R,  q is also used to represent the sub- 
set in the following discussions. A state q of P i A L  
is defined to be nonprogressive if there exists a may- 
be-nonpropressive detailed state (a,b) E q such that 

a 5 a‘, b * for some U E E x t ,  and if there does not 
exist a sequence of links such that (a, b)  3 (a, b l )  2 

L ( P s ) ,  then L(BIIPAAL) 



- rrur.ltlon of PAAL 0 'U= Of AAL 

Figure 5: Largest Safe PAAL 

e . .  2 ( U ,  b,) (a', b') for some n 2 1, q E Int  and 
(p, bh)  E q k  for 1 5 k 5 n. Note that if the aforemen- 
tioned sequence of links exists, then (BIJPIAL)  has 
a corresponding sequence of unobservable transitions 

and thus Q E !P((b, q ) ) .  

lowing steps. 
Step 5 Algorithm 

5.1: For every state qESp;,,, check if q n r c = O .  
If q n r c # O ,  then for every state ( a , b ) ~ q n r c  
and for each event uE+~+l(a)-.+~+r(b), check 
if there exists a sequence of links such that 
(a, b } l ( a ,  b 1 ) Z .  . 2 ( a ,  bn}5(a' ,  b'} for some n2l 
and ukEInt, l<k<n. As long as there is one pair 
of ((a, b), U) fails the check, q is marked as non- 
progressive. Let NP be the set of nonprogressive 
states identified by this Step. 

5.2: If for q j  , q; E Spi,, , qi is nonprogressive and 3u E 

Int  such that q, 5 qi ,  delete all transitions from 
qj that  involve event r~ and delete all U-labeled 
links from detailed states in q j  to detailed states 
in qi. 

5.3: If NP# 0, then remove all the nonprogressive s- 
tates in NP from Spi , ,  and related transitions 
and links, reset N P =  0 and go to Step 5.1; other- 
wise, go to  Step 5.3. 

5.4: If qop,,, is marked nonprogressive, report 'PAAL 
does not exist'. Otherwise, the remaining CFSM 
is the desired PAAL. 

such that ( b , q )  5 ( b 1 , q l )  5 5 (b, ,q , )  5 (b',q,) 

The progressiveness of PiAL is checked by the fol- 

4.3 Example 

We apply Steps 4 and 5 to the previous example. 
Example( Continued) 

qopAA, = qo = ~ z k ( ( 0 , O ) )  = {(O,O), (I ,  1)) .  Since 
the admissible events under qo are A3 and AI,  transi- 
tions qo --+ q1 and qo 4 q2 are added to Tp,,, where 
q1 = {(0,3) , (1 ,4)} ,  q 2  = {(1,2)} are new states and 
hence added to Sp,,,. Fromql and 92, new states 43,  

q4, qs and new transitions q1 --+ 413, q 2  -+ q3, q3 --* 94 ,  

A3 A1 

A1 A3 A4 

0 2  

Figure 6:  BI)PAAL 

A3 A2 q4 ---$ 45, q5 -+ q1 are then identified and added to 
Sp,,, and Tp,,, respectively, where 43 = {(1,5}}, 
44 = ((1, 8), (0,2)} and q 5  = {(0,5)}. P'AL. is depict- 
ed in Figure 5. Note the links among etaded states 
contained in P i A L  states. 

In all states contain a may-be- 
nonprogressive detailed state. Step 5 is then applied to 
~ 0 - q ~  to  check the progress property. For example, QO 
contains a may-be-nonprogressive detailed state ( 1 , l )  
and ~ ~ ( ( l , l ) ) = { O ~ } ,  but there is a link sequence 
such that ( l , l ) ~ ( l ,  2 ) 3 ( 1 ,  5 ) 2 ( l ,  8)2 (0 ,2 ) .  Thus, 
qo is progressive. In fact, 91-95 are all progressive. 
Hence, P i A L  is the desired PAAL. BIIPi,, is shown 
in Figure 6 ,  which can be easily verified that BllPiAL 
x Ps for this example. 

5 Algorithm Properties 

Let the AAL design algorithm developed in Sec- 
tions 3 and 4 be named as the adaptor algorithm. In 
this section, we first give an outline of its correctness 
proof and then analyze its computational complexity. 

5.1 Correct ness 

The correctness of the adaptor algorithm is verified 
by proving the following two Theorems. Interested 
readers may refer to [lo] for the details of proof. 
Theorem 1 If the adaptor algorithm finds a PAAL, 
then (BIIPAAL) x Ps .  
Sketch of proof: 

(i) B ~ ~ P A A L  satisfies Ps with respect to safety. 
This is proved by showing that if w E 
L(B((PAAL)  then w E L(Ps)  via induction 
on the length of w. 

Let bo, qo and a0 be the initial states of B, PA+ 
and Ps respectively. It can be shown that if 

(ii) B ~ ~ P A A L  satisfies Ps with respect to progress. 

Theorem 2 Ifthere ezists a P'  
x Ps,  then the adaptor algori&finds a PAAL suci 
that B ~ ~ P A A L  M Ps. 

such that B(IP1, 
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Sketch of proof: 
It is intuitively clear that the construction of PAAL 
is rooted from the initial state qo = ? r ~ k ( ( a o ,  bo)).  
If the adaptor algorithm finds a P A A L ,  qo must be 
a state of it. The basic idea of proof is to show 
that if there exists a P I A L  such that BllPiAL x 
P s ,  neither can (m, bo) be identified as unsafe by 
Step 3 nor can qo be marked as nonprogressive by 
Step 5; in other words, qo E Sp,,,, the PAAL is 
not empty and Theorem 1 applies. 

5.2 Computational Complexity 

The worst case computation time complexity of the 
adaptor algorithm is analyzed as follows. 
Step 1: PAP I1 PATM 

The composition has ISpA, I x lSpATM I states. Sup- 
pose that the maximum number of the admissible 
events under a given state of P A P ( P A T M )  is k l ( k 2 ) .  
The computational time complexity of this step is 

Step 2: Ps @ B 
Let the maximal number of admissible internal 

and external events under a given state of B be k3 
and k4 respectively, and the maximal number of ad- 
missible (external) events under a given state of Ps 
be kg. The maximal number of comparison opera- 
tions for defining admissible events in Ps @ B is then 

Step 3: Remove Unsafe States 
Let kg denote the maximal number of states that 

can reach a given unsafe state via an external transi- 
tion. Note that the number of unsafe states in G is 
less than ISG~. So, ks 5 SG and the while loop be- 
tween Step 3.1 and Step 3.2 loops at most ISG I times. 
Since each loop is to find the immediately upstream 
unsafe states of a given unsafe state, the computation 
time complexity of this step is o((S~1~). 
Step 4: Construct a Safe P A A L  

The construction of P i A L  is to group the states that 
are reachable from given states of R via purely exter- 
nal transitions. The AAL thus constructed is a deter- 
ministic CFSM that does not generate any Ext even- 
t; each external transition of R can be replaced with 
an unobservable transition. This step is equivalent to 
transforming a nondeterministic FSM (R) into a deter- 
ministic FSM ( P A A L ) ,  which is known of polynonmial 
computation time complexity [11][9]. Therefore, this 
step is of polynonmial time computation complexity. 
Step 5: Check the Progress Property 

Let (a ,b)  be a may-be-nonprogressive state of R. 
The states that  are reachable from (a ,b)  via purely 
internal transitions can be identified within l S ~ l  - 1 
trace steps. The maximal number of Ext events to be 
searched under each state is b. Thus, the computa- 
tion time complexity of this step is O(ISRI . ( l S ~ l -  1) .  

It is obvious from the above analysis that the AAL 
logic synthesis algorithm is of polynomial time com- 
putation complexity. The most time consuming step 
is Step 4 because it involves both the grouping of de- 
tailed states into states of X and the creation of links 
among the detailed states. 

O ( l s p S P  I * l S P A T M  I * ( k l  + ‘2)). 

ISP, I . Pi3 I . (IC4 * k5 + k3)  

k4). 

6 Conclusions 

In this paper, a logic synthesis methodology has 
been developed to assist the automatic generation of 
AAL protocols. The methodology combines the con- 
cepts of quotient problem and the supervisory control 
theory and addresses both safety and progress require- 
ments. It has been shown that the adaptor algorithm 
developed based on this methedology indeed finds a so- 
lution to the AAL logic design problem if the solution 
does exists; otherwise, it reports no solution. Analy- 
sis has indicated that the algorithm is of polynonmial 
computation time complexity, which may facilitate its 
potential for realistic AAL design applications. As the 
methodology developed so far deals only with the log- 
ical aspect of AAL protocol design, incorporation of 
timing considerations is a topic of future research. 
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