
A Method for Logic Design of ATM Adaptation
Layer Protocol*

MIN-CHANG HSU, SHI-CHUNG CHANGI
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan, ROC

Abstract

In an asynchronous transfer mode (ATM)-based
broadband integrated services digital network (BIS-
DN), an ATM adaptation layer (AAL) is needed
to adapt each non-ATM application to the ATM
layer. This paper proposes an abstract AAL log-
ic design methodology which combines the concept
of ‘quotient problem’ defined by Calvert and Lam,
1987, with the concept of supervisory control in the
context of discrete event system theory. A 5-step
AAL synthesis algorithm is developed. It is shown
that if an AAL does exist, then the algorithm in-
deed finds a desired AAL FSM. Analysis also indi-
cates that the synthesis algorithm is of polynonmi-
a1 computation time complexity, which lays a foun-
dation for future extension to realistic applications.

1 Introduction

A BISDN supports various types of applications
such as voice, video and data services on a uniform
transmission network based on asynchronous transfer
mode(ATM) [l]. Each application has its own ser-
vice requirement and traffic characteristics. An ATM
adaptation layer(AAL) is needed between the ATM
layer and higher application layers to adapt non-ATM
services to the ATM layer and to enhance the service
provided by the ATM layer for supporting the higher
layer [l]. As there is a large variety of services and an
AAL design is needed for each service, it is desirable
to have the synthesis of AAL protocols automated.

This paper focuses on the logical aspect of AAL
protocol design. In terms of finite state machine (FS-
M) formalism for protocol design [2], the AAL is a FS-
M that interconnects between the FSM of ATM layer
protocol and the FSM of application layer protocol so

*This work was supported in part by the National Science
Council of the Republic of China under Grants NSC82-0416-E-
002-248 and NSC83-0416-E-002-016 and by the Telecommuni-
cation Laboratory under Contract TL-81-1301.

tThe authors would like to thank Prof. Sheng-Luen Chung
of National Taiwan Institute of Technology and Prof. Hsu-Chun
Yen of National Taiwan University for their very valuable dis-
cussions and suggestions.

0-7803-2492-7195 $4.00 0 1995 IEEE

that a specific service can be supported. Mathemati-
cally, the design of an AAL can be viewed as finding a
FSM that is the ‘quotient’ of the service specification
over the composition of the FSM’s of ATM and ap-
plication layer protocols [3]. From supervisory control
theoretic point of view [4], AAL is a ‘supervisor’ that
provides and supervises the interacting events with the
application layer FSM and ATM FSM so that the ser-
vice specification is satisfied.

In the literature, protocol synthesis is a less cul-
tivated area than other areas in protocol engineering
[5]. Merlin and Bochmann [6] presented a method to
synthesize the FSM of a missing system submodule
from the given system specification and FSM’s of oth-
er known submodules. However, their method dealt
only with the safety requirement of protocol design.
Calvert and Lam conducted a series of research on
protocol conversion [3][7] [8]. Among their research re-
sults, they formulated the design of a protocol conver-
tor as a ‘quotient problem’ in [3 and proposed a qu*

and progress requirements. They pointed out that the
algorithm is computationally hard. Qin and Lewis [9]
considered the same problem as a facterization prob-
lem, where the goal is to construct a submodule X
so that the composition of X with all the other given
submodules conforms to a given system specification.
An algorithm was presented and proved correct to find
the most general specification of X but it may create
many undesirable states at the initial stages of the
algorithm.

The AAL logic design problem can also be abstract-
ed as a facterization problem in which the submodule
XI i.e., AAL, lies between the application FSM and
ATM FSM and does not directly support the system
specification. Exploiting such a problem structure and
combining the concept of quotient problem and the
concept of supervisory control theory, we develop an
AAL logic synthesis methodology which consists of 5-
steps. Our methodology synthesizes a FSM of AAL
to interconnect between the FSMs of the application
and the ATM layers so that the composition of the
three does not generate any behaviors beyond those
specified by the service specification (i.e., satisfies safe-
ty property) but generates all the specified behaviors
(i.e., satisfies the progress property).

The 5-step algorithm that realizes the methodolo-

tient algorithm that explicitly d eals with both safety

536

gy first composes FSM’s of the application and ATM
layer protocols into a communicating FSM B. A FSM
G is then constructed through a modified composition
between B and the FSM of service specification Ps,
which simulates the behaviors of B confined by Ps.
Along with the construction of GI states that must be
unsafe and that may be nonprogressive are identified.
After deleting all the unsafe states from G, we synthe-
size a safe FSM of AAL from the remaining FSM of
G based on the admissible events of AAL. Progress is
finally checked over all the may-be-nonprogressive s-
tates; actually non-progressive states are further delet-
ed from the safe FSM of AAL. It is shown that if a
nonempty FSM of AAL is obtained, it is a desired
AAL logic design. Computational complexity analy-
sis shows that this algorithm is of polynonmial time
complexity.

The remainder of the paper is organized as follows.
Section 2 presents the abstract quotient problem for-
mulation of AAL design. Section 3 lays the foundation
for synthesieing AAL. In Section 4, a safe AAL is first
constructed and then its progress property is checked.
Section 5 sketches both the correctness proof and com-
putational complexity analysis of the algorithm. Fi-
nally, Section 6 concludes the paper.

2 Problem Formulation

A few basic definitions about communicating FSM
(CFSM) are given as follows [3].

Definition 1 A CFSM is a five-tGple (S, C, T , A,
qo), where S is a nonempty finite set of states, C is
a finite set of observable events, T c S x C x S is
the observable transition set, X C S x {r} x S is the
unobservable transition set with I- denoting the unob-
servable event, and qo E S is the initial state.
Let a E C U {T} . Denote s 3 s’ if (s, a, s’) E Tu A,

s 5 * i f s 5 s’ for some st E S and s f* * if there is
no s’ E S such that s 3 s’. Define 3 as an indefinite
sequence of unobservable transitions, (:)*, 5 as 5:
for o E E, $(s) E {U E EIS -% *} for s E S and
*(s) E {U E CIS 4 s‘ E S} for s E S.
Definition 2 Let C and D be two CFSMs. The com-
position operation, (1, operates on two CFSMs into
one C F S M B = CllD = (SCXSD, EB, TB, AB, (q O c r

a

m D)) where
1. C B = (CC U ED) - (CC n C O) ,

2. TB = { ((c , ~) , o , (c ’ , ~ ’)) : o E E B A

((c = d A d 5 d’) V (d = d’ A c 5 c‘))},

3. ~ g = { ((C , d) , I - , (C ’ , d ’)) : (C = C ’ A d d ’) v
(d = d’ A c c‘) V

(30 : CT E cc n cD A c 5 CI ~d 5 &)}.

Definition 3 A CFSM (S, Cl T, A, 90) i s determin-
istic iff A = 0 and when CT E E, s, s’, s“ E S, s 5 s‘
a n d s .% s”, it must have s’ = s”.

Figure 1: AAL Logic Design Problem

Definition 4 A trace(or behavior) of a CFSM M
consists of a finite sequence of observable events(with
T ignored) generated b y M . The language of M , de-
noted b y L (M) , i s defined as the set of all traces(or
behaviors) of M. Let w be a trace o f M . Define IwI as
the number o f events in w . If lwl = 0 , w=c. Denote
s x s ’ ifs‘ i s reachable f r o m s via the occurrence of w .

Let A = (S A , CA, TA, A A , @ A) and B = (S B , E B ,
TB, AB, qFB) be the CFSM representations of a service
specification and a protocol system respectively.
Definition 5 A and B are observation equivalent and
denoted b y A x B i f f f o r each w E L (A) n L (B) , V qA
E SA : qo, H qA, and v qB E : qoB E QB i m p l y

W

that * (q A) = * (q B) .

Definition 6 B satisfies A with respect t o safety iff
L (B) c L (A) .

Definition 7 B satisfies A with respect to progress iff
f o r each w E L (A) n L (B) , V qA E SA : qoA q A and
v qB E SB : qog E QB imply that * (q A) c * (q B) .

If A is deterministic, it is straight forward to conclude
from Definitions 5, 6 and 7 that B satisfies A with
respect to both safety and progress iff B x A.

In the AAL logic design problem as shown in Fig-
ure 1, there are two parts of consideration: the trans-
mitting end and the receiving end. Protocol entities
involved include the application protocol(AP) entities
P i p and P i p , AAL protocol entities PiAL and P;AL
and ATM protocol entities PiTM and P i T M . Let the
service specifications be PJ and P’. In the remain-
der of this paper, all these protocoq entities and ser-
vice specifications are modeled as deterministic CF-
SMs. Given the transmitting(receiving) end CFSMs
P i p (P i p) , PiTM(PiTM) and Pi (P;) , an AAL CF-
SM PiAL(PJIAL) needs to be constructed such that
when P i J (P i p k P i A L (P h L) and PiTM(PiT 1 are
compose toget er, the composite system satis& the
service specification Pt(P;) with respect to both safe-
ty and progress. In otier words, an AAL logic design
problem can be formulated as follows.
AAL Logic Design Problem:

Given CFSMs P i p l PiTM and P i , find a deter-
ministic CFSM PIAL such that CPiA,,, n C . = 0
and (PiPIIPiALIIPiTM) x P i , for i = t and r .

pi

537

3 Basis of AAL Synthesis

As was defined in Section 2, our logic design prob-
lem is to find a PAAL so that P A P ~ ~ P A A L ~ ~ P A T M x Ps.
Our approach for synthesizing PAAL first composes
PAP and PATM into a CFSM, say B . The observable
events of B can be classified into the set of ezternal
events(Ext), through which B directly supports Ps,
and the set of internal events(Int), through which the
desired PAAL communicates with B . According to the
role of an AAL, the observable events of PAAL should
only consist of I n t but not Ext of B . If the desired
PAAL exists, B ~ ~ P A A L should result in a CFSM whose
observable events consist of Ext only and all events of
Int become unobservable after the composition and
that B ~ ~ P A A L x Ps.

Let the language of B after projection onto Ext be
Since there may exist unsafe

behaviors in L(B Pt. l ~ ~ t with respect to L(Ps) , Ps is
denoted by L (B)

used to constrain the occurrence sequences of B’s ex-
ternal transitions to generate a FSM G with properties
L\G) C_L(B) and ’L(G) l ~ z t G L (B) I E ~ ~ nL(Ps)U (Ps) .
Aong with the construction of GI we detect and
mark states of G that may result in unsafe behav-
iors as must-be-unsafe and that are likely to result in
nonprogressive behaviors as may-be-nonprogressive.
The must-be-unsafe states of G are then removed
to get a FSM R with properties L(R)CL(G) and
L(R)~E,~SL(G)IE~~GL(PS), i.e., safe with respect to
Ps. This FSM R serves as the basis for constructing
a safe and progressive PAAL in the next Section. The
steps for finding R are described as follows.
3.1 Step 1: Compose PAP and PATM into

Let us first take the composition BEPAPI~PATM
(page 177 in [2]). The resultant CFSM B has no un-
observable events since there are no direct interactions
between PAP and PATM and neither PAP nor PATM
has unobservable events. Thus, all events in B are
observable events and are classified into internal and
external events.
3.2 Step 2: Confine Behaviors of B under

PS

As there may be some unsafe behaviors in L (B) I E , ~
with respect to Ps, Ps is used to determine the inhi-
bition of some B’s external transitions such that B’s
external behaviors after the restriction are confined to
the behaviors of Ps. This goal is achieved by conduct-
ing a modified composition of PS and B to create a
FSM G which simulates the behavior of B restricted
by p s .

Let a be a state of Ps and b be a state of B and
define a pair (a , b) as a state of G. In constructing G,
the procedure starts with Ps and B staying at their
respective initial states, a0 and bo. Let (a o , bo) be the
initial state of G .
Step 2 Algorithm

2.0: Let SG = { (a o , b o)) , N E W = ((a 0 , b o)) .

2.1: Take a state (a , b) E N E W .

B

Set
=G = 0 and 196 = 0.

If the set of ad-
missible external events under b in B , denoted

-

by $ E ~ ~ V) , is not contained in the set $ ~ + t (a) ,
then (a,) is marked as must-be-unsafe because
an unsafe event may occur from (a, b) . No new
transitions and states are generated from (a, b) .

2.2.1: If $ g z t (b) c $ ~ ~ ~ (a) , then (a, b) is marked
as may-be-nonprogresswe because a non-
progress condition may occur from a, b) . De-
fine %((a, b)) = $ E + t (a) - $ ~ ~ t (b \ .

2.2.2: For each a E $ ~ ~ ~ (b) , if a z a’ and b 5 b’,
then an external transition (a , b) 5 (a’, b’) is
defined and added to the set s. If (a‘, b’) 4
SG, (a ’ , b’) is added to Sc and N E W .

2.2.3: For each event a E $ m t (b) , if b 5 b’, then an
internal transition (a , b) (a, b’) is defined
and added to the set 9 ~ . If (a , b ’) 4 SG,
(a, b’) is added to SG and N E W .

2.3: Remove state (a, b) from N E W . If N E W = 8,
then go to Step 3; otherwise, go to Step 2.1.

A formal definition of the modified composition op-
eration is given as follows. For simplicity of notations,
Ps is replaced by A.
Definition 8 The modified composition operation,
@, operates on two CFSM entities into a FSM
G=A@B=(Sc , CG, ZG, 9 ~ , q O o , AG, l?G, O G) where

2.2: If $ E z t (b) C_ $ E + t (a) , then

1. SG = S A x s B I

2. CG = C A U C B = Cg (since Cg = Int U E z t and
C A = E x t) ,

3. EG = { ((a , b) , a , (a ’ , b ’)) : $ E z t (b) C_ $ ~ ~ t (a) A
a E Ext A a -% a’ A b 5 a’}; in other words,
a transition in EG simulates that A and B can
transit concurrently via the same event a E E x t ,

4 . 9~ = (((a , b) , a , (a , b ’)) : $ p Z t (b) C_ $ ~ ~ t (a) ~a E
Int A b -% b‘} ; in other words, a transition in d~
simulates that A stays at the same state while B
makes a state transition via an event a E I n t ,

5. qoo is the initial state of G and qoo = (a o , b o) ,
6. AG = { (a , b) : $ E Z t (b) $~. t (a) } , which i s the

set of all must-be-unsafe states,
7. rc = { (a , b) : $ E z t (b) C $ E , t (a) } , which i s the

set of all may-be-nonprogresszve states,
8 . OG : I’G - 2Ezt with O G ((a , b)) = $+*(a) -

$ E Z t (b) ; hence, for 4 may-be-nonprogresstve state
(a , b) , O G ((~ , b)) is a set of ezternal events which
are admissible under a E SA but not under b E
S B .

Remarks:
1.

2.

Since Ps and B are both finite state machines,
the set of (a , b) pairs is also finite and the above
procedure will terminate in at most ISp, I x ISg I
steps.
The FSM G thus constructed has properties L(G)
2 L (B) and L (G) I E , ~ C L(Ps) n L (B) I E , ~ C
L(PS).

538

3.3 Step 3: Remove Unsafe States

Must-be-unsafe states in AG are undesirable and
should be removed from G . I f s is a state of G , S$AG
but there exists a sequence of Ext events that brings s
to a state s‘EAG, then the state s and the intermediate
states along the transition sequence from s to d are
essentially unsafe and should also be deleted. This is
because if G stays at either of these states, G may
evolve through the occurrence of external transitions,
which are not controllable by the design of PAAL, to
the must-be-unsafe state s‘ and then violate the safety
condition.

If there are two states s and s’ of G with 9, safe but
si unsafe and an event uEInt such that s+s’, then
the transition s-%‘ must be removed from G because
G may go to an unsafe state si from a safe state s
via an internal event U. Such internal transitions are
collected in a set 6,,,,fe and will be used by PAAL
design in the next Section.

To identify the essentially unsafe states, a proce-
dure is developed that traces in the backward direc-
tion of external transitions going into each state in
AG, identifies the intermediate upstream states and
add these states into the to-be-removed-state set R M .
Step 3 Algorithm

3.0:

3.1:

3.2:

3.3:

3.4:

Let S, = AG and RM = AG.

Take a state sES,. If 3’5s and aEExt and
s’@RM, then add the state si to RM and S,.
Remove state s from S,. If S,=0, then go to Step
3.3; otherwise, go to Step 3.1.
Remove the states in RM and all of their asso-
ciated transitions from G. If a removed internal
transition brings a safe state to an unsafe state,
then add this internal transition to 6,,,,fc.
If the initial state of G is unsafe and hence re-
moved, then report ‘PAAL does not exist’, set R=8
and STOP; otherwise, go to Step 4.

Remarks:
1. The reduced transition diagram, R, thus ob-

tained has the properties L(R)CL(G)CL(B) and
L(R)IE,,CL(G)IE~~SL(PS), since all unsafe s-
tates and their associated transitions are removed
from G .

2. If the initial state of G is not removed, the s-
mallest safe PAAL is a CFSM with a single state
and without any transitions. Thus, the necessary
and sufficient condition for the existence of a safe
PAAL is that R # 0.

3.4 Example

The following simple example illustrates the key
ideas and application of our protocol adaptation al-
gorithm developed so far.
Example
CFSM of P A P :

P A

A I

TA A 4

P

(p=a
0 2

Figure 2: PAP, PATM, Ps

CFSM of PATM:
SPAT, = { O i l , 21, CPAT, = (0 2 , A31 A411
T P A T M = {(O,A3, I), (1 ,A4 ,2) , (2 , 0 2 , 0) 1 ,
X P A T M - 0 and qoPATM = 0.

SP5 = {0,1}, CP5 = {01,021,

-
CFSM of Ps:

T P 5 = { (0 , 0 1 , I) , (1 , 0 2 , 0) } , XP,=@, QOps=o*
Diagrammatic illustrations of CFSMs P A P , PATM

and PS are given in Figure 2, where a circle repre-
sents a state, an internal transition is labeled by A#
and an external transition by O#. The resultant CF-
SM B by composing PAP and PATM is shown in Fig-
ure 3. Note that X,=8. The FSM G shown in Fig-
ure 4 is Ps@B, where heavily-dotted states are must-
be-unsafe states and lightly-dotted states are may-
be-nonprogressive states. Note that every must-be-
unsafe state has no outgoing transitions. An emanat-
ing arrow from any lightly-dotted state (u,b) is la-
beled by an external event which is not admissible
under b in FSM B but is admissible under a in FSM

0 , 2 , (0 ,4) , (0,5 \\ . The FSM R is circled by the
dotted line in Figure 4. In this example, unsafe s-
tates of G are exactly those marked must-be-unsafe.

PS. @G((a,b))={02}when (a ,b)E{(1 ,1) i (1 ,2) ,
and @ G U, b)) = { 0 1 } when (a , b) ~ { [L 51)

A2
~ u ~ ~ ~ ~ ~ = { (~ l ~) ~ (~ l ~) , (1 , 5) 2 (1 , 3) , (1 , 8) 2 (1 , 6) ,
(0,3)%, 61, (ol4)a,4(0, 7)) (0,5)%4 8))-

4 Construction of AAL Protocol

Recall that a safe PAAL exists iff R # 0 and the s-
mallest safe PAAL is a CFSM of a single state without

539

must-be-unsafe

0 may-be-nonprogressive

Figure 4: G = P s @ B

transitions. In this Section, a method is first devel-
oped to construct the largest safe PAAL for the case
R # 0 by starting from the smallest PAAL and grad-
ually adding transitions and states to it. This largest
PAAL is then checked to see if it is progressive.
4.1

This step constructs the largest safe PAAL, :ay
PiAL, from R such that (BIIPiAL) satisfies Ps with
respect to safety. Recall that the observable events of
B are classified into two classes of Ext and Int events
and that an AAL has only access observation and
control) to the Int events in B . T 6 e role of PAAL
is to properly enable or disable the occurrence of Int
events in B based on the observed state information
from R so that L BIIPAAL) g L (P s) . So, from su-

supervisor of the discrete event system B , to which Int
events are both observable and controllable while E x t
events are neither observable nor controllable. Due to
the limited observability of B to P A A L , PAAL cannot
observe all the individual states of B.

As states of R reachable from a state r of R
through purely Ext transitions are not distinguishable
by PAAL, such a subset of states in R may correspond
to a state in PAAL. Motivated by this observation, we
first make the following definitions to assist in defining
PAAL states.
Definition 9 Let r and r‘ be two states of R . Denote
r Zk r’ if r’ is reachable from r via purely external
transitions. Define .E;(.) = {r’ : r Zkr’} U { r } .
If ‘IrE;(r) is not a singleton, one state in ra; (r) is not
distinguishable from another by the supervising PAAL.
By Definitions 9, we define qop,,, z rz;(rO), where
ro = (ao, bo) is the initial state of R. The smallest safe
PAAL is a CFSM with a single state qop,,,.
Definition 10 Let q be a set of states of R and U E
I n t . Define U t o be admissible under q iff there as not
a state r in q such that (r ,u , r ’) E 6,,,,,,. Denote
$J,(q) the set of admissible events under q .

Step 4: Construct a Safe PAAL

pervisory control t 6 eoretic point of view, PAAL is the

Definition 11 States of a nonempty PAAL are de-
fined iteratively as follows:

I . qopAAL i s a state of P A A L .

2. Let q be a state of PAAL and U E $,(a). Then,
cj E U{nE;(+)>lr E q,r -% F} is abo a state of
PAAL if 4 # 0.

To construct P i A L with five-tuple (Sp,,, , Cp,,,,

XPAAL = 0, qop,,, = rz;(ro), TPAAL = 0 and SPA,,
TP,+,, 9 X P A A L 1 q O p A A L) I we begin with C P A A L = I n t ,

- - {qop,,,}. Based on the above iterative definition,
steps for constructing P i A L from R are summarized
as follows.
Step 4 Algorithm

4.0: Let qOPAAL = ~ z ; ((a o , b o)) . Let Sp,,, = N E W
- - {qOp, , , }* Set TP,,, = X P A A L = 0 and C P A A ~

= I n t .
4.1: Take a state q E N E W . For every pair of states

(a, b) and (a’, b’) E q, create a link labeled U from
state (ala) to state (a’,b’) in q if (a ,b) 4 (a’,b’)
and U E E x t .

4.2: For each event U E Int that is admissible under g
and cj E U(rz ; (i) l r E q, r 5 i} # 0, do Step 4.2.1
to Step 4.2.3:

4.2.1: A transition q 5 4 is defined and added to

4.2.2: If (a,b) E q and b 5 b’, create a link labeled

4.2.3: If 6 4 Sp,,, , 4 is added to Sp,,, and N E W .

4.3: Remove state q from N E W . If N E W = 0, then

the set Tp,,, .

U from (a, b) in q to (a, b’) in 4.

go to Step 5 ; otherwise, go to Step 4.1.

Remarks:
A state q of P i corresponds to a set of states
in RI which can%e called ‘detailed states’ of q.

A state in R may be one of the detailed states for
more than one P i A L states.
The introduction of detailed states and the con-
struction of links among them maintain the de-
tailed CFSM structural information about the re-
lation between P i A L and R.

4.2 Step 5: Check the Progress Property

By construction in Step 4, P i A L satisfies
L(BIIPd) C L (P s) . Moreover, if any other PAAL
satisfies L BIIPAAL)
L(BIIPiAL . - This step checks the progressiveness of
P i A L . Since a state q of P i A L corresponds to a sub-
set of states in R, q is also used to represent the sub-
set in the following discussions. A state q of P i A L
is defined to be nonprogressive if there exists a may-
be-nonpropressive detailed state (a,b) E q such that

a 5 a‘, b * for some U E E x t , and if there does not
exist a sequence of links such that (a, b) 3 (a, b l) 2

L (P s) , then L(BIIPAAL)

- rrur.ltlon of PAAL 0 'U= Of AAL

Figure 5: Largest Safe PAAL

e . . 2 (U , b,) (a', b') for some n 2 1, q E Int and
(p, bh) E q k for 1 5 k 5 n. Note that if the aforemen-
tioned sequence of links exists, then (BIJPIAL) has
a corresponding sequence of unobservable transitions

and thus Q E !P((b, q)) .

lowing steps.
Step 5 Algorithm

5.1: For every state qESp;,,, check if q n r c = O .
If q n r c # O , then for every state (a , b) ~ q n r c
and for each event uE+~+l(a)-.+~+r(b), check
if there exists a sequence of links such that
(a, b } l (a , b 1) Z . . 2 (a , bn}5(a' , b'} for some n2l
and ukEInt, l<k<n. As long as there is one pair
of ((a, b), U) fails the check, q is marked as non-
progressive. Let NP be the set of nonprogressive
states identified by this Step.

5.2: If for q j , q; E Spi,, , qi is nonprogressive and 3u E

Int such that q, 5 qi , delete all transitions from
qj that involve event r~ and delete all U-labeled
links from detailed states in q j to detailed states
in qi.

5.3: If NP# 0, then remove all the nonprogressive s-
tates in NP from Spi , , and related transitions
and links, reset N P = 0 and go to Step 5.1; other-
wise, go to Step 5.3.

5.4: If qop,,, is marked nonprogressive, report 'PAAL
does not exist'. Otherwise, the remaining CFSM
is the desired PAAL.

such that (b , q) 5 (b 1 , q l) 5 5 (b, ,q ,) 5 (b',q,)

The progressiveness of PiAL is checked by the fol-

4.3 Example

We apply Steps 4 and 5 to the previous example.
Example(Continued)

qopAA, = qo = ~ z k ((0 , O)) = {(O,O), (I , 1)) . Since
the admissible events under qo are A3 and AI, transi-
tions qo --+ q1 and qo 4 q2 are added to Tp,,, where
q1 = {(0,3) , (1 ,4)} , q 2 = {(1,2)} are new states and
hence added to Sp,,,. Fromql and 92, new states 43,

q4, qs and new transitions q1 --+ 413, q 2 -+ q3, q3 --* 94 ,

A3 A1

A1 A3 A4

0 2

Figure 6: BI)PAAL

A3 A2 q4 ---$ 45, q5 -+ q1 are then identified and added to
Sp,,, and Tp,,, respectively, where 43 = {(1,5}},
44 = ((1, 8), (0,2)} and q 5 = {(0,5)}. P'AL. is depict-
ed in Figure 5. Note the links among etaded states
contained in P i A L states.

In all states contain a may-be-
nonprogressive detailed state. Step 5 is then applied to
~ 0 - q ~ to check the progress property. For example, QO
contains a may-be-nonprogressive detailed state (1 , l)
and ~ ~ ((l , l)) = { O ~ } , but there is a link sequence
such that (l , l) ~ (l , 2) 3 (1 , 5) 2 (l , 8)2 (0 ,2) . Thus,
qo is progressive. In fact, 91-95 are all progressive.
Hence, P i A L is the desired PAAL. BIIPi,, is shown
in Figure 6 , which can be easily verified that BllPiAL
x Ps for this example.

5 Algorithm Properties

Let the AAL design algorithm developed in Sec-
tions 3 and 4 be named as the adaptor algorithm. In
this section, we first give an outline of its correctness
proof and then analyze its computational complexity.

5.1 Correct ness

The correctness of the adaptor algorithm is verified
by proving the following two Theorems. Interested
readers may refer to [lo] for the details of proof.
Theorem 1 If the adaptor algorithm finds a PAAL,
then (BIIPAAL) x Ps .
Sketch of proof:

(i) B ~ ~ P A A L satisfies Ps with respect to safety.
This is proved by showing that if w E
L(B((PAAL) then w E L(Ps) via induction
on the length of w.

Let bo, qo and a0 be the initial states of B, PA+
and Ps respectively. It can be shown that if

(ii) B ~ ~ P A A L satisfies Ps with respect to progress.

Theorem 2 Ifthere ezists a P'
x Ps, then the adaptor algori&finds a PAAL suci
that B ~ ~ P A A L M Ps.

such that B(IP1,

541

Sketch of proof:
It is intuitively clear that the construction of PAAL
is rooted from the initial state qo = ? r ~ k ((a o , bo)).
If the adaptor algorithm finds a P A A L , qo must be
a state of it. The basic idea of proof is to show
that if there exists a P I A L such that BllPiAL x
P s , neither can (m, bo) be identified as unsafe by
Step 3 nor can qo be marked as nonprogressive by
Step 5; in other words, qo E Sp,,,, the PAAL is
not empty and Theorem 1 applies.

5.2 Computational Complexity

The worst case computation time complexity of the
adaptor algorithm is analyzed as follows.
Step 1: PAP I1 PATM

The composition has ISpA, I x lSpATM I states. Sup-
pose that the maximum number of the admissible
events under a given state of P A P (P A T M) is k l (k 2) .
The computational time complexity of this step is

Step 2: Ps @ B
Let the maximal number of admissible internal

and external events under a given state of B be k3
and k4 respectively, and the maximal number of ad-
missible (external) events under a given state of Ps
be kg. The maximal number of comparison opera-
tions for defining admissible events in Ps @ B is then

Step 3: Remove Unsafe States
Let kg denote the maximal number of states that

can reach a given unsafe state via an external transi-
tion. Note that the number of unsafe states in G is
less than ISG~. So, ks 5 SG and the while loop be-
tween Step 3.1 and Step 3.2 loops at most ISG I times.
Since each loop is to find the immediately upstream
unsafe states of a given unsafe state, the computation
time complexity of this step is o((S~1~).
Step 4: Construct a Safe P A A L

The construction of P i A L is to group the states that
are reachable from given states of R via purely exter-
nal transitions. The AAL thus constructed is a deter-
ministic CFSM that does not generate any Ext even-
t; each external transition of R can be replaced with
an unobservable transition. This step is equivalent to
transforming a nondeterministic FSM (R) into a deter-
ministic FSM (P A A L) , which is known of polynonmial
computation time complexity [11][9]. Therefore, this
step is of polynonmial time computation complexity.
Step 5: Check the Progress Property

Let (a ,b) be a may-be-nonprogressive state of R.
The states that are reachable from (a ,b) via purely
internal transitions can be identified within l S ~ l - 1
trace steps. The maximal number of Ext events to be
searched under each state is b. Thus, the computa-
tion time complexity of this step is O(ISRI . (l S ~ l - 1) .

It is obvious from the above analysis that the AAL
logic synthesis algorithm is of polynomial time com-
putation complexity. The most time consuming step
is Step 4 because it involves both the grouping of de-
tailed states into states of X and the creation of links
among the detailed states.

O (l s p S P I * l S P A T M I * (k l + ‘2)).

ISP, I . Pi3 I . (IC4 * k5 + k3)

k4).

6 Conclusions

In this paper, a logic synthesis methodology has
been developed to assist the automatic generation of
AAL protocols. The methodology combines the con-
cepts of quotient problem and the supervisory control
theory and addresses both safety and progress require-
ments. It has been shown that the adaptor algorithm
developed based on this methedology indeed finds a so-
lution to the AAL logic design problem if the solution
does exists; otherwise, it reports no solution. Analy-
sis has indicated that the algorithm is of polynonmial
computation time complexity, which may facilitate its
potential for realistic AAL design applications. As the
methodology developed so far deals only with the log-
ical aspect of AAL protocol design, incorporation of
timing considerations is a topic of future research.

References
[l] R. Handel and M. N. Huber, “Integrated Broad-

band Networks, an Introduction to ATM-based
Networks,” ADDISON- WELSLEY, pp.92-102,
Chap. 5.

[2] G. J. Holzmann, “Design and Validation of Com-
puter Protocols,” Prentice-Halt 1991.

[3] K. L. Calvert and S. S. Lam, “Deriving a Proto-
col Converter: a Top-Down Method,” ACM SIG-

[4] P. J. Ramadge and W. M. Wonham, “The Con-
COMM’89, pp.247-258.

trol of Discrete Event Systems,” Proceeding of
IEEE, Vol. 77, pp.81-98, 1989.

[5] M. T. Liu, “Protocol Engineering,” Advances in
Computers, vo1.29, pp.79-168.

[6] P. Merlin and G. V. Bochmann, “On the Con-
struction of Submodule Specification and Com-
munication Protocols,” ACM Trans. on Program-
ming Languages and Systems, Vo1.5, No.1, Jan.

[7] K. L. Calvert and S. S. Lam, L‘An Exercise in De-
riving a Protocol Conversion,” ACM SIGCOM-
M’88, pp.151-160.

[8] K. L. Calvert and S. S. Lam, “Formal Methods for
Protocol Conversion,” IEEE JSA C, Vol. 8, No. 1,
Jan. 1990.

[9] H. Qin and P. Lewis, “Facterization of Finite S-
tate Machines under Observational Equivalence,”
CONCUR ’90, pp.427-441.

[lo] S. C. Chang, “ATM Adaptation Layer Design,”
Technical report of project NSC 83-0416-E-002-
016, National Taiwan University, 1994.

[ll] J . E. Hopcroft and J . D. Ullman, “Introduction
to Automata Theory, Languages, and Computa-
tion,” ADDISON- WESLEY, Chap. 3.

1983, pp.1-25.

542

