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ABSTRACT -

In this paper, we propose a cumulant-based estimator
for ARMA systems. The polyspectra, cumulants, and
various other related statistics, such as bicepstra and
bicoherence are all used to develop cumulant-based
algorithms for estimating the parameters of linear (e.g.
ARMA) or nonlinear processes. The use of cumulant-based
estimator is useful: (1) if the additive noise is Gaussian and
the signal is non-Gaussian, (2) the linear system is
non-minimum phase (that is, mixed-phase), or (3) the
process is nonlinear. The singular value plot shows several
significant singulat values cortesponding to one quadratically
coupled triplet; as in the case of the pm;ver spectrum (harmonics in
nois¢), overestimating the number of harmonics usually leads to
better results,

1. Introduction _

Blind Source Separation (BSS) is a fundamental problem
in signal processing with a large number of applications in
speech processing, array signal processing, multiuser
communications, etc. [1]-[3]. The BSS problem consists in
recovering the original sources from the observations only,
without knowing the transmitted channel and sources. Most
of the existing approaches to BSS have been developed for
instantaneous mixtures. In practical situations, however,
this hypothesis is not true and it is more common to find
convolutive mixtures. Different algorithms {2]-[3] have
been proposed to separate convolutive mixtures of sources
in a blind way. In this paper we present a new approach
based on the higher-order cumulants. Why do we need
higher-order statistics? The motivation to use cumulants
and polyspectra of order k>2 is given by the following
((my =(my,---my )

1) the power spectrum does not carry any information
about the phase of H(f). In contrast, if 1(n) is non-Gaussian,
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this phase information can be recovered from the
higher-order  polyspectra.  Thus, the  standard
minimum-phase assumption may be dropped, which is
necessary when the Gaussian or only

second-order statistics are used,

process is

2) The autocorrelation sequence cannot give amy
evidence of nonlinearity. In contrast, the higher-order
cumulants can give evidence of nonlinearity.

This paper is organized as follows. The signal model of
the preliminary results is presented in Section 2. Section 3
will discuss the cumulant-based estimator based on the
autocorrelation carry over to the fourth-order cumulant. A
simulation with ARMA model will be presented in Section
4 to show our result.

2. Signal Model: The Preliminary Results

The power spectrum is formally defined as the Fourier
Transform (FT) of the autocorrelation sequence (the

Wiener-Khintchine theorem [4])
P.(f)= Y R (m)yexp(-j2afm), (1)
Where m=—w
R_(m) = E{x" (mx(n+m)}, ®

and f denotes the frequency. An equivalent definition is
given by
P () =E{X(NX (N} 3)

where X{(/) is the Fourier Transform of x(r)

=]
X(f)= D x(mexp(=j27fm). @
n=~00
A sufficient, but not necessary, condition for the existence
of the power spectrum is that the autocorrelation be
absolutely summable. Higher-crder moments are natural
generations of the autocorrelation, and cumulants are
specific nonlinear combinations of these moments. The fisrt
order cumulant of a stationary process is the mean,

C,, = E{x(1)}. The higher-order cumulants are invariant
1o a shift of mean; hence, it is convenient to define them



under the assumption of zero mean; if the process has
non-zero mean, we subtract the mean, and then apply the
following definitions to the resulting process. The second-,
third- and fourth-order cumutants of a zero-mean stationary
process are defined by {4]. We omit here to save space. The
kh-order polyspectrum is defined as the FTs of the
corresponding cumulant sequence:

S ()= ZCZx (ke 27 %, (5)
k==
S (fin /)= 2 D.C (hDye /¥ ke 2 (5
k=—c0 [=—e0r
and
Sl fy)= Z Cy(k, 1, m)e V2RI (7,
kg m=—n

which are respectively the power spectrum, the bispectrum,
and the trispectrum. The symmetry of bispectrum and
trispectrum are given by [5]. Thus, it is also omitted here.
Similar to cross-correlation, we can define cross-cumulants;
for example,

C,, (kD)= E{x (my(n+k)z(n+D}.  ®

The cross-bispeciram is defined by

Spe(fisf)= 3 D C e e (9

k=—0 k=—x
Note that the bispectrum S, (f;,fz) is a special case of

the cross-bispectrum obtained when x = y = z. The
cross-bicoherence is another useful statistic which is defined

j Sm(fisf2)
bic o, (£ f2) = -0
ic, . (fi,./2) \/Szx(f; +_f.2)S2y(f;)S2z(-f2)

The corss-bicepstrum of three processes is defined by
by (mm) = [ [In(S,,. (£, £’ et df,, (1)
and is well-defined only if S, (f},f,) is nonzero

everywhere, The bias, by itself, does not completely
characterize the estimate. If the estimate is good, we expect

that § '~ Will take on values around the true quantity s. The
nature measure of the spread is the squared deviation around

n 2
the true quantity, s, E{Is N —SI }. The estimate is said

to be asymptotically consistent if the squared deviation goes
to zero, as N-— o0, This condition is sometimes called
mean square consistency. A consistent estimate is
necessarily unbiased.

In practice, we have a finite amount of data, {x(r)}" o,

and we must obtain consistent estimates of cumulants. The
sample estimates are given by,
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N2
¢, (k)= _fVL Sxmyn+k, a2
3 m=N;
n 1 &
W, ()= Y xmy+k) (13
3 n=H

C,.(kD= Ni ix*(n) Wn+k)z(n+1), (14)

3 n=N,

ffmﬂ(]gl,m)=jv1— %w*(n)x(n+k)y(n+l)z‘(n +m)

3 = (15)

G, (B)C, U —m)—C, ,(OC (k—m)— M, (mdM 0 ).
Consider the harmonic retrieval problem. The observed data
are of the form

Wr)=x{n)+w(n) =Za,, exp(2mif, +jd, )+ w(n),(16)
k=1

where w(n) is additive noise; «,'s are the amplitudes,

fi's are the frequencies, and ¢,'S are the phases.

Additional assumption is that are often made regarding the
phases are independent random variables wniformly
distributed over [0, 2x].

3. General Case: Cumulant-Based Estimators
In [6], it is estimated that the fourth-order cumulants of

the process in (16} are given by

a,(r +C,,(,mn).7)

P
C4y (l, m, n) — _ZeJZJ_&(Hm—n)
k=1
In particular, the diagonal slice is given by,
‘ P
C (mmm)=—2 & Mla | + C, (m,m,m).(18)
k=1
If, w(r) is Gaussian, then C,_(m,m,m)=0. If w(n) is
independent identical distribution (i.i.d.) non-Gaussian, then
C,.(I,m,n)is a delta function at the origin. Consequently,
all of the analyses based on the autocorrelation carry over to
the fourth-order cumulant. In particular, the development of
spectral estimates based on second-order statistics, can also
be based on fourth-order statistics [7]. Similarly we can
base ESPRIT on the fourth-order cross-cumulant matrix as

well. The fourth-order statistics are most useful when the

additive noise is narrow-band Gaussian, The number of



harmonics can usually be determined by examining the
singular value plot generated by harmest routine [8].
The simplest nonlinear system is the second-order Voltera
system whose input-output relationship is defined
Yo=Y Hipx(n—k)+ 33 gk yxn=k)(n D). (19)
=0 k=0 1=0

The corresponding frequency domain representation is

Y(N=HNXN+ 20U+ LIXUDX(S)20

A=t
and is obtained by Fourier Transforming both side of (19).
The cross-spectrum is given by

S.(N=EFNX (N}=HHEXNX (H}=HIS)-

(21

Consider the cross-cumulant

Coy (7, ) = E{x(n)x(n+1)y(n+ p)}

= ii‘I(kJ)E{x(n)x(n +0x{n+p-Ex(n+p-D}.

=0 =0

(223
Assuming Gaussianity, we can rewrite the last equation in

frequency domain, as

Sl 1) =2 SIS+ + LB

23

4, Simulation

We simulate a non-Gaussian ARMA process, and then estimate
its cumulants:

rand('seed’,0); randn('seed',0);

u=rpiid( 1024, exp"); 5=25;

y=filter([1,~-2}, [1.-1.5,0.8], u);

for k=,

cmat(:, k+n+1)=cumest(y, 3, n, 128, 0, 'biased’, k);

end.

Time-series y is segmented into records of 128 samples
each, with no overlap; biased estimates of the third-order
cumulants are obtained from éach segment and then

averaged; the (i j) element of cmat will contain the estimate
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01:Cay(l—n—-l,j—n—l), p

ori,j=1,..., 2*n+1. You can

use the function cumtrue [8] to compute and display the
true cumulants.

i

Fig2: The output of Estimated 2nd-Order Cumulants of an ARMA(2,1)

Process.
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Fig3: The output of Estimated 4th-Order Cumulants of an ARMA(2,1)

Process.
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Fig4: The gaussianity and linearity tests of an ARMA(2,1) Process
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Fig5: The output of the estimated parametric Bispecrum for an
ARMA(2,1) Process.
We see the display on Figure 5. Note that
Ji+ 1, =0.25, which corresponds to the third peak in the
amplitude spectrum, so that we may conclude that three of the
four harmonics are quadratically phase coupled. The ;zingu.lar
value plot shows several significant singular values corresponding
to one quadratically coupled triplet; as in the case of the power
spectrum (harmonics in noise), overestimating the number of

harmonics usually leads to better results.
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Conclusion

In this paper, we presented a blind source separation
method for nonlinear system. Note that both algorithms
require access to inputs and outputs. Quadratic-phase
coupling (QPC) can be detected. Cumulants are estimated
for each segment and are then averaged across the set of
segments; such segmentation usually speed up calculations,
at a slightly loss in statistical efficiency. Note that
segmented estimates can never better than unsegmented
estimates. In the case of bispectra, we can apply an
appropriate smoothing window. Be aware that the
higher-order moments and cumulants of complex processed
can be defined in different ways, and their polyspectra do
not possess all the symmetry properties of their real
counterparts.

References

[1] K. I Diamantaras and S. Y. Kung. Principal Component
Neural Networks. Theory and Applications. Adaptive and
Learning Systems for Signal Processing, Communications and
Control. John Wiley & Sons Inc., New York, 1996,

[2] A. Cichocki, and S. Amari, Adaptive Blind Signal and Image
Processing: Learning Algorithms and Applications, John
Wiley & Sons, LTD, 2002,

[31 A. Cichocki, and R. Unbehauen, Newral Networks for
Optimization and Signal Processing. John Wiley & Sons, New
York, 1994. new revised and improved edition.

[4] Brillinger, D.R., “An Introduction to Polyspectra,” Ann, Marh,
Stat., Vol. 36, pp. 1351-1374, 1965.

[5] Rioul, O. and M, Vetterli, “Wavelets and signal Processing,”
1EEE Signal Processing Maguazine, pp. 14-38, Oct. 1991.

[6) Swami, A. and J. M. Mendel, “Adaptive Cumnulant-Based
estimation of ARMA Parameters,” Proc. Amer. Control Conf.,
ACC-88, Atlanta, GA, pp. 2114-19, Tune 1988.

[7] Pan, R. and C. L. Nikias, “Harmonic decomposition methods
in cumulant domains,” Proc. ICASSP-8S, pp. 2356-59, New
York, 1988,

[8] Swami, A., .M. Mendel, and C. L. Nikias, “Higher-Order
Spectral Analysis Toolbox,” MatlabUser s Guide, 2003.



