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ABSTRACT 

Golden Mandarin (11) is an improved single-chip real-time 
Mandarin dictation machine for Chinese language with very large 
vocabulary for the input of unlimited Chinese sentences into com- 
puters uaing voice. In this dictation machine only a single chip 
Motorola DSP 96002D on an Ariel DSP-96 card is used, with a 
preliminary character correct rate around 95% in speaker depen- 
dent mode at a speed of 0.36 sec per character. This is achieved 
by many new techniquea, primarily a segmental probability mod- 
eling technique for syllable recognition specially considering the 
characteristics of Mandarin syllables, and a word-lattice-based 
Chinese character bigram for character identification specially 
conaidering the structure of Chinese language. 

I. INTRODUCTION 

Today, the input of Chinese characters into computers is still 
a very difficult and unsolved problem. This is the basic motiva- 
tion for the development of a Mandarin dictation machine. We 
defined the scope of this research by following limitations. The 
input speech is in the form of isolated syllables. The machine 
is speakcr dependent. Reasonable errors are acceptable because 
they can be found on the screen and corrected from the keyboard 
by the user very easily. But the machine has to be able to recog- 
nize Mandarin speech with very large vocabulary and unlimited 
texts, because the input to computers can be arbitrary Chinese 
texts. Also, the machine has to work in real-time for computer 
input applications. A previous version of such a machine, Golden 
Mandarin (I), has been developed in 1990 [1][2], but the high- 
ly computation-intensive algorithms for Golden Mandarin (I) re- 
quire 10 TMS 320C25 chips operating in parallel on 9 special 
hardware boards to meet the real time requirements. This is 
why the present machine is developed using completely different 
algorithms. 

There are at least lo5 commonly used Chinese words, each 
composed of one to several characters. There are at least 10 * 
commonly used Chinese characters, all mono-syllabic. However, 
the total number of different syllables in Mandarin speech is on- 
ly 1302. Based on such observation, the use of syllable as the 
dictation unit becomes a very natural choice. Another very spe- 
cial feature of Mandarin Chinese is that it is a tonal language. 
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Every syllable is assigned a tone in general. There are basical- 
ly four lexical tones and one neutral tone in Mandarin. It has 
been shown that the primary difference for the tones is in the 
pitch contours, and the tones are essentially independent of the 
other acoustic properties of the syllables. If the differences in 
tones are disregarded, only 408 base syllables ( each bearing dif- 
ferent tones ) are required for Mandarin Chinese. This means the 
recognition of the syllables can be divided into two parallel proce- 
dures, the recognition of the tones, and of the 408 base syllables 
disregarding the tones. Based on the above considerations, the 
overall system structure for the Golden Mandarin (11) dictation 
machine is shown in Fig. 1. The system is basically divided into 
two subsystems. The first is to recognize the Mandarin syllables, 
and the second is to transform the series of syllables into Chi- 
nese characters, because every syllable can be shared by many 
homonym characters. For the first subsystem of syllable recog- 
nition, the base syllable (disregarding the tones) and the tone 
are recognized independently in parallel. For the second sub- 
system of language model, we need to first obtain all possible 
word hypothesis to construct a Chinese word lattice, and then 
use a word-lattice-based Chinese character bigram to select the 
most probable concatenation of word hypotheses as the output 
sentence. 

11. MANDARIN SYLLABLE RECOGNITION 

The recognition of the Mandarin syllables includes two parts: 
recognition of the 408 base syllables (disregarding the tones) and 
recognition of the tones. The tone recognition is not too diffi- 
cult. Discrete Hidden Markov Models based on feature vectors 
of pitch frequency, difference pitch frequency, energy and differ- 
ence energy are used, and the syllable durational cues are further 
applied to distinguish the neutral tone from the 4 lexical tones. 
The recognitionof the 408 base syllables (disregarding the tones), 
however, is very difficult, because there exist 38 confusing sets in 
this vocabulary. A good example is the A-set, { a, ja, cha, sha, 
dsa, tsa, sa, ga, ka, ha, da, ta, na, la, ba, pa, ma, fa }. Specially 
trained continuous density Hidden Markov Models (HMM's)[3] [4] 
for cepstral coefficients were used in the previous version machine 
[1][2], which are highly computation-intensive. Considering the 
fact that Mandarin mono-syllables have relatively simple phonet- 
ic structure and the primary problem in base syllable recognition 
is to distinguish the very confusing initial consonants instead of 
matching the entire template, it is therefore believed that the time 
warping functions of the state transition probabilities of HMM's 
are not very important. Because state transition path searching 
process in HMM's is highly computation-intensive, a segmental 
probability model (SPM) specially for Mandarin base syllables 
was therefore developed, which is very similar to continuous den- 
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Figure 1: The overall system structure for 
Mandarin(I1) dictation machine 

training and recognition processes are simplified tremendously as 
compared to the continuous density HMM's. 

The training data used in the experiments include 5 utter- 
ances for each of the 1302 syllables for each speaker, and the 
results below are the average scores obtained for two speakers. 
The recognition rates are listed in Table 1. The experiment (1) 
in the first row is for the continuous density HMM's used in the 
previous version machine [1][2], and experiment (2) in the sec- 
ond row is the initial test for SPM where N=7 and M=3, such 
that the number of states and mixtures are exactly the same in 
experiments (1) and (2) for parallel comparison. It can be seen 
that SPM gives an top 1 rate more than 20% lower than con- 
tinuos density HMM's, apparently because SPM is a much more 
simplified version. However, the following series of improvements 
in experiments (3)-(6) in fact indicate the very high potential 
of SPM for Mandarin syllable recognition, if special characteris- 
tics of Mandarin syllables can be more carefully considered. Be- 
cause the primary problem for Mandarin syllable recognition is 
to distinguish the very confusing initial consonants and some er- 
rors are often caused by the syllable ending (such as /an/ and 
/ang/),in experiment (3) smaller shift between adjacent speech 
frames was used in the first 20% and last 10% of the syllable ut- 
terances, such that finer signal characteristics can be extracted 
for the initial consonants and syllable ending. In the third row of 
Table 1, the top 1 rate was improved in this way from 69.85% to 
75.49%. In experiments (4) and (5) optimal values of N and M 
were further found empirically and the linear prediction order P 
was increased from 10 to 14. Note that 3 segments (N=3) gives 

the Golden 

sity HMM, but the state transition probabilities are deleted and 
the N states equally segment the syllable utterance. 

In more detail, each utterance of syllable a is equally di- 
vided into N segments (or states), and each segment is mod- 
eled by M Gaussian mixtures. Each of the mixture is character- 
ized by a mean vector pij  and a covariance matrix b;j , where 
i = 1,2,. . . , N is the segment index, and j = 1,2,. . . , M is the 
mixture index. The SPM of a syllable a is therefom represented 
by 

S N M ( U )  = {(p;j,b;j),i = 1,2,. . . , N ,  j = 1,2,. . . , M) 
In the training phase, all training utterances for the syllable a are 
equally divided into N segments, and the feature vectors from the 
i-th segment of all training utterances are used togethcr to train 
the parameters (p;j , ~ ; j )  , j = 1,2,. . . , M , for the i-th segment. 
They are first vector quantized into M dusters, and the feature 
vectors in the j-th cluster are used to obtain (p ;j,8;j). The co- 
variance matrices ~ ; j  are assumed diagonal. In the recognition 
phase, the observation probability function b ;(a) for an observed 
feature vector with respect to the i-th segment of the syllable 
a is simply 

bi(fi) =j=l,Y.X,M {bij(a)I 

where b;j (6) is the Gaussian distribution function defined by ( 
.iiij,#;j ) . In the recognition phase, an unknown utterance U 
is first equally divided into N segments, assuming each with n 
feature vectors, 

U = {6ikr i = 1,2, . . . , N ,  k = 1,2, . . . , n} 
where i is the segment index and k is the vector number in a 
segment. The observation probability of this unknown utterance 
U with respect to the SPM model of a syllable ~ , S N M ( ~ )  , is 
then 

N r n  1 

Apparently the syllable model giving the highest observation pr* 
bability for U is the recognition output. In this way, both the 

better results than 7 segments (N=7),  probably because all the 
Mandarin syllables have relatively simple structure, composed of 
at most 3 to 4 phonemes. Without the time warping function of 
the state transition probabilities, too many segments (or states) 
may in fact cause interference among adjacent segments in the 
SPM. Therefore roughly one phoneme per segment tums out to 
be the best choice for SPM, although in HMM's 7 states gives 
the best results. On the other hand, because the computation 
load for SPM recognitionis very low, increase of linear prediction 
order P from 10 to 14 can be easily achieved but is highly re- 
warding, as was indicated by the significant improvements in the 
top 1 rate, from 77.45% to 88.97%. Still further improvements 
can be achieved by a two-stage SPM approach in experiment (6 )  
as shown in Fig. 2, in which the first stage SPM used cepstral 
coefficients, while the second stage SPM used regression coeffi- 
cients obtained from cepstral coefficients, and the parameters M,  
N for the two stages can be separately optimized. The first stage 
selected the top L candidates a l , a a ,  ..., a~ and passed them to 
the second stage, together with the corresponding observation 
probabilities Pl(Ulaj) ,  j = 1,2, ..., L . The final score of each 
of the L candidates is then the weighted s u m  of the observation 
probabilities obtained in the two stages. The last row of Table 1 
indicates that in this way the top 1 rate can be as high as 96.57%, 
and the top 3 rate can be 99.75%. Note that the computation 
requirements in experiment (6) are still much less than those of 
continuous density HMM's used in experiment (l), but the per- 
formance is muchmore better. These results are also summarized 
in Fig. 3. 

111. CHINESE LANGUAGE MODEL 

After the base syllables and tones are recognized by the sub- 
system 1, the high degree of ambiguity caused by the large num- 
ber of homonym characters still remain to be solved. The subsys- 
tem 2 thus acts as a linguistic decoder to identify the characters 
using context information. In the previous versionmachine [1][2], 
a relatively simple Chinese character bigram trained by primary 
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Figure 2: The two-stage approach for SPM 

school Chinese textbooks (5][6] was used, whose function was in 
fact limited. In Chinese language every word is composed of from 
one to several characters and there is no blanks between two ad- 
jacent words, thus a sentence can be considered as a sequence of 
words, or a sequence of characters. The 10 ’ characters or lo5 
words require a character bigram of 10 * x 10’ probabilities or a 
word bigram of los x l o5  probabilities respectively. Preliminary 
tests indicated that the word bigram is much more powerful than 
the character bigram [5], probably because the Chinese sentences 
are really built by words rather than by characters. But the word 
bigram is difficult to train and implement on a single chip because 
of the much larger size. A new approach considering the special 
structure of Chinese language using a word-lattice-based Chinese 
character bigram was thus developed to solve this problem. In 
this approach, the sequence of syllables obtained from the sub- 
system 1 is first matched with the words in a lexicon of 10 words 
to find all possible word hypotheses to construct a word lattice, 
with the help of a set of lexical rules. A word lattice is a graph 
of all possible paths connecting all word hypotheses, a simple ex- 
ample is shown in Fig. 4. The paths on the word lattice are then 
searched through by a word-lattice-based character bigram. The 
path with the highest probability is then chosen as the result, 
just as shown in Fig. 1. 

Previous study [7][8] showed that grammatical information 
such as word formation are very helpful to statistical language 
models in grouping legal combinations of words while filtering 
out illegal ones. In Chinese language many compound words can 
be established by combining two or more words with simple rules, 
so they don’t have to be stored in the lexicon. For example, the 
words ” pig( & ) ” and ” Meat( $q ) ” can form a new word” 
Pork( ) ”, etc. These are the lexical rules mentioned above 
to help reduce the size of the lexicon. By matching the input syl- 
lable sequence with the words in the lexicon with the help of the 
lexical rules, all possible word hypotheses can be obtained and 
constructed in the word lattice. The function of the statistical 
language model can then be significantly reduced and simplified. 
For example, many noisy syllables or characters such as incorrect- 
ly recognized syllables or homonym charactera which can’t form 
word hypotheses with adjacent syllables or characters or can’t 
be used as a mono-character word will be automatically deleted. 
On the other hand, if a set of adjacent word hypotheses can be 
grouped together earlier into a single compound word hypothesis 

Table 1: Base syllable recognition rates for the previous 
HMM and the new SPM techniques 
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Figure 3: Recognition rates for the base syllables 

in the word lattice, the number of possible paths connecting the 
word hypothesis in the lattice can be reduced. Also, it has been 
observed in preliminary experiments that a longer word hypothe- 
sis is usually more reliable, and in fact very probably it is exactly 
the correct answer if it is really long. Therefore the establishment 
of such a word lattice can not only reject the interference from 
many noisy syllables and characters, but significantly reduce the 
search space of the statistical language model and improve the 
overall accuracy. 

After a word lattice was constructed as discussed above, a 
specially designed word-lattice-based Chinese character bigram 
was used to search through the word lattice to obtain the max- 
imum likelihood output sentence. For each word hypothesis se- 
quence W = Wl Wz ... W, , where w; is the i-th component word 
hypothesis, let W ;  = CilC;z ... C i s ,  , where Cik is the k-th com- 
ponent character of W ;  and si is the number of characters in W; 
, recalling that a Chinese word is composed of several characters. 
Then 

p(w) = p(w1, WJ, ...I wm) 
= P(C1101p.. . CIS1,. . . , Cil ..,c;si, , , . ,c,Ic,J.. . CmS,) --- 

W1 w; W, 

This probability can be approximated by 

p(w) = ~ ( c 1 1 ) ~ ( ~ 2 1 ~ ~ 1 s l ) ~  , .  ~ ( ~ m l ~ C ( n ~ - ~ ) s , , , - ~ )  .,. 
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syllables: [Tzeng-1] [Jab41 [Ji-4] [Yi-4] [Li-4] 
I I-,- 

0 0 
0 0 0 0 .  
0 0 0 0 .  
0 0 0 0 .  

Figure 4: A partial list of an example word lattice. Each 
rectangle is a multi-character word, while each square 
is a mono-character word. 

As can b e  found i n  Fig.5, this probability only considers t h e  
conditional probabilities for boundary  characters i n  those adj, 
cent word hypothesis, b u t  ignores the  conditional probabilities for 
characters within a word hypothesis, P(C ik l C i ~ ~ - l ~ ) ,  2 5 k 5 S; 
within W; . This  is because the  characters within a word hypoth- 
esis a r e  fixed and known, t h e  conditional probability for adjacent 
characters can  t h u s  b e  assumed t o  b e  unity, when the  word hy- 
pothesis i s  already constructed on t h e  word lattice. In this way, 
the  sentence hypotheses including longer word hypotheses will 
have  higher probabilities. Therefore t h e  longer word hypothe- 
ses will automatically have  higher priority t o  b e  chosen, because 
they a re  i n  fact  more  reliable as mentionedpreviously. T h e  word- 
lattice-based character b igram was trained in a similar way, i.e., 
t h e  words i n  t h e  training corpus were first segmented, and the  
bigram probabilities for t h e  boundary  characters were t h e n  esti- 
mated .  Note  t h a t  such a character bigram of 10 ‘ 10‘ probabili- 
ties i s  relatively easy to handle and relatively robust wi th  respect 
t o  insufficient training corpus, b u t  t h e  wordla t t ice  discussed pre- 
viously can  effectively enhance t h e  capabilities of t h e  character 
bigram t o  approximate a word bigram. In Golden Mandar in  (11), 
the  character b igram was trained b y  a corpus of 6 million char- 
acters taken  f rom newspapers,  magazines, and so on, and the  t o p  
several base syllables and tones from the  subsystem 1 are  included 
i n  t h e  word lattice. 

IV. REAL TIME IMPLEMENTATION AND 
CONCLUDING REMARKS 

In t h e  real-time implementation of the  Golden Mandarin (11) 
all necessary computation is performed i n  a single chip Motorola 
DSP 96002D, and t h e  complete machine is implemented on an 
Ariel DSP-96 card  inserted i n t o  an IBM PC/AT, while a Pro- 
P o r t  Mode1/656 acts as t h e  front end  for acoustic signals. T h e  
waveform of t h e  input  unknown syllable is filtered and sampled i n  
ProPor t  and transformed in to  16-bit integer format,  DSP96002D 
t h e n  sponsors all the  following processes including endpoint de- 
tection, pre-emphasis, Mandar in  syllable recognition and the  Chi- 
nese language model. Preliminary tests indicate that i n  average 
i t  takes 0.36 sec for t h e  machine t o  dictate a character,  which is 
exactly real-time, and the  character correct ra te  is a round 95%. 

Golden Mandarin (11) is t h e  second version prototype sys- 
t e m  developed i n  a long t e r m  project,  in which t h e  goal is to 
solve the  difficult problem of input  of arbitrary Chinese text in to  

Figure 5: The probability estimation in the word- 
lattice-based Chinese character bigram 

computers using Mandarin speech. As compared to t h e  first ver- 
sion, this machine is based on a single chip wi th  all algorithms 
significantly simplified, but provides improved character correct 
ra te  at higher speed. This i s  achieved b y  many new techniques, 
primarily a segmental  probability modeling technique for syllable 
recognition specially considering t h e  characteristics of Mandar in  
syllables, and a word-lattice-based Chinese character b igram for 
character identification specially considering t h e  s t ruc ture  of Chi- 
nese language. 
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