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ABSTRACT 
This paper deals with the problem of assigning a 

partitioned task to a distributed computing system. 
Considering communication overhead and idle time, we 
successfully develop a mathematical model to describe the 
cost function, which is defined to evaluate the task 
turnaround time, under a genaral model of distributed 
computing systems. Task assignment is formulated as a DU- 
mapping, which maps a directed acyclic task graph onto an 
undirected system graph. The search of optimal DU-mapping 
is NP-complete and is transformed into a state space search 
problem. An approach called critical sink underestimate is 
developed to attain an optimal DU-mapping and the most 
nodes in the state space tree are pruned. Experimental 
results reveal that this method performs very well due to 
its close evaluation to the real cost. 

I. INTRODUCTION 

The rapid progress of VLSI and computer networking 
technologies has made distributed computing systems 
economically attractive for many computer applications. 
Although distributed computing systems are capable of 
enhancing system throughput and resource utilization, they 
raise some problems that prevent the widespread use of 
distributed computing system. One of the major problems is 
the throughput degradation casued by imbalance of 
processor's load and the large amount of interprocessor 
communication overhead due to inadequate task assignment. 

Therefore, in this paper, the aim of task assignment 
intends to attain the minimum response (task turnaround) 
time to maximize system throughput. A task is assumed to be 
partitioned into a set of modules with precedence 
relationships. There are two conflicting policies to 
diminish task turnaround time, namely, assigning all 
modules to a single processor to save communication 
overhead and distributing them evenly to all processors to 
balance load. We require to make a compromise to achieve 
the minimum task turnaround time. 

Many approachas to tha task assigrment in distributed 
computing system have been identified. They can be roughly 
classified into four catagories: graph-theoretical [l-31, 
mathematical programming [ 4 , 5 ] ,  heuristics 16-91. and 

simulated annealing [lo]. In general, these approaches are 
not mutually exclusive. Many of them ignore precedence 
constraints, which is an important characteristic in a real 
programming environment. Even though they include the 
precedence constraints, idle time due to queuing delay and 
control overhead is also neglected. In this article, we 
present an approach which takes both of them into 
consideration. The problem dealt with in this paper assumes 
a limited number of heterogeneous processors, non-identical 
interprocessor links, not necessarily full-connected system 
structure, partitioned tasks, and precedence constraints 
among modules. We see that the task assignment problem is 
based on a general model of distributed computing Systems. 

This paper is organized as follows: Section I1 treats 
the issue of problem formulation. The concepts of trigger 
time, activation time, start time, and the computation of 
cost function are defined in section 111. A well-informed 
approach, critical sink underestimate, are proposed in 
section IV. In section V, an illustrative example is given 
and experimental results are discussed. Finally, 
conclusions are made in section VI. 

11. PROBLEM FORMULATION 

A graph G is known to be composed of a vertex set V 
and an edge set E ,  where E c V v. Based on the 
assumptions aforementioned, a distributed computing system 
is modeled as an undirected graph Gp = (V E ) as depicted 
in Fig.l.1, where Vp is the set of processors and Ep is the 
set of interprocessor communication links. There exists 
self-loop ( A , A )  E Ep for each processor A ,  which implies 
that different modules can be assigned to the same 
processor /71. 

P' P 

A task is modeled as a directed graph GT = (VT.ET) as 
depicted in Fig.l.2, where VT is the set of modules and ET 
is the set of intermodule arcs. For an arc ( a , P )  E ET, we 
say that a is the parent of p or p is the child of a. 
Directed cycles need to be merged into a larger module in 
advance. Therefore, a task graph dealt with in this paper 
is always affirmed to be a directed acyclic graph (DAG). In 
a DAG task graph, there is at least one module without 
parent and at least one module without child, which are 
called source and sink modules respectively. 

Since the task and distributed computing system are 
respectively modeled as a DAG graph and an undirected 
graph, the problem of task assignment is then formulated as 
a special kind of graph mapping problem. We call it Totally 
Directed-to-Undirected graph mapping or DU-mapping for 
short, which is defined as follows: 
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Definition 1: Let there is a DAG task graph GT = (V ,E ) 

and an undirected system graph GS = (VS,ES). We define 
DU-mapping of GT to GS is a graph matching which not only 
maps all modules and intermodule arcs of GT onto the 
processors and interprocessor links of GS respectively 
(possibly many to one), but also maps all parents in G~ 
before their children. 

T T  

From the previous discussions, we see that the problem 
of task assignment in distributed computing systems is 
turned out to be the problem of DU-mapping. From the 
viewpoint of sink modules, the task turnaround time is the 
maximun finish-execution time among all sink modules, where 
finish-execution time denotes the moment when a module 
completes its execution. This kind of sink module is called 
critical sink module; and the critical sink module with the 
minimum finish-execution time among all possible DU- 
mappings is called the minimum critical sink module. 
Henceforth, the search of an optimal task assignment in 
distributed computing systems is transformed into finding 
the DU-mapping with the minimum critical sink module. 

111. COMPUTATION OF COST FUNCTION 

For module a and its child P ,  the trigger time of U to 
p is the moment when a finishes transmitting a message to 
8 .  A module a is activated if all of its parents have 
triggered a. Thus, the activation time of a is the moment 
when the last parent of a finishes transmitting a message 
to a. If a is activated and its assigned processor is 
released by the last module assigned to this processor, it 

is runnable. In other words, this processor now starts 
executing a. This moment is called the start time of U. All 
terms described above have the phenomenon of time 
accumulation as a consequence of precedence constraints 
among modules. 

Let us introduce some terms, which will be used in the 
remainder of this article. Note that all these terms are 
associated with a DU-mapping M. 

1) M(a) denotes the processor to which module U is 
assigned. 
Release time RLa(M) denotes the moment when the 
processor M(a) is released by the last module assigned 
to M(u), and is ready to execute a. 
Finish-execution time FEa(M) denotes the moment when U 
completes its execution at its assigned processor. 
Finish-transmission time FTa(M) denotes the moment when 
module a finishes transmitting messages to its children 
which have already been assigned. 
Ea(h) denotes the elapsed time required for module a to 
be fully executed at processor A .  

Ca,P[~,h] denotes the amount of communication time 
between processors T and h at which modules a and P 
reside respectively. Communication time is assumed to be 
zero if 7 and A are tine same processor. It is an 
infinite value if there is no interprocessor link 
between T and h ,  or no intermodule arc from a to P .  
TIMEh(M) denotes the current elapsed time recorded in 
processor A at any point during the computation of the 
cost function (task turnaround time). TIMEA(M) includes 
all execution time, conmunication time and idle time. 

Let us discuss how to compute the turnaround time for 
a totally assigned task. Initially, the trigger times, 
activation times and start times of all source modules are 
set to be zero; and also the elasped times of all 
processors. Based on this initialization, the start time of 
some assigned module and then the trigger times of this 
module to its children are computed. This procedure is 
repeated from the first assigned module to the last one. 

Suppose a parent module a forks to children hi for 1 6 
i n, and transmits messages to children in the order of 
hl, h2, ..... ,hn. The trigger time of a to the ith 
transmitted child hi associated with a DU-mapping M is 

where STa(M) denotes the start time of parent a. In the 
mean time, the finish-execution time FE (M) and finish- 
transmission time FT (M) are also updated, where FE,(M) = 

n 
STa(M) + Eu(M(a)) and FTa(M) = FEa(M) + P 

j = 1  
Cu,hj[M(a),M(hj)]. Note that n denotes the number of 
assigned children for partial assignments. Both terms will 
be used in the evaluation of turnaround time for a 
partially assigned task in the next section. 

For module p and the set of its parents FP. The 
activation time and start time of are given by 

ACT P (M) = aaFp max TRGa,P(M) 

(3) 

The processor elapsed time requires to be updated while 
computing trigger time, start time, and finish-execution 
time. Processor's delay time can be obtained by subtracting 
the three terms to the last elapsed time. 

A n  activated module p can not be executed (or run) 
until its assigned processor M ( p )  is released from 
previously assigned module. As a consequence, p will be 
idle between the activation time and start time. This 
period of time is called the idle time of p ,  which is 
defined as 

ST (M) = max( RL (M), ACTp(M) ) 
P 

IDLE (M) = ST (M) - ACT (M) ( 4 )  P P P 

Let us use a simple example to expound how to compute 
these terms. Suppose there are four modules in a 
partitioned task, where module A forks to modules B and C, 
B and C join to D. Besides, there is a three-processor 
system where the three processors are connected to each 
other. A DU-mapping M = ((A,l), (8.2). (C,3), (D,3)) 
indicates that Module A is assigned to processor 1, B to 
processor 2 and others to processor 3; and A transmits 
messages to B first and then to C. All the execution times 
and communication times are 10 except that the execution 
time of C is 20. The steps required to compute these terms 
are as follows: 

RUNA = ACTA = 0, TIME, = FEA = 10, TIME1 = FT = TRGA,B - = 20, .. TIMEl = FTA = TRGA,C = 30; 

ACTR= 2 0 ,  

TIME2 = RUNB = max(RLB,ACTB) = max(TIMEZ,ACTB) = 20, 
TIME2 = FEB = 30, TIME2 = FTB = TRGB,D = 40; 
ACTC = 30, 
TIME3 = RUNC = max{RLC,ACTC) = max{TIME3,ACTC) = 30, 
TIMEJ = FEC = 50, 
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TIME3 = FTC = TRGC,D = 50;  

TIME3 = RUND = max(RLD,ACTD) = max(TIME3.ACTD) = 

TIME3 = FED = 60. 

4. ACTD = max(TRGB,D,TRGC,D) 5 0 ,  

5 0 .  

In the above steps, the term M is droped for the sake of 
simplicity. 

After all terms of the modules for a totally assigned 
task have been computed, the finish-execution time of the 
ith sink module FEsi(M) associated with a DU-mapping M is 
given by 

FESi(M) = STsi(M) + Esi(M(si)) ( 5 )  

Hence, the task turnaround time TA(M) is 

TA(M) = max FEei(M) 
1Sigr 

where r denotes the number of sink modules. The task 
turnaround time of optimal assignment Mopt among all 
possible DU-mappings M is defined as 

( 7 )  

IV. CRITICAL SINK UNDERESTIMATE 

The problem of searching an optimal Du-mapping is 
further formulated as a state space search problem. This 
kind of problem finds a solution in a dynamic tree. Guided 
by some cost function, the dynamic tree is expanded to the 
optimal answer node while many nodes are pruned. The 
approach of how to evaluate cost to obtain an optimal 
solution has been developed sophisticatedly in the well- 

known A algorithm from artificial intelligence [ll]. For 
the evaluation cost, the closer to the real cost, the more 

nodes A algorithm prunes. In A algorithm, f(x), the 
evaluation cost of node x in state space tree, is defined 
as the sum of the real cost g(x) from the root node to 
current node x and the estimated cost h(x) from current 
node x to goal node; i.e., f(x) = g(x) + h(x). g(x) can be 
computed exactly but h(x) is only a heuristic estimate. To 
guarantee the optimality of solution, the estimated cost 
h(x) must be not larger than the real cost from node x to 
goal node and the state space tree is expanded in a least- 
cost-first manner. 

* 

* 

The computation of estimated task turnaround time, 

selection rules and branching rules applied to A algorithm 
will be presented in the following. This approach is called 
critical sink underestimate (CSU). Note that the 
definitions of trigger time, activation time, start time 
and idle time of the assigned modules for a partially 
assigned task are the same as in section 111. 

A. ComDutation of Estimated Task Turnaround Time 

* 

A partially assigned task can be divided into two 
groups: the assigned modules and the unassigned ones. For 
an unassigned module a, we can also separate its parents 
into the sets of assigned parents Fa and unassigned ones 

Fa. Since we cannot ensure that its unassigned parent will 
be assigned to a different or the same processor as it is, 
the communication time between a and its unassigned parent 
cannot be added to the evaluation cost to avoid 
overestimate. Nevertheless. the communication time between 

a and its assigned parent can be included in the evaluation 
cost. 

The partial DU-mapping Mx corresponds to a path 
traversing from the root node to node x in a state space 
tree. In this path, the module with smaller depth is 
implied to be triggered earlier than the one with larger 
depth. Pa, the set of available processors to be assigned 
to an unassigned module a, contains the same or adjacent 
processors to its parents’. If Pa is empty, then there is 
no feasible solution for node x. In other words, the cost 
of node x is infinite. 

For a partially assigned task, we apply the procedure 
described in section I11 to compute the real cost for all 
assigned modules. Then, we compute the estimated cost for 
all unassigned modules in terms of estimated activation 
time and finish-execution time. The estimated activation 
time of a at processor h e Pa associated with Mx is given 

by 

EACT=,~(M~) = max { max ( F T ~ ( M ~ )  + c~,~[M~(P),AI). 
De Fa 

( 8 )  max FE (Mx) 
P I  

p tFa  

Hence, the estimated finish-execution time of unassigned a 
is 

F E ~ ( M ~ )  = min { max[ TIME~(M~), E A C T ~ , ~ ( M ~ ) I  + E,(A) } ( 9 )  
XePa 

Note that, in the cost-estimate procedure, elapsed time 
TIME (Mx) will not be updated as in section 111. After the 
estimated finish-execution times of all unassigned modules 
have been computed, the estimated task turnaround time for 
node x is 

(10) ETA(x) = max FEsi(Mx) 
l<i<r 

As mentioned before, si denotes the ith sink module and r 
the number of sink modules. 

The ignorance of communication time among unassigned 
modules in equation ( 8 )  and the inclusion of the minimum 
term in equation (9) make estimated activation time and 
estimated finish-execution time be underestimates. Although 
ETA is an underestimate for the partial DU-mapping Mx, it 
is not enough to guarantee to achieve an optimal 
Du-mapping. However, if it cooperates with the following 
two rules, an optimal DU-mapping will be obtained. This 

characteristic is called admissibility in A algorithm. 

E. LCDF Selection Rule, Greedy Branchinq Rules and 
Well-Informed Alqorithm 

* 

In the A algorithm, we use a CLOST list to hold all 
of the expanded nodes and an OPEN list to store all of the 
generated but unexpanded nodes in a state space tree. 
Initially, the start node is with zero depth, zero cost and 
no assignment. It is the first expansion node (E-node). 
Besides, OPEN list consists of only the start node and 
CLOST list is empty. 

After initialization, we select the node with the 
least cost and largest depth in OPEN list to be E-node. 
Moreover, the former has higher priority than the latter. 
This kind of selection is called least-cost-and-depth-first 
(LCDF). 

After E-node has been selected, tree expansion is done 
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and nodes are generated by E-node according to the 
following greedy branching rules: 
1) Each of the activated modules is to be assigned to the 

same or adjacent Processors to its parents' according to 
the partial DU-mapping MX and system topology. 

2) If at least one assigned brother of the activated module 
has been assigned to the same processor as its parents', 
then the other unassigned brothers and itself are 
restricted to being assigned to the same processor as 
their parents'. 

Rule 1 is very clear, so it does not require further 
explanation. Let us make use of a simple example to expound 
rule 2. Suppose there are two modules B and C which are 
forked from A and two interconnected processors 1 and 2. 
For a partial assignment {(A,l), (B,1)) corresponding to a 
path in a state space tree, two nodes (C.1) and (C.2) are 
generated in tree expansion. Both of them indicate that A 
transmits messages to B and then to C. For assignment 
{(A,l), (B,l), (C,2)>. C can be executed immediately but B 
cannot because B should wait for processor 1 being released 
by its parent A. For another partial assignment ((A,l), 
(C.2)), two nodes (B,1) and (B.2) are generated in tree 
expansion. Both of them imply that A transmits messages to 
C and then to B. The two assignments {(A,l), (B,l), (C,2)) 
and {(A,l), (C,2), (B.1)) generate the same start times for 
B and C, and then the same ETA. Hence, it enables us to 
neglect the node (C.2) in the tree expansion for  ((A,l), 
(8.1)) without affecting the search of an optimal 
assignment. So, the number of nodes in the state space tree 
can be diminished. Thus, for the partial assignment ((A,l), 
(B,l)I, C is restricted to being assigned to processor 1 

since its brother B has been assigned to the same processor 
1 as its parent A. 

The selection and branching procedures alternate 
repeatedly until a goal state (optimal assignment) is 
reached. That is, the depth of E-node is equal to the 
number of modules. 

By gathering together all the ideas presented in this 
* 

section, the proposed A algorithm is as follows: 

Algorithm 1: 
1) E-node c start node: OPEN list c start node: 

CLOST list c null: 
2) WHILE( E-node is not goal node ) 

3) BEGIN 
4) Move the first node in OPEN list to be E-node; 
5) Traverse backward from E-node to root node to find 

the partial assignment MX; 
6) According to greedy branching rules, select 

available processors for each activated module to 
do tree expansion: 

7) Compute estimated task turnaround time ETA for each 
currently generated node; 

8) Insert the generated nodes to OPEN list and Sort 
them in the non-decreasing order of ETA value and 
the non-increasing order of depth (LCDF); 

9) Store E-node to CLOST list; 
10) ENDWHILE; 
11) END of Algorithm 1. 

The presented algorithm is admissible due to the 
following three reasons: 
(1) Estimated task turnaround time is an underestxmate. 

( 2 )  LCDF always chooses the node with the least cost to do 
tree expansion. 

(3) Branching rule 1 generate all possible assignments for 
each of activated modules. 

Therefore, the proposed algorithm will attain an 
underestimate for the optimal DU-mapping to achieve 
adimissibility [ll]. This is the reason why this approach 
is called critical sink underestimate (CSU). Note that 
branching rule 2 has no influence on the admissibility of 
CSU, but will reduce the number of nodes in state space 
tree. 

V. ILLUSTRATIVE EXAMPLE and 

EXPERIMENTAL RESULTS 

Before using an example to illustrate the proposed 
approach, we define pruning rate as the percentage of nodes 
pruned by CSU 

N - N  
PR = E * 100% 

NE 

where NE is the number of nodes generated by exhaustive 
search and N the number of nodes generated when a solution 
is found. Pruning rate serves as a performance metric for 
evaluating the proposed algorithm in this paper due to its 
strong indication of saving of time and space complexities. 

The illustrative distributed computing system is 
composed of three processors and task is partitioned into 
five modules with precedence relationships. They are 
modeled as an undirected and DAG graphs as portrayed in 
Figs.2.1 and 2.2 respectively. We want to assign the five 

modules to the three processors in order to attain the 
minimum task turnaround time, which corresponds to finding 
the optimal DU-mapping of Fig.2.2 to Fig.2.1. The execution 
times of each module to all processors and the intermodule 
communication time of each adjacent modules are shown in 
Tab.l.1 and Tab.l.2 respectively. Without loss of 
generality, in Tab.l.2, we assume that the intermodule 
communication times for all interprocessor links are the 
same. 

For this example, the state space tree generated by 
CSU is plotted in Fig.3. In Fig.3, the number in each node 
(circle) represents its estimated cost and the number in 
each square represents the ordering of tree expansion. 
Besides, the data in each parenthesis stands for some 
module assigned to a specific processor. In this case, we 
obtain the minimum task turnaround time 140 and the optimal 
DU-mapping is 

Mopt = { (A.2), (B,l), (C.2). ( D e l ) ,  (E.3) ).  

In Fig.3, only 25 nodes and 6 tree expansions are generated 
by CSU. Compared the above results with exhaustive search 
having branching rule 2 ,  which generates 481 nodes and 208 
tree expansions, the proposed algorithm saves 94.8 percent 
of node generations. Compared the results with exhaustive 
search but without branching rule 2 ,  which generates 697 
nodes and 262 tree expansions, the proposed algorithm saves 
96.4 percent of node generations. 

Several computation steps will be given to explain how 
to compute ETA value. From the second tree expansion of 
Fig.3, we have partial DU-mapping MX = ((A.1)) whose 
evaluation cost is computed as follows: 
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(1) Initially, TIMEl = TIME2 - TIME3 = 0;  ST^ E 0. 

( 2 )  TIMEl = FEA - 40. For the assigned module A, we have 

For the activated but unassigned modules B and c, both of 
them can be assigned to processors 1 and 2 .  Hence, using 
equations ( 8 )  and (9). we obtain 

(3) FEB - min{ max(40,40)+50, max(O,40+10}+1oo ) = go; 
( 4 )  FEC = minC maxC40,40)+10, max{o,40+60}+30 } = 50. 
(5) FED - 140, FEE = 60. 

Using equation (10). the evalution cost is 
(6) ETA - max( FED, FEE = 140. 

Note that the term Mx is dropped for the sake of 
simplicity. 

Based on algorithm 1, a task assignment simulator has 
been developed in VAX 8200 by using C language and hundreds 
of experiments have been made. In these experiments, sets 
of execution and communication times are generated by a 
random number generator, which is parameterized with some 
mean EC (Execution time: Communication time) ratio. From 
Tab.2, we observe that the range of average pruning rates 
for three different EC ratios versus different number of 
processors are as high as 95.0% to 97.5%. Moreover, the 
prining rates increase with the increasing number of 
modules for all EC ratios. 

YI. CONCLUSION 

The assignment problem dealt with in this paper is 
based on a general model of distributed computing system. 
It takes precedence constraint among modules into account. 
Besides, the cost function to measure its performance 

includes not only execution time and communication time, 
but also idle time. Though it is so hard to describe this 
kind of cost function under such a general model, we 
successfully develop a mathematical model to do so. 

It is known that the problem of task assignment with 
precedence constrhint is NP-complete [12]. A well-informed 

A* algorithm is proposed to efficiently solve the task 
assignment in distributed computing systems. It is 
formulated as searching an optimal DU-mapping in a state 
space tree. An approach, critical sink underestimate (CSU), 
is developed to obtain an optimal task assignment and many 
nodes are bounded. The example and experiments show that 
the proposed approach is an effective method to solve the 
task assignment optimization problem in distributed 
computing systems. 
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Tab.l.1. Execution Time 

processor 

module 

Tab.l.2. Intermodule Communication Time 

module 

module 

Tab.2. Average pruning rate for different number of 
processors and EC ratio 

EC ratio 

module 

95.0 95.1 96.6 
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Fig.l.l System Graph Fig.l.2 Task Graph 

Fig.2.1 System Grpah Fig.2.2 Task Graph 
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1 
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Fig.3 State space tree for CSU 


