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ABSTRACT - 

In this paper, we propose a cumulant-based estimator 
for ARMA systems. The polyspectra, cumulants, and 
various other related statistics, such as bicepstra and 
bicoherence are all used to develop cumulant-based 
algorithms for estimating the parameters of linear (e.g. 
ARMA) or nonlinear processes. The use of cumulant-based 
estimator is useful: (1) if the additive noise is Gaussian and 
the signal is non-Gaussiaa, (2) the linear system is 
non-minimum phase (that is, mixed-phase), or (3) the 
process is nonlinear. 'he singula~ value plot show several 
significant singular values comsponding to me quadratically 
coupled triplet; as in the case of the power specbum (harmonics in 
noise), overestimating the number of harmonics usuaUy leads to 

bener results. 

1. Introduction 

Blind Source Separation (BSS) is a fundamental problem 
in signal processing with a large number of applications in 
speech processing, array signal processing, multiuser 
communications, etc. [1]-[3]. The BSS problem consists in 
recovering the original sources from the observations only, 
without knowing the transmitted channel and sources. Most 
of the existing approaches to BSS have been developed for 
instantaneous mixtures. In practical situatim, however, 
this hypothesis is not true and it is more common to find 
convolutive mixtures. Different algorithms [2]-[3] have 
been proposed to separate convolutive mixtures of sources 
in a blmd way. In this paper we present a new approach 
based on the higher-order cumulants. Why do we need 
bigher-order statistics? The motivation to use cumulants 
and polyspectra of order k>2 is given by the following 

1) the power spectrum does not carry any information 
about the phase of Hy). In contrast, if bfn) is non-Gaussian, 

( (mi  = (m,,- . ,m,-,)):  

this phase infamation can be recovered from the 
higher-order polyspectra. 'Ihus, the standard 
minimum-phase assumption may be dropped, which is 
necessary when the process is Gaussian or only 
second-order statistics are used. 

2) The autocorrelation sequence cannot give any 
evidence of nonlinearity. In contrast, the higher-order 
cumulants can give evidence of nonlinearity. 
This paper is organized as follows. The signal model of 

the preliminary results is presented in Section 2. Section 3 
will discuss the cumulant-based estimator based on the 
autocorrelation carry over to the fourth-order cumulant. A 
simulation with ARMA model will be presented in Section 
4 to show our result. 

2. Signal Model: The Preliminary Results 
me power spectnun is formally defmed as the Fourier 

Transform (ET) of the autocorrelation sequence (the 
Wiener-Kbiintchine theorem 141) 

m 

~ ( f )  = CRS(m)exp(-j2rgSn),  (1) 
m=--m 

where 
R, (m)  := E{x' (n)x(n + m)} , (2) 

and f denotes the frequency. An equivalent definition is 
given by 

U f )  := E { X ( f ) X ' ( f ) )  (3) 
where Xy) is the Fourier Transform of afn) 

XU) = gx(n)exp( - j23 i? ) .  (4) 
n=- 

A sufticient, but not necessary, condition for the existence 
of the power spectmm is that the autocorrelation be 
absolutely summable. Higher-order moments are natural 
generations of the autocorrelation, and cumulants are 
specific nonlinear combinations of these moments. The fisrt 
order cumulant of a stationary process is the mean, 
C,, := E{x( t ) } .  The higher-order cumulants are invariant 
to a Ail? of mean; hence, it is convenient to defme them 
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under the assumption of zero mean; if the process has 
non-zero mean, we subtract the mean, and then apply the 
following definitions to the resulting process. The second-, 
Kid-  and fourth-order cumulants of a zero-mean stationary 
process are defined by [4]. We omit here to save space. The 
kth-order polyspectrum is defined as the FTs of the 
corresponding cumulant sequence: 

and 

S,, ( f , , f i , f 3 )  = 2 C4r(k,I,m)e-'z'(X,+t+hff/l") , (7) 
k,l,mnr;-a 

Mmich are respectively the power spectrum, the bispectrum, 
and the trispectrua The symmetry of bispectrum and 
trispectrum are given by [5 ] .  Thus, it is also omitted here. 
Similar to cross-correlation, we can define cross-cumulants; 
for example, 

C,(k,Z)=E{x'(n)y(n+k)z(n+I)} .  (8) 
The cross-bispectrum is dehed  by 

m m  

S,(x,f,)= CCqe-J2"Ak e - j Z r ~ '  . (9) 
k=- k=- 

Note that the bispectrum s,, (f, , f 2 )  is a special case of 
the cross-bispectrum obtained when x = y = z. The 
cross-bicoherence is another useful statistic which is defined 
as. 

Ihe  corss-bicepstnun of three processes is defined by 

df,dfz, (11) b,,(m,n) = jjn(S,(A9f2))e J2nhmeJ2nhn 

and is well-defined only if S,(A,fZ) is nonzero 

everywhere. The bias, by itself, does not completely 
characterize the estimate. If the estimate is good, we expect 
that iN will take on values around the true quantity s. The 
nature measure of the spread is the squared deviation around 

the hue quantity, s, -SI*}. The estimate is said 
to be asymptotically consistent ifthe squared deviation goes 
to zero, as N+ m. This condition is sometimes called 
mean square consistency. A consistent estimate is 
uecessarily unbiased. 

In practice, we have a finite amount of data, { x ( n ) } z ,  
and we must obtain consistent estimates of cumulants. The 
sample estimates are given by, 

1 N z  

N3 *=N, 

k , (k , l )=-  Cx' (n)y(n+k)z(n+l ) ,  (14) 

-km(k)CW(l -m) -k',(ljC,(k -m) -&(m~,(l-k). 
Consider the harmonic retrieval problem. Tbe observed data 
are of the form 

P 

An) =x(n)+u(n) =xakexpli2rmf, +jA)+u(n),(W 
M 

where w(n) is additive noise; a , ' sare  the amplitudes, 

A ' s  are the frequencies, and @ k ' ~  are the phases. 
Additional assumption is that are often made regarding the 
phases are independent random variables uniformly 
distributed over [0,271]. 

3. General Case: Cumulant-Based Estimators 
In [6], it is estimated bat the fourth-order cumulants of 

the process in (16) are given by 

In particular, the diagonal slice is given by: 

If, w(n) is Gaussian, then C,,(m,m,m) = 0. If w(n) is 

independent identical distribution (i.i.d.) non-Gaussian, then 

C,,(l,m,n) is a delta function at the origin. Consequently, 

all of the analyses based on the autocorrelation cany over to 

the fourth-order cumulant. In particular, the development of 

spectral estimates based on second-order statistics, can also 

be based on fourth-order statistics [7]. Similarly we can 

base E S P m  on the fourth-order cross-cumulant mat& as 

well. The fourth-order statistics are most useful when the 

additive noise is narrow-band Gaussian, The number of 
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harmonics can usually be determined by examining the 

singular value plot generated by barmest routine [8]. 

The simplest nonlinear system is the second-order Voltera 

system whose input-output relationship is d e k e d  

An) = Th(k)x(n- k)  + T T q ( k , & ( n -  k)x(n -0. (19) 
M k 4  I=a 

The corresponding frequency domain representation is 

Y U ) = ~ C f ) X C f ) +  Em +f2)~Y;)~U2)~~~0~ 
X%=f 

and is obtained by Fourier Transforming both side of (19). 

The cross-spectrum is given by 

s,w = ~ o x w l = ~ Y ) ~ ~ ~ w Y ) ~ = ~ w ~ w .  

C,(r,p) = E{x(n)x(n + M n  + PI> 

(21) 

Consider the moss-cumulant 

m m  

= C C q ( k , l ) E { x ( n ) x ( n + z ) x ( n + p -  k ) x ( n + p - I ) }  

(22) 
Assuming Gaussianity, we can rewrite the last equation in 

frequency domain, as 

i=o I=a 

&Kf,) = m9f,)s,Y;)s,Y;)+s~Y;m +f,)EMn)J 
(23) 

4. Simulation 

We simulate a non-Gaussian ARMA process, and then estimate 
its cumulants: 
rand('seed',O); randn('seed',O); 

u=rpiid(l024,'exp'); n=25; 

y=6lter([l,-2], [1,-1.5,0.8],~); 

fox k=n, 

mat(:, k+n+l)=cume&, 3, U, 128,0, 'biased', k); 

end 

Time-series y is segmented into records of 128 samples 

each, with no overlap; biased estimates of the third-order 

cumulants are obtained from each segment and then 

averaged; the (i j) element of cmat will contain the estimate 

CJi - n -1,j - n-l), of f a  i, j = 1, ..., 2*n+l. You can 

use the function cumtrue [8] to compute and display the 

true cumulants. 

L 

F i e :  The outpul of Estimated 2nd-Order Cumulems of an ARMA(Z.1) 

Races. 
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Fig4 The gaus.siaity and lineadty tess of anARMA(2,I) Roc- 

1~~ ........... ~ ~r~~~ ........ 
. . . . . .  

Fig5 The omput of the estimated parametric Birpecinwu for an 

ARMA(2,I)RoeeSS. 

We see the display on Figure 5. Note that 

f, + f, = 0.25, which corresponds to the third peak in the 

amplitude spectrum, so that we may conclude that three of the 

four harmonics are quadratically phase coupled The singular 

value plot shows several sigdicant singular values corresponding 

to one quadratically coupled triplet; as in the case of the power 

spectrum (harmonics in noise), overestimating the number of 

harmonics usually leads to bener results. 

Conclusion 
In this paper, we presented a blind source separation 

method for nonlinear system. Note that both algorithms 
require access to inputs and outputs. Quadratic-phase 
coupling (QPC) can he detected Cumulants are estimated 
for each segment and are then averaged across the set of 
segments; such segmentation usually speed up calculations, 
at a slightly loss in statistical efficiency. Note that 
segmented estimates can never better .than unsegmented 
estimates. In the case of bispectra, we can apply an 
appropriate smoothing window. Be aware that the 
higher-order moments and cumulants of complex processed 
can be defined in different ways, and their polyspectra do 
not possess all the symmetry properties of their real 
counterparts. 
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