
MINIMIZATION OF TASK TURNAROUND TIME

FOR DISTRIBUTED SYSTEMS

Chiun-Chieh Hsu, Sheng-De Wang and Te-Son KUO

Department of Electrical Engineering

National Taiwan University, Taipei, Taiwan

ABSTRACT
This paper deals with the problem of assigning a

partitioned task to a distributed computing system.
Considering communication overhead and idle time, we
successfully develop a mathematical model to describe the
cost function, which is defined to evaluate the task
turnaround time, under a genaral model of distributed
computing systems. Task assignment is formulated as a DU-
mapping, which maps a directed acyclic task graph onto an
undirected system graph. The search of optimal DU-mapping
is NP-complete and is transformed into a state space search
problem. An approach called critical sink underestimate is
developed to attain an optimal DU-mapping and the most
nodes in the state space tree are pruned. Experimental
results reveal that this method performs very well due to
its close evaluation to the real cost.

I. INTRODUCTION

The rapid progress of VLSI and computer networking
technologies has made distributed computing systems
economically attractive for many computer applications.
Although distributed computing systems are capable of
enhancing system throughput and resource utilization, they
raise some problems that prevent the widespread use of
distributed computing system. One of the major problems is
the throughput degradation casued by imbalance of
processor's load and the large amount of interprocessor
communication overhead due to inadequate task assignment.

Therefore, in this paper, the aim of task assignment
intends to attain the minimum response (task turnaround)
time to maximize system throughput. A task is assumed to be
partitioned into a set of modules with precedence
relationships. There are two conflicting policies to
diminish task turnaround time, namely, assigning all
modules to a single processor to save communication
overhead and distributing them evenly to all processors to
balance load. We require to make a compromise to achieve
the minimum task turnaround time.

Many approachas to tha task assigrment in distributed
computing system have been identified. They can be roughly
classified into four catagories: graph-theoretical [l-31,
mathematical programming [4 , 5] , heuristics 16-91. and

simulated annealing [lo]. In general, these approaches are
not mutually exclusive. Many of them ignore precedence
constraints, which is an important characteristic in a real
programming environment. Even though they include the
precedence constraints, idle time due to queuing delay and
control overhead is also neglected. In this article, we
present an approach which takes both of them into
consideration. The problem dealt with in this paper assumes
a limited number of heterogeneous processors, non-identical
interprocessor links, not necessarily full-connected system
structure, partitioned tasks, and precedence constraints
among modules. We see that the task assignment problem is
based on a general model of distributed computing Systems.

This paper is organized as follows: Section I1 treats
the issue of problem formulation. The concepts of trigger
time, activation time, start time, and the computation of
cost function are defined in section 111. A well-informed
approach, critical sink underestimate, are proposed in
section IV. In section V, an illustrative example is given
and experimental results are discussed. Finally,
conclusions are made in section VI.

11. PROBLEM FORMULATION

A graph G is known to be composed of a vertex set V
and an edge set E , where E c V v. Based on the
assumptions aforementioned, a distributed computing system
is modeled as an undirected graph Gp = (V E) as depicted
in Fig.l.1, where Vp is the set of processors and Ep is the
set of interprocessor communication links. There exists
self-loop (A , A) E Ep for each processor A , which implies
that different modules can be assigned to the same
processor /71.

P' P

A task is modeled as a directed graph GT = (VT.ET) as
depicted in Fig.l.2, where VT is the set of modules and ET
is the set of intermodule arcs. For an arc (a , P) E ET, we
say that a is the parent of p or p is the child of a.
Directed cycles need to be merged into a larger module in
advance. Therefore, a task graph dealt with in this paper
is always affirmed to be a directed acyclic graph (DAG). In
a DAG task graph, there is at least one module without
parent and at least one module without child, which are
called source and sink modules respectively.

Since the task and distributed computing system are
respectively modeled as a DAG graph and an undirected
graph, the problem of task assignment is then formulated as
a special kind of graph mapping problem. We call it Totally
Directed-to-Undirected graph mapping or DU-mapping for
short, which is defined as follows:

0730-3157/89/0000/0002$01.00 0 1989 IEEE
2

Definition 1: Let there is a DAG task graph GT = (V ,E)

and an undirected system graph GS = (VS,ES). We define
DU-mapping of GT to GS is a graph matching which not only
maps all modules and intermodule arcs of GT onto the
processors and interprocessor links of GS respectively
(possibly many to one), but also maps all parents in G~
before their children.

T T

From the previous discussions, we see that the problem
of task assignment in distributed computing systems is
turned out to be the problem of DU-mapping. From the
viewpoint of sink modules, the task turnaround time is the
maximun finish-execution time among all sink modules, where
finish-execution time denotes the moment when a module
completes its execution. This kind of sink module is called
critical sink module; and the critical sink module with the
minimum finish-execution time among all possible DU-
mappings is called the minimum critical sink module.
Henceforth, the search of an optimal task assignment in
distributed computing systems is transformed into finding
the DU-mapping with the minimum critical sink module.

111. COMPUTATION OF COST FUNCTION

For module a and its child P , the trigger time of U to
p is the moment when a finishes transmitting a message to
8 . A module a is activated if all of its parents have
triggered a. Thus, the activation time of a is the moment
when the last parent of a finishes transmitting a message
to a. If a is activated and its assigned processor is
released by the last module assigned to this processor, it

is runnable. In other words, this processor now starts
executing a. This moment is called the start time of U. All
terms described above have the phenomenon of time
accumulation as a consequence of precedence constraints
among modules.

Let us introduce some terms, which will be used in the
remainder of this article. Note that all these terms are
associated with a DU-mapping M.

1) M(a) denotes the processor to which module U is
assigned.
Release time RLa(M) denotes the moment when the
processor M(a) is released by the last module assigned
to M(u), and is ready to execute a.
Finish-execution time FEa(M) denotes the moment when U
completes its execution at its assigned processor.
Finish-transmission time FTa(M) denotes the moment when
module a finishes transmitting messages to its children
which have already been assigned.
Ea(h) denotes the elapsed time required for module a to
be fully executed at processor A .

Ca,P[~,h] denotes the amount of communication time
between processors T and h at which modules a and P
reside respectively. Communication time is assumed to be
zero if 7 and A are tine same processor. It is an
infinite value if there is no interprocessor link
between T and h , or no intermodule arc from a to P .
TIMEh(M) denotes the current elapsed time recorded in
processor A at any point during the computation of the
cost function (task turnaround time). TIMEA(M) includes
all execution time, conmunication time and idle time.

Let us discuss how to compute the turnaround time for
a totally assigned task. Initially, the trigger times,
activation times and start times of all source modules are
set to be zero; and also the elasped times of all
processors. Based on this initialization, the start time of
some assigned module and then the trigger times of this
module to its children are computed. This procedure is
repeated from the first assigned module to the last one.

Suppose a parent module a forks to children hi for 1 6
i n, and transmits messages to children in the order of
hl, h2, ,hn. The trigger time of a to the ith
transmitted child hi associated with a DU-mapping M is

where STa(M) denotes the start time of parent a. In the
mean time, the finish-execution time FE (M) and finish-
transmission time FT (M) are also updated, where FE,(M) =

n
STa(M) + Eu(M(a)) and FTa(M) = FEa(M) + P

j = 1
Cu,hj[M(a),M(hj)]. Note that n denotes the number of
assigned children for partial assignments. Both terms will
be used in the evaluation of turnaround time for a
partially assigned task in the next section.

For module p and the set of its parents FP. The
activation time and start time of are given by

ACT P (M) = aaFp max TRGa,P(M)

(3)

The processor elapsed time requires to be updated while
computing trigger time, start time, and finish-execution
time. Processor's delay time can be obtained by subtracting
the three terms to the last elapsed time.

A n activated module p can not be executed (or run)
until its assigned processor M (p) is released from
previously assigned module. As a consequence, p will be
idle between the activation time and start time. This
period of time is called the idle time of p , which is
defined as

ST (M) = max(RL (M), ACTp(M))
P

IDLE (M) = ST (M) - ACT (M) (4) P P P

Let us use a simple example to expound how to compute
these terms. Suppose there are four modules in a
partitioned task, where module A forks to modules B and C,
B and C join to D. Besides, there is a three-processor
system where the three processors are connected to each
other. A DU-mapping M = ((A,l), (8.2). (C,3), (D,3))
indicates that Module A is assigned to processor 1, B to
processor 2 and others to processor 3; and A transmits
messages to B first and then to C. All the execution times
and communication times are 10 except that the execution
time of C is 20. The steps required to compute these terms
are as follows:

RUNA = ACTA = 0, TIME, = FEA = 10, TIME1 = FT = TRGA,B - = 20, .. TIMEl = FTA = TRGA,C = 30;

ACTR= 2 0 ,

TIME2 = RUNB = max(RLB,ACTB) = max(TIMEZ,ACTB) = 20,
TIME2 = FEB = 30, TIME2 = FTB = TRGB,D = 40;
ACTC = 30,
TIME3 = RUNC = max{RLC,ACTC) = max{TIME3,ACTC) = 30,
TIMEJ = FEC = 50,

3

TIME3 = FTC = TRGC,D = 50;

TIME3 = RUND = max(RLD,ACTD) = max(TIME3.ACTD) =

TIME3 = FED = 60.

4. ACTD = max(TRGB,D,TRGC,D) 5 0 ,

5 0 .

In the above steps, the term M is droped for the sake of
simplicity.

After all terms of the modules for a totally assigned
task have been computed, the finish-execution time of the
ith sink module FEsi(M) associated with a DU-mapping M is
given by

FESi(M) = STsi(M) + Esi(M(si)) (5)

Hence, the task turnaround time TA(M) is

TA(M) = max FEei(M)
1Sigr

where r denotes the number of sink modules. The task
turnaround time of optimal assignment Mopt among all
possible DU-mappings M is defined as

(7)

IV. CRITICAL SINK UNDERESTIMATE

The problem of searching an optimal Du-mapping is
further formulated as a state space search problem. This
kind of problem finds a solution in a dynamic tree. Guided
by some cost function, the dynamic tree is expanded to the
optimal answer node while many nodes are pruned. The
approach of how to evaluate cost to obtain an optimal
solution has been developed sophisticatedly in the well-

known A algorithm from artificial intelligence [ll]. For
the evaluation cost, the closer to the real cost, the more

nodes A algorithm prunes. In A algorithm, f(x), the
evaluation cost of node x in state space tree, is defined
as the sum of the real cost g(x) from the root node to
current node x and the estimated cost h(x) from current
node x to goal node; i.e., f(x) = g(x) + h(x). g(x) can be
computed exactly but h(x) is only a heuristic estimate. To
guarantee the optimality of solution, the estimated cost
h(x) must be not larger than the real cost from node x to
goal node and the state space tree is expanded in a least-
cost-first manner.

*

*

The computation of estimated task turnaround time,

selection rules and branching rules applied to A algorithm
will be presented in the following. This approach is called
critical sink underestimate (CSU). Note that the
definitions of trigger time, activation time, start time
and idle time of the assigned modules for a partially
assigned task are the same as in section 111.

A. ComDutation of Estimated Task Turnaround Time

*

A partially assigned task can be divided into two
groups: the assigned modules and the unassigned ones. For
an unassigned module a, we can also separate its parents
into the sets of assigned parents Fa and unassigned ones

Fa. Since we cannot ensure that its unassigned parent will
be assigned to a different or the same processor as it is,
the communication time between a and its unassigned parent
cannot be added to the evaluation cost to avoid
overestimate. Nevertheless. the communication time between

a and its assigned parent can be included in the evaluation
cost.

The partial DU-mapping Mx corresponds to a path
traversing from the root node to node x in a state space
tree. In this path, the module with smaller depth is
implied to be triggered earlier than the one with larger
depth. Pa, the set of available processors to be assigned
to an unassigned module a, contains the same or adjacent
processors to its parents’. If Pa is empty, then there is
no feasible solution for node x. In other words, the cost
of node x is infinite.

For a partially assigned task, we apply the procedure
described in section I11 to compute the real cost for all
assigned modules. Then, we compute the estimated cost for
all unassigned modules in terms of estimated activation
time and finish-execution time. The estimated activation
time of a at processor h e Pa associated with Mx is given

by

EACT=,~(M~) = max { max (F T ~ (M ~) + c~,~[M~(P),AI).
De Fa

(8) max FE (Mx)
P I

p tFa

Hence, the estimated finish-execution time of unassigned a
is

F E ~ (M ~) = min { max[TIME~(M~), E A C T ~ , ~ (M ~) I + E,(A) } (9)
XePa

Note that, in the cost-estimate procedure, elapsed time
TIME (Mx) will not be updated as in section 111. After the
estimated finish-execution times of all unassigned modules
have been computed, the estimated task turnaround time for
node x is

(10) ETA(x) = max FEsi(Mx)
l<i<r

As mentioned before, si denotes the ith sink module and r
the number of sink modules.

The ignorance of communication time among unassigned
modules in equation (8) and the inclusion of the minimum
term in equation (9) make estimated activation time and
estimated finish-execution time be underestimates. Although
ETA is an underestimate for the partial DU-mapping Mx, it
is not enough to guarantee to achieve an optimal
Du-mapping. However, if it cooperates with the following
two rules, an optimal DU-mapping will be obtained. This

characteristic is called admissibility in A algorithm.

E. LCDF Selection Rule, Greedy Branchinq Rules and
Well-Informed Alqorithm

*

In the A algorithm, we use a CLOST list to hold all
of the expanded nodes and an OPEN list to store all of the
generated but unexpanded nodes in a state space tree.
Initially, the start node is with zero depth, zero cost and
no assignment. It is the first expansion node (E-node).
Besides, OPEN list consists of only the start node and
CLOST list is empty.

After initialization, we select the node with the
least cost and largest depth in OPEN list to be E-node.
Moreover, the former has higher priority than the latter.
This kind of selection is called least-cost-and-depth-first
(LCDF).

After E-node has been selected, tree expansion is done

4

and nodes are generated by E-node according to the
following greedy branching rules:
1) Each of the activated modules is to be assigned to the

same or adjacent Processors to its parents' according to
the partial DU-mapping MX and system topology.

2) If at least one assigned brother of the activated module
has been assigned to the same processor as its parents',
then the other unassigned brothers and itself are
restricted to being assigned to the same processor as
their parents'.

Rule 1 is very clear, so it does not require further
explanation. Let us make use of a simple example to expound
rule 2. Suppose there are two modules B and C which are
forked from A and two interconnected processors 1 and 2.
For a partial assignment {(A,l), (B,1)) corresponding to a
path in a state space tree, two nodes (C.1) and (C.2) are
generated in tree expansion. Both of them indicate that A
transmits messages to B and then to C. For assignment
{(A,l), (B,l), (C,2)>. C can be executed immediately but B
cannot because B should wait for processor 1 being released
by its parent A. For another partial assignment ((A,l),
(C.2)), two nodes (B,1) and (B.2) are generated in tree
expansion. Both of them imply that A transmits messages to
C and then to B. The two assignments {(A,l), (B,l), (C,2))
and {(A,l), (C,2), (B.1)) generate the same start times for
B and C, and then the same ETA. Hence, it enables us to
neglect the node (C.2) in the tree expansion for ((A,l),
(8.1)) without affecting the search of an optimal
assignment. So, the number of nodes in the state space tree
can be diminished. Thus, for the partial assignment ((A,l),
(B,l)I, C is restricted to being assigned to processor 1

since its brother B has been assigned to the same processor
1 as its parent A.

The selection and branching procedures alternate
repeatedly until a goal state (optimal assignment) is
reached. That is, the depth of E-node is equal to the
number of modules.

By gathering together all the ideas presented in this
*

section, the proposed A algorithm is as follows:

Algorithm 1:
1) E-node c start node: OPEN list c start node:

CLOST list c null:
2) WHILE(E-node is not goal node)

3) BEGIN
4) Move the first node in OPEN list to be E-node;
5) Traverse backward from E-node to root node to find

the partial assignment MX;
6) According to greedy branching rules, select

available processors for each activated module to
do tree expansion:

7) Compute estimated task turnaround time ETA for each
currently generated node;

8) Insert the generated nodes to OPEN list and Sort
them in the non-decreasing order of ETA value and
the non-increasing order of depth (LCDF);

9) Store E-node to CLOST list;
10) ENDWHILE;
11) END of Algorithm 1.

The presented algorithm is admissible due to the
following three reasons:
(1) Estimated task turnaround time is an underestxmate.

(2) LCDF always chooses the node with the least cost to do
tree expansion.

(3) Branching rule 1 generate all possible assignments for
each of activated modules.

Therefore, the proposed algorithm will attain an
underestimate for the optimal DU-mapping to achieve
adimissibility [ll]. This is the reason why this approach
is called critical sink underestimate (CSU). Note that
branching rule 2 has no influence on the admissibility of
CSU, but will reduce the number of nodes in state space
tree.

V. ILLUSTRATIVE EXAMPLE and

EXPERIMENTAL RESULTS

Before using an example to illustrate the proposed
approach, we define pruning rate as the percentage of nodes
pruned by CSU

N - N
PR = E * 100%

NE

where NE is the number of nodes generated by exhaustive
search and N the number of nodes generated when a solution
is found. Pruning rate serves as a performance metric for
evaluating the proposed algorithm in this paper due to its
strong indication of saving of time and space complexities.

The illustrative distributed computing system is
composed of three processors and task is partitioned into
five modules with precedence relationships. They are
modeled as an undirected and DAG graphs as portrayed in
Figs.2.1 and 2.2 respectively. We want to assign the five

modules to the three processors in order to attain the
minimum task turnaround time, which corresponds to finding
the optimal DU-mapping of Fig.2.2 to Fig.2.1. The execution
times of each module to all processors and the intermodule
communication time of each adjacent modules are shown in
Tab.l.1 and Tab.l.2 respectively. Without loss of
generality, in Tab.l.2, we assume that the intermodule
communication times for all interprocessor links are the
same.

For this example, the state space tree generated by
CSU is plotted in Fig.3. In Fig.3, the number in each node
(circle) represents its estimated cost and the number in
each square represents the ordering of tree expansion.
Besides, the data in each parenthesis stands for some
module assigned to a specific processor. In this case, we
obtain the minimum task turnaround time 140 and the optimal
DU-mapping is

Mopt = { (A.2), (B,l), (C.2). (D e l) , (E.3)).

In Fig.3, only 25 nodes and 6 tree expansions are generated
by CSU. Compared the above results with exhaustive search
having branching rule 2 , which generates 481 nodes and 208
tree expansions, the proposed algorithm saves 94.8 percent
of node generations. Compared the results with exhaustive
search but without branching rule 2 , which generates 697
nodes and 262 tree expansions, the proposed algorithm saves
96.4 percent of node generations.

Several computation steps will be given to explain how
to compute ETA value. From the second tree expansion of
Fig.3, we have partial DU-mapping MX = ((A.1)) whose
evaluation cost is computed as follows:

5

(1) Initially, TIMEl = TIME2 - TIME3 = 0; ST^ E 0.

(2) TIMEl = FEA - 40. For the assigned module A, we have

For the activated but unassigned modules B and c, both of
them can be assigned to processors 1 and 2 . Hence, using
equations (8) and (9). we obtain

(3) FEB - min{ max(40,40)+50, max(O,40+10}+1oo) = go;
(4) FEC = minC maxC40,40)+10, max{o,40+60}+30 } = 50.
(5) FED - 140, FEE = 60.

Using equation (10). the evalution cost is
(6) ETA - max(FED, FEE = 140.

Note that the term Mx is dropped for the sake of
simplicity.

Based on algorithm 1, a task assignment simulator has
been developed in VAX 8200 by using C language and hundreds
of experiments have been made. In these experiments, sets
of execution and communication times are generated by a
random number generator, which is parameterized with some
mean EC (Execution time: Communication time) ratio. From
Tab.2, we observe that the range of average pruning rates
for three different EC ratios versus different number of
processors are as high as 95.0% to 97.5%. Moreover, the
prining rates increase with the increasing number of
modules for all EC ratios.

YI. CONCLUSION

The assignment problem dealt with in this paper is
based on a general model of distributed computing system.
It takes precedence constraint among modules into account.
Besides, the cost function to measure its performance

includes not only execution time and communication time,
but also idle time. Though it is so hard to describe this
kind of cost function under such a general model, we
successfully develop a mathematical model to do so.

It is known that the problem of task assignment with
precedence constrhint is NP-complete [12]. A well-informed

A* algorithm is proposed to efficiently solve the task
assignment in distributed computing systems. It is
formulated as searching an optimal DU-mapping in a state
space tree. An approach, critical sink underestimate (CSU),
is developed to obtain an optimal task assignment and many
nodes are bounded. The example and experiments show that
the proposed approach is an effective method to solve the
task assignment optimization problem in distributed
computing systems.

REFERENCES

111 S.H.Bokhari, '"Dual processor scheduling with dynamic
reassignmnet," IEEE Trans. Software Eng., vol. SE-5,
pp.341-349, July 1979.
[21 H.S.Stone, "Multiprocessor scheduling with the aid of
network flow algorithms," IEEE Trans. Software Eng., vol.
SE-3, pp.85-93. Jan. 1979.
[31 H.S.Stone and S.H.Bokhari. "Control of distributed
processes," Computer, vol. 11, pp.97-106. July, 1978.
[41 W.W.Chu, L.J.Holloway, M.T.Lan and K.Efe, "Task
allocation in distributed data processing," Computer, vol.
13, pp.57-69, NOV. 1980.
[5] V.M.Lo, "Task assignment to minimize completion time, "
Proc. of the 5th Int'l Conf. on Distributed Computing
Systems, Denver, Colorado, pp.329-336, May 1985.

[6] K.Efe, "Heuristic models of task assignment scheduling
in distributed systems," Computer, vol.15, pp.50-56, June
1982.
[7] C.C.Shen and W.H.Tsai. " A graph matching approach to
task assignment in distributed computing systems using a
minimax criterion," IEEE Trans. Computer, vol. c-34, no.3,
pp.197-203, March 1985.
[SI A.K.Ezzat, R.D.Bergeron and J.L.Pokoski, "Task
allocation heuristics for distributed computing systems,"
Proc. of the 6th Int'l Conf. on Distributed Computing
Systems, Cambridge, Mass., pp. 337-346, 1986.
[9] W.T.Chen and J.P.Sheu, "Task assignment in
loosely-coupled multiprocessor systems," Journal of the
Chinese Institute of Engineers, vol. 10, no. 6, pp.
721-726, 1987.
[lo] J.Sheild, '+Partitioning concurrent VLSI simulation
programs onto a multiprocessor by simulated annealing," IEE
Proceedings, vol. 134, Pc.E, no.1, pp.24-30, Jan.1987.
[ill N.J.Nilson, Principles of Artificial Intelligence,
Tioga Publishing Co., 1980, chapter 2 .

1121 M.R.Garey and D.S.Johnson, Computers and
Intractability: A Guide to the Theory of NP-Completeness,
Freeman, San Francisco, 1979.

Tab.l.1. Execution Time

processor

module

Tab.l.2. Intermodule Communication Time

module

module

Tab.2. Average pruning rate for different number of
processors and EC ratio

EC ratio

module

95.0 95.1 96.6

6

Fig.l.l System Graph Fig.l.2 Task Graph

Fig.2.1 System Grpah Fig.2.2 Task Graph

STARTNODE

1

GOAL NODE

Fig.3 State space tree for CSU

