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Abstract

In this paper we propose a practically realizable dig-
ital signaling scheme that requires a bandwidth signifi-
cantly less than the Nyquist limit, and at the same time
achieves the same asymptotic performance as memory-
less PAM. A three-step iterative procedure for construct-
ing such schemes is presented, and examples that occupy
down to about 60 percent of the Nyquist bandwidth are
demonstrated using this simple procedure. We also dis-
cuss a practical receiver structure using adaptive breath-
first trellis search algorithm.

1 Introduction

It has long been believed that to transmit a symbol per T sec-
onds by pulse amplitude modulation (PAM) without significant
performance degradation, one needs a signal bandwidth wider
or equal to the Nyquist bandwidth 1/2T. The origin of this
belief lies in the pioneering work of Nyquist [1] on intersymbol-
interference (ISI) free transmission . The Nyquist bandwidth
is achieved only when the unrealizable ideal rectangular filter
is used. For realizable filters such as the raised-cosine fam-
ily, an excess bandwidth of 15 to 100 percent is required. In
1964, Lender [2] introduced correlative-level coding, or partial
response signaling (PRS) to confine the signal bandwidth com-
pletely within the Nyquist bandwidth. This signaling technique
is later found [3] to have the same asymptotic performance as
ideal memoryless signaling.

In optimum receiver principles [4] and detection theory (8],
when one comes to bandlimited channels, the work of Nyquist
usually is also adopted, even though both theories give no indi-
cation that the Nyquist bandwidth is the ultimate limit. Mazo
[6] was the first to consider the signaling techniques below the
Nyquist bandwidth essentially without any performance degra-
dation, and there has been some new interest in this problem
[7, 8, 9] in recent years. However, in all these previous works
only the unrealizable ideal rectangular filters with binary in-
put were considered. In this paper, on the other hand, we will
investigate multi-level signaling below the Nyquist bandwidth
using realizable filters. In Section 2 the necessary background
is first briefly summarized, and the general approach to design
realizable filters for sinaling below the Nyquist bandwidth is
presented in Section 3. Some design examples are then given
in Section 4, and practical receiver structures are discussed in
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Figure 1: (a) Block diagram of a PAM transmission system, (b)
Equivalent discrete model of the system.

2 Background

The block diagram of a baseband PAM transmission system is
depicted in Figure 1(a). Let {zx} be a sequence of interger
symbols with finite length N such that 0 <z < m—1,0<
k < N — 1. The impulse response and transfer function of the
transmitting filter are h(t) and H(f), respectively. Then the
transmitted signal s(t) is )

N-1
s(t) = Y zph(t - kT) (1)
k=0
where T is the symbol duration, and the received signal r(t) is
the additive-noise corrupted version of s(t)

r(t) = s(t) + n(t) (2)

where n(t) is assumed to be a white Gaussian noise with two-
sided power spectral density (PSD) No/2. If H(f) is bandlim-
ited, h(t) will have infinite response. For convenience in discus-
sion, we normalize the energy of the filter to unity, i.e.,

Section 5. Section 6 discusses the channel capacity of PAM and = h2(2) dt = m H(2df = 1.

QAM, and the conclusion is finally given in Section 7. /—oo © -/—o=>1 (DI df ®)
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Let D denotes the delay operator such that D*h(t) = h(t kT),
then the input sequence can be expressed as z(D) = E sz"
and the transmitted signal expressed as

s(t) = z(D)h(t). (4)

Since s(t) is simply a linear combination of A(t) and its time-
shifted versions h(t — kT'), by Gram-schmidt procedure [4] an
orthonormal basis of dimension not greater than N can be found
to expand s(t), and at the receiver side a matched filter fol-
lowed by a symbol-rate sampler [4, 5] can be used for maximum
a posterori (MAP) detection to obtain the received symbols &y
and sequence &(D) with minimum error probability. The cor-
responding discrete model of the system is depicted in Figure
1(b), where g(D) is the equivalent discrete transfer function of
the system and r(D) = z(D)g(D) + n(D) is the received se-
quence. For equally probable input symbols, a MAP receiver
becomes a maximum-likelihood (ML) receiver, and the event
error probability and the symbol error probability are respec-

tively given by
P Iin
> min
re)> Q (45 (%)

and

2
Pa > wH(dmzn)Q ( ‘;’;v‘:) (6)

where

B = [ uo-sore @

min
z(D)#=2!/(D) J -
is the minimum squared Euclidean distance (ED), and w g (dmin)
is the Hamming distance between the sequences with squared
ED d?,.. The linear property of PAM enables us to rewrite
Equation (7) as

d2 ® 2
fun = min [ (e(D)R(E)"dt (8)

where
N-
e(D) = Z erD* = (D) - 2'(D), lex| <m—1  (9)

is an error sequence. The signal to noise ratio (SNR) is defined

as

o1, K()di _ ot )
No - No

where 02 is the variance of the input alphabets zy.

It is clear from Equation (5) that a PAM scheme achieves
the best performance when dZ;,, is maximized. For all h(t), it’s
trivial to show that d2,, < f°° h2(t) dt, hence to achieve the
best performance we must have

S [ H@a= [T EORE=1 @)

SNR =

In this paper we are interested in bandlimited PAM schemes that
satisfy Equation (11), with realizable H(f) sharply bandlimited
below the Nyquist limit.

The simplest examples of bandlimited PAM schemes that
satisfy Equation (11) use the unrealizable ideal rectangular fil-
ters and the realizable raised-cosine family filters, in which h(t)
is orthonormal to its shifted versions h(¢—kT),k = 1,2,---,N -
1. Another example is the class of 1 £ D™ PRS schemes [3].

All these PAM schemes require a bandwidth equal to or wider
than the Nyquist bandwidth 1/2T. The first attempt to de-
vise PAM schemes that require less bandwidth than 1/2T is the
faster-than-Nyquist signaling [6] proposed by Mazo, which con-
sists of a binary input sequence and an ideal filter of bandwidth
p/2T,p < 1. Mazo [9] showed that for 0.802--- < p < 1, the
minimum distance does not drop below 1.

For a passband PAM system, basically everything is the
same as the baseband PAM system described above except for
the presence of a modulated carrier, therefore the baseband
PAM model presented above can be directly used as an baseband-
equivalent representation. The results for PAM are basically
applicable for QAM.

3 General Approach

The faster-than-Nyquist signaling is attractive except that the
ideal rectangular filter used is not realizable and that only binary
input is considered. In this section we will consider multi-level
input and realizable H(f),i.e., H(f) that has gradual roll-off at
its band-edge, which is lower than the Nyquist frequency, and a
three-step iterative procedure will be provided to construct such
filters. Before we present the three-step iterative procedure,
some preparatory material has to be provided first.

Given an arbitrary realizable H( f)such that |[H(f)| =0, |f| >
p/2T,p < 1, Equation (11) in general does not hold. Thus we
have to first find d2;, and the corresponding error sequences
based on Equation (8). The minimum distance problem for
low-complexity finite-impulse-response channels has been solved
[10], yet for infinite-impulse-response channels discussed here,
this problem is still open in general. However, in some particu-
lar situations, this problem in fact has very simple solution, as
was discussed below.

Let ep(f) be the Fourier transform of an error sequence e(D)
with length L + 1, i.e.,

ep(f) = e(D)| p=ciowrs (12)
where
n+L
=Y exD*, enenrp #0,0,L 2> 0. (13)
k=n

Using Parseval theorem, Equation (8) can be rewritten as

/2T
b = min " er(NeH(NEDEN

o/2T
'n+L n+L-1L+in-k
= mm [Z e+ 3 > exenpi(Rit Ri)|(14)
k=n i=1
where
o/2T o 0
R = / |H(f) |2 TS df = / R(t)R(t — iT)dt = R_;
—p/2T —00
(15)

is the ith autocorrelation coefficient of k(t). It can then be easily
found from Equation (14) that if Ry > 0 and By > |Ry, i =
2,3,.--, L, the error sequences that produce d2,;, will inevitably
belong to the set of alternating sequences +D™(1— D+D?—-- ).
Hence we have the following proposition:

Proposition 1 For a bandlimited filter H(f),|H(f)] = 0,|f| >
p/2T,p < 1, if R1 > |Ri| > 0,4 = 2,3,---,L, then the min-
imum ED can be found by simply searching through the set
{e(D)lenti = —enpir1 = +1, 0< i< L, m, L 2 0},
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This proposition is very useful in the three-step construction
procedure presented below to find realizable filters below the
Nyquist bandwidth. When the above assumption fails, which is
often the case as one tries to push the bandwidth to the bottom,
no solution is avaliable at the present time.

However, as long.as the minimum distance d2,;, and the
corresponding error sequences are found in some way, we have
either d2,;, = 1, or d2,;, < 1. In the former case, this is ex-
actly the desired solution, whereas in the latter case we can,
under a weak condition, find the desired solution by making
some modifications on H(f) based on the following theorem,
which is originally attributed to Forney [3], but is modified here
for the present purposes.

Theorem 1 Let D™p(D) be one of the error sequences which
produce d2,;. < 1 for a bandlimited filter H(f), |[H(f)| = 0,|f] >
p/2T,p < 1, and let pr(f) be the Fourier transform of p(D).
Define the modified error sequence é(D) as é(D) = e(D)p(D) for
an arbitrary error sequence e(D) as defined in Equation (13). If
mingpy [ o, |E(D)h(t)|? dt = min,(p) [, |e(D)p(D)h(t)|2dt =
d2 ., the filter H(f) = (1/dmin)pr(f)H(f) satisfies Equation
(11), and occupies no more bandwidth than H(f).

Now we are ready for the three-step iterative construction
procedure:

step 1: Given an arbitrary linear phase bandlimited filter with
transfer function H(f) such that |H(f)| = 0,|f| > p/2T,
p < 1. Go to step 2.

step 2: For the chosen H(f) find d2,; and one of the error

sequences D"p(D) that produce d2,;,. Go to step 3.

step 8: If d2,;, = 1, then H(f) is exactly the desired solu-
tion, thus terminate the procedure. If d?;. < 1, con-
struct H(f) = (1/dmin)pr(f)H(f), where pp(f)H(f) is
the Fourier transform of p(D). Assign this H(f) to H(f),
and go to step 2.

4 Examples

We will consider a class of filters as the initial choices of step 1
in the construction procedure in this section.

Step 1: The class of the chosen transfer function H(f) is the
frequency scaled version of the duobinary filter with |H(f)| =
V2T [pcos(rT f/p),|f] < (p/2T),p < 1 which has gradual roll-
off at its band-edge, and is thus realizable.

Step 2: For p reduced from 1.00 down to about 0.65, Proposi-
tion 1 can be applied with no difficulty. For example, we list the
autocorrelation coefficients R; of H( f) for p =1.00,0.95,0.90,0.85,
0.80,0.75,0.70, and 0.65 in Table 1(a). It can be found that
R; > 2.5|R,| > 11{R;] > 0, i = 3,4, -+, which can be regarded
to comply with the criterion of Proposition 1: Ry > |Ri| > 0,i =
2,3,+--. The minimum distances for these cases and the error
sequences that produce these minimum distances are found nu-
merically by searching through the set of alternating sequences
+D"(1— D+ D?~— .-}, and are listed in Table 1(b). The mini-
mum distances are all smaller than unity except when p = 1.00,
we can then go to step 3 at this point. Extensive computer
search has also been performed to verify all the data in Table
1(b), and no disagreement is located so that we are convinced
Proposition 1 applies very well in this example.

Step 3: For all the H(f) with d2,; < 1, we can invoke Theo-

{x}

Q- (

1.4302

Figure 2: Implementation of the class of example filters with
p = 0.65 using a transversal filter in cascade with H(f).

rem 1 to construct H(f) to improve the minimum distance. For
example, for p = 0.65 the minimum distance d2,;, is 0.4889 and
the corresponding error sequence is £D%(1— D), thus the power
efficient H(f) is \/1/0.4889(1 — e/>*Tf)H(f). Go to step 2.
Step 2: The filter A(f) given above is verified to have mini-
mum distance equal to unity. We have thus found the solution,
and the procedure is terminated. The transmitter implementa-
tions of this filter both with direct synthesis, or by cascading a
transversal filter are illustrated in Figure 2.

5 Practical Receiver Structure
The optimum receiver structure for the signaling scheme dis-
cussed here can be implemented by the whitened matched filter
(WMF) [3]. The end-to-end discrete impulse response g(D) of
the system is causal and the samples of additive noise sequence
n(D) at the output are Gaussian and uncorrelated. The system
is then described by the discrete model as depicted in Figure
1(b):

(D) = o(D)g(D)+ n(D) (16)
Theoretically a Viterbi decoder can be used to process the WMF
output (D) for the purpose of ML detection. In practice, two
problems have to be taken into account. First, the bandlim-
ited filters considered in this paper will have infinite impulse
response such that memory truncation is necessary for receiver
implementation. A possible approach for memory truncation is
to truncate all R;,|i] > v if |Ri| < ¢ ¥ [|i] > v, where € can
be set to a very small value, say 10~%. Take the class of filters
with p = 0.65 presented in Section 4 as an example. Refering
to Figure 2, let f(D) be the discrete transfer function model
of the initial choice of H(f), then the overall discrete transfer
function of the system is g(D) = 1.4302(1 — D)f(D). Follow-
ing the above memory truncation approach we obtain a discrete
transfer function f(D) of length 21 for the initially chosen filter,
whose coefficients are shown in Table 2(a). The overall trans-
fer function obtained is then g(D) = 1.4302(1 - D)f(D) whose
coefficients are given in Table 2(b).

In the second problem, after the truncation is performed,
the memory length v of the system can still be very long such
that even the parallel implementation of Viterbi algorithm [11]
is inadequate for a practical receiver, since the complexity of a
Viterbi decoder grows exponentially with the channel memory
length. Alternative trellis search algorithms are thus necessary.
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Table 1: The class of example filters, (a) autocorrelation coeffi-
cients, (b) d2,;, and the corresponding error sequences p(D).

P Ry Ry R3 Ry Rs
1.00 { 0.5000 0 0 0 0
0.95 | 0.5370 | 0.0198 0.0071 0.0037 | —0.0022
0.90 | 0.5752 | 0.0464 | —0.0152 0.0070 | —0.0037
0.85| 0.6127 |{ 0.0801 | —0.0224 | 0.0084 | ~0.0031
0.80 | 0.6467 | 0.1235 | —0.0277 0.0063 0.0012
0.75 | 0.6860 | 0.1698 | —0.0246 0.0000 0.0046
0.70 | 0.7213 | 0.2252 | —0.0137 | —0.0098 | 0.0081
0.65 | 0.7556 | 0.2871 0.0091 | —0.0202| 0.0072

(a)
p | & [2(D)
100 1 [£Q-D+--)

0.95 | 0.8274 | +(1 - D +---— D13 + DM)
0.90 | 0.7435 | £(1 — D + -+ — D5 + DS)
0.85 | 0.6861 | £(1 — D + D? — D3+ D%)
0.80 | 0.6402 | £(1 — D + D? - D3)

0.75 | 0.5957 | £(1 — D + D?)

0.70 | 0.5573 | +(1 — D)

0.65 | 0.4889 | +(1-- D)

(b)

Table 2: Coefficients for the discrete model of the class of ex-
ample filters with p = 0.65: (a) the originally chosen filter, (b)
the final filter.

Jo| 1521TE— 1| fs | —3.1409E — 2| fis
fi| 53170E—1| fo | 4.7458E—3 | fir | —4.0207TE -3
fa| 7-2409E 1| fro| 1.5472E—2 | fis| L.5158E —4
fa| 3.9518E—1| fi1| —1.2690E—2| fio| 2.0035E—3
fa| —4.1042E — 2 || fi; | ~1.4100E — 3 || fao | ~1.7169E — 3

5.7681E — 3

f5 | —9.0729E -2 || fiz| 94345E—3 | fon | 5.9172E—4
fo| 41723E—2| fi4 | —6.1055E — 3
fr| 22500E—2| fi5 | —1.7356E — 3
(a)
go| 21763E—1| gs | —7.T099E~2 | g16| 1.0732E -2

91| B5A2T9E—1 go | 5.1708E—2 || g17 | —L.4013E — 2
g2 | 2.7506E — 1| gro| 1.5341E—2 || g1s| 5.9800E — 3
g3 | —4.7030E — 1 || g11 | —4.0278E— 2 | g19| 2.6485E—3
ga| —6.2388E— 1| g12| 1.6133E— 2 || gs0 | —5.3250E — 3

gs | —7.1061E — 2 || g13 | 1.5510E — 2 | gz1| 3.3060E — 3
go| 1.8943E — 1| g1a | —2.2225E — 2 || ggz | —8.4627E — 4
g7 | —2.7491E — 2 || g15 | 6.2498E -3

(b)

There are many other trellis search algorithms that can be
used, in which the category of breath-first trellis-search algo-
rithm features a stable computational load, inherent parallelism,
synchronous symbol release rule, and attractive performance
[12] such that it is widely used in both source coding and chan-
nel coding. The Viterbi algorithm belongs to this category, but
requires too much computation. Another attractive algorithm
of this category is the (M, L) algorithm, which is originally used
in source coding, but is gaining more attention for use in channel

coding and sequence detection.

The (M, L) algorithm reduced the computation required dra-
matically as compared to the Viterbi algorithm, but it also tends
to reject the best path when the noise is severe because of its
fixed number of M survivors. Computer simulation show that
this fixed number of survivors is the major shortcoming of the
(M,L) algorithm when used in sequence detection or channel
coding. One remedy is to allow M to vary adaptively according
to the chanmnel condition. Computer simulation show that the
adaptive approach can eliminate the shortcoming of the (M,L)
algorithm as well as other breath-first trellis search algorithms
(13, 14].

6 Information Theory Aspect

In this section we will discuss the significance of this signal-
ing scheme from information theory point of view. In the sim-
plest performance analysis of PAM and QAM, one usually model
the system as a discrete-time memoryless channel with additive
white Gaussian noise. The performance limit of this channel is
given by its channel capacity C in bits,

C= %logz(l + SNR4) (17)

where SNRq is the discrete-time signal-to-noise ratio at the
channel output. At symbol error rate 10~5 memoryless PAM
and QAM fall below this capacity by about 9 dB. This 9 dB
gap can be further narrowed down by coded modulation [15].
Note that this discrete-time memoryless model for PAM and
QAM did not take into account the spectral behavior of the
signaling scheme, which is the major concern of the discussions
here in this paper. A more natural capacity formula for the
discussions here is then the channel capacity for bandlimited
waveform channel [16] in bits per second,

S

C =Wlogy(1+ m) (18)

where W is the signal bandwidth, S is the signal power at the
channel output and Ng/2 is the two-sided PSD of the white
Gaussian noise. This capacity formulais valid whether the chan-
nel has memory or not. Define C, = CT as the channel capacity
per symbol duration where T is the symbol duration, §, = ST
as the average energy per symbol, and let p = 2WT be the ratio
of W to the Nyquist bandwidth 1/2T, Equation (18) can be
rewritten as SNR,
p ) (19)
where SNRy = §,/(No/2) for PAM and S,/Ny for QAM, is
the discrete-time equivalent signal to noise ratio per symol. For
p = 1, Equation (19) is identical to Equation (17). This is the
case for ideal unrealizable memoryless PAM and QAM where
unrealizable ideal rectangular filter with exactly the Nyquist
bandwidth is assumed. However, for practically realizable mem-
oryless signaling scheme using realizable filter such as the raised-
cosine family, the signal bandwidth is wider than the Nyquist
bandwidth and p > 1 such that Equation (19) is larger than
Equation (17). This means that the conventional calculation of
channel capacity based on Equation (17) is somewhat too con-
servative if the entire signal bandwidth is taken into account.
The channel capacity given by Equation (19) for p = 1.00, 1.15
and 2.00 are plotted in Figure 3. Aiso plotted in Figure 3 are the
performance of memoryless 2, 4, 8 and 16 PAM at symbol error

C, = glogz(l +
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Figure 3: Capacity of waveform channels: p = 2.00,1.15 and
1.00 with memoryless PAM, and p = 1.00 with 1+ D PRS, and

rate 107, which fall below the capacity for 1.15 < p < 2.00 by
more than 9 dB, instead of the conventional belief of only 9 dB.

There are also realizable digital signaling schemes that oc-
cupy exactly the Nyquist bandwidth, e.g., the partial response
signalings with a null at the Nyquist frequency such as the 1+ D.
Some of them can actually achieve the same asymptotic perfor-
mance as memoryless PAM or QAM, yet at practical SNR a
modest penalty is usually inevitable. The calculated capacity
will be identical to either Equation (17) or Equation (19) with
p = 1.00, and is plotted in Figure 3. Also plotted in Figure 3
are the performance of 2, 4, 8 and 16 1 + D partial response
schemes (the “0” mark) at symbol error rate 105, which also
fall below the capacity curve by more than 9 dB.

To summarize the above discussions of digital transmission
at and above the Nyquist bandwidth, we note that the chan-
nel capacity is a function of the bandwidth, and the practical
uncoded transmission schemes are unable to attain it by a gap
of more than 9 dB. This gap can be further narrowed down
by coded modulation. We may wonder if the situation is simi-
lar for the case of signaling below the Nyquist bandwidth, even
though the available channel capacity is now less than that of

discrete-time memoryless channel, as can be found by evaluating
Equation (19) with p < 1.00. That is, here we are looking for
signaling schemes that occupy less than the Nyquist bandwidth,
and at the same time attain the same asymptotic performance
as memoryless PAM and QAM and 1+ D PRS. If such signaling
schemes exist, they are expected to be below the channel capac-
ity by approximately 9 dB, or probably slightly more than 9 dB
as the above analysis indicates. Also coded modulation should
be useful to narrow down this gap. The answer is certain at least
for digital transmission with a bandwidth down to 65 percent
of the Nyquist limit. It has already been shown in the previ-
ous section that the signaling scheme proposed in this paper
can occupy less than the Nyquist bandwidth, and at the same

16 AM * ° 36 PRS

time attain the same asymptotic performance as memoryless
PAM and QAM and 1+ D PRS. Furthermore, as this signaling
scheme can be modeled by an IIR transfer function or approxi-
mated by an FIR transfer function, a coded modulation scheme
known as Vector coding [17] can be used to obtain significant
coding gain essentially without any bandwidth expansion. We
plot the channel capacity of the bandlimited Gaussian channel

-with p = 0.65 in Figure 3 for comparison.

7 Conclusion

Realizable digital signaling schemes that achieve the best asymp-
totic performance and occupy less than the Nyquist bandwidth
has been demonstrated. This indicates that the Nyquist band-
width indeed is not the ultimate limit of efficient bandwidth
utilization if advanced transmission and detection techniques
are employed.
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