
SPICE Compact Modeling of PD-SO1 CMOS Devices 

Jameb. B. Kuo 
Dcpt. of Electrical Eng. Rm. 338: National Taiwan University 

Roosevclt Rd., SCY. 4, #1, Taipei, Taiwan 106-17 
Fax:886-2-2363-6893; Tclc~honc: t386-2-~36~2~~8 

E in ail : j I-, kuo@cc. ec>. nt U. rdu . t I,,- 

" Abstract 

This paper presehs PD-SO1 SPICE, which is based 
on compact BiCMOS cha-ge-coiit.ro1 nioclels and includes 
second-order effects, electron and lattice teniyeratures, 
for circuit sirnulation of low-voltage CMOS circuits using 
deep-subInicrori partially-depleted (PD) SO1 CMOS de- 
vices. This PD-SO1 SPICE perforins transient simulation 
of tlie write-access critical path in an SRAM cornposed of 
42 P D  SO1 CMOS devices without convergence problerns, 
which are cor~i~iio~ily e1ic:ouIitered while niocieling PD de- 
vices due to kink effects. 

Summary 

1 .Introduction 
SO1 CMOS technology has been becoiriirig another rna- 

jor technology for VLSI [I]. Part.ially-depleted SO1 CMOS 
technology has been used to integrate high-speed niicro- 
processors[2] [3]. Due to convergence problems corning 
from t,he kink effect[4] ~ simulation of VLSI circuits using 
putiitlly-depleted SO1 C.'MOS devices has been difficult. 
In this paper, using a set of conipact BiCR4OS cllarge- 
control riiodels, PD-SO1 SPICE performs transient. simu- 
lation of the write-access critica.1 path in ail SRAM; coin- 
posed of 42 P D  SO1 CMOS devices without con\~geiice 
prohleiii; which axe commonly encouiitered while nioclel- 
ing P D  devices due to their kiiik effects. 

2.PD Model 
Fig. 1 shows t.he compact BiCMOS charge-control mod- 

els of the P D  SO1 NMOS de~ice[5], which are cornposed 
of the MOS portion at t,he surface a~icl the BJT portion 
with its base formed by the neutral region and its emit- 
t.er/collector for1nec-l by soulce/tlrain at  the bottom of t,lie 
silicon thixi-film. The MOS portion is cornposed of the 
para.sitic source/dra.in resistances (Rj./Ru)! the surface 
chaririel current (Zr) , the re1at.d terrnirial capacitances 
(C'i j  j 1:;  j = D, G! 5'; a), awl t,he impa.ct ionimtion cur- 
rent. ( I i i ) .  In the BJT portiou, Gurrirnel-Poon niodel 
has been adopted t.o include the diode currents ( I d i o d e ,  
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Fig. 1: Compact BiCMOS chargc!-coutroi "lis for deep- 
submicron P D  SO1 NMOS devices used in PD-SO1 SPICE. 

~ g I , l i ~ ( , ~ )  xid  the gener~tion-reconihiri~tion curerit ( Iy7.) 
in t,he ba.se-source/drain junct,ions. In addition, the nio- 
bile charge (QP)  arid the junction space charge (&v) are 
included. As shown, RB and CS,,~ are used t,o account 
for the extra parasitic resist,ance anti capacitance. In acl- 
dition, small-geonxtry effects, body effect! electron tern- 
pera.ture aiid lat,t,ice t,emperature by inclusion of therim1 
effect for deep-submicron PD SO1 CMOS devices have 
been includeti. IJsirig this set of cornpact BiCMOS cha.rge- 
control equivalent circuit models for deep-submicron P D  
SO1 CMOS devices, PD-SO1 SPICE can perform tran- 
sient simulation of VLSI circuits accurately wihliout con- 
vergence problems. 

3.Lattice & Electron Temperatures 

Fig. 2 shows t,he transient perforinance in terms of tirain 
current, lattice and electron temperatures, arid efiective 
mobility of a .PD SO1 KMOS device with a channel length 
of 0.2pnij a channel width of IOprn, a. gate oxide of 70A, 
and a silicon thin-film of lOOO-&, considering the therma.1 
effects: a thernial capacitance of C.r-fr'= 7 x 10-'"J/K 
arid a thermal resist,a,nce of R.I.I., = 2 x 104K/W am1 

from I)\' to 2V with a rise/fa.ll time of 0.111s is imposed (xi 
8 x lU3AK/T-II' based 0 1 1  PD-SO1 SPICE result,S. -4 pulse 
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Fig. 2: ‘li.ansieiit pc:rhonnant.e of a 0.2/tm P D  SO1 NMOS device 
in terms of drain current: litttice arid clectrori temperatures and ef- 
rcctivc mobility, based on I’D-SO1 SPICE results. 

the input of the PD SO1 KMOS device, which is biased at 
1 . 7 ~ ~  = 2 V .  When the ga,te voltage rises from OV to 21’: 
the drain current rises to the maxirriuni value. However, 
due to the heat generated by the power consurnption, t,he 
1at.t.ice ternperabure hicreases gradually. Duririg t iirIi-ou 
of the device, the electron temperature decreases slightly. 
The electron mobility, which is related t o  the electron arid 
the latcice temperatures: reacts accordingly. Hence, t.he 
drain current decays gradually. When \ . i ~  swit,ches from 
21: to (I\‘) the device turns off. Therefore! the lattice tem- 
perature decreases slowly. When the lattice teinpera.ture is 
not back to the room temperature, if Vc; turns high again, 
the peak dra.in current will be lower than the previous peak 
value. With a larger thermal resistance: the decrease in 
the draiii current, due t,o t,hermal effect. is 1l1ore iiot,iceable. 
Due to a longer thermal time coristarit. ( R ~ & ’ ~ ~ ~ ~ )  at a 
larger R7.1, the tirile for the lattice tempra.ture to reach 
thermal equilibriurii is longer. 

.73 
i o  

0.6 - 

0 0.2 0.4 0.6 0.8 1 1.1 1.4 1.6 1.8 2 

Fig. 3: (a) L)raiii current jb) body-source voltage characteristics 
of a PI.) SO1 NMOS device biased iri the subttirestiold region, with 
its body iio& floating: based on the €’L)-SOl SPICE results: and 
measured data.  

4.Subthreshold Kink 
Fig. 3 shows the subthreshold drain current charac- 

teristics of a PD SO1 NMOS device biased at  various 
drain voltages and with its body node floating; based on 
the FD-SO1 SPICE results arid t,he experiinentdly mea- 
sured datn[6]. As shown in the figure, as predicted by 
the PD-SO1 SPICE results arid coIifirrried by the experi- 
rnentdly rrieaured data, when the drain voltage exceeds 
l.lI’? a larger drain voltagc lea.& to  a steeper subthreshold 
slope-the subthreshold l\:ink effect. In the subthreshold 
kiiik effect region, when the tirain voltage is increasedl its 
impact ionizat.iori current dso leads to the accurnulation 
of holes in the neutral region. Therefore; the body-source 
voltage is raised arid the threshold voltage of the surface 
MOS port,ion is lowered and its drain current. increases 
suckle~ily- its subthreshold slope is steeper as cornpared 
to the case without kink effects. As shown in the figure, 
as verified by the experirnentally inea.sured data, PD-SO1 
SPICE predicts the subthreshold kink effects well. 

5.Circuit Examples 
Fig. 4 shows the transient wasefomis of an inverter ciri 

cuit usirig body-floating PD, body-tied PD aiid DTMOS 
PD so1 CIVfOS devices with a channel kn@h of 0 . 3 p i  arid 
a channel width of 10pn; a.t 1’1)~ of 0.7V, based on PD- 
SO1 SPICE aiid MEDIC1 result,s. As shown in the figure, 

2 



1 

A : MEDIC1 Results - : PD-SO1 SPICE Results tax1 644, t o e  = 4000H 
L- 0.3pm, W = 1OFm 

Time (ns) ' 

Fig. 4: .hintricnt wavel'irnis of' a,u iuvcrter circuit usirig body- 
floating, body-tied and D'1'hIOS P U  SO1 CMOS devices, based cm 
I'D-SO1 SPICE, aiid MEDlCI rcsultu. 

the DTMOS one has the faster switching speed, follo-ived 
by the body-floating one. The body-tied to Vbn/GKD 
(for PRIOS/KMOS) one 1ia.s the slowest speed due to body 
effect.. Fig. 5 shows the write t.ransient waveforms of a 6T 
SRAhl rneinory cell (a) and a t,wo-port 6T SRAM niem- 
ory cell with single-bit-line siinultaiieous read-and-write 
access (SBLSRWA) capability (b) 171 using 0.2pm body- 
floating(a) arid DTMOS(b) PD SO1 CMOS devices, based 
on PD-SO1 SPICE and MEDIC1 results. As shown in 
the figure, as verified by the MEDICI result, the PD-SO1 
SPICE results predicts the transients well. Fig.6 show 
(a.) the write t,ra.risient maveforins of an SRAhl critica.1 
path with 42 body-flwting and body-tied P D  SO1 CMOS 
devices and (b) lattice and electron t,empera.tures of the 
body-floating PD SO1 KhlOS devices in the SR-khl criti- 
cal path, lmseci on PD-SO1 SPICE aiid MEDICI results. 
-4s shown in the figure, due to the srnaller magnitude in 
the threshold voltage of the precharge body-floating SO1 
NMOS device connect.ed to the hit lines, after precharge, 
the bit lines (BL) is set at a higher voltage for the hody- 
floating case. Therefore, a. slower sensing speed can be 
seen for the body-floating case. As shown, the trend on 
the elect,rori teriiperat.ures follows the voltage curves ancl 
the wriation of the lattice temperatures is not noticeable. 
Via using coinpact BiCIvlOS c:harge-cont.rol eyuivaleiit cir- 
cuit models, PD-SO1 SPICE yerforriis trarisierit sirnulation 
of an SR.Ak1 critical path having 42 PD SO1 CMOS cle- 
vices without coIivergence problems: which are coirirrionly 
encountered while modeling I'D devices due to kink ef- 
fects. 

1.5 
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Fig. 5: Write transieut waveforms for (a) a 6~ S R ~ W  memory cell 
using ll.2jmi body-floatiug PD SO1 CMOS devices aud (b) a two-port 
GT SILIM niemory cell with single-bit-line simultaneous rc:anl-md- 
write it(:cxss (SBLSRWA) capability using DTMOS PD SO1 CMOS 
dcvices(5). b i L d  011 PI)-SO1 SPICE MIEDICX wsults. 

cuit simulation of low-voltage CMOS circuits using deep- 
subniicrori patially-depleted (PD) SO1 ChiOS devices has 
been described. Via using BiChlOS charge-control mod- 
els, PD-SO1 SPICE performs transient siiriulatioii of the 
write-access critical path in ai SRAM coinposeti of 42 PD 
SO1 CMOS rleyices accurately without convergence prob- 
ler~is, which are coni~iiorily encountered while nioclelirig 
F'D devices due to kink effects. 
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Fig. 6: (a.) kVrite transient. waveforms of an StL'IAjI critical path 
with 42 body-lloahg and body-lied P D  SO1 CMOS devices, based 
on I'D-SUI SPICE results. (b) Lattice and electron icniperaturcs 
of the body-floating P U  SO1 N310S devices in  Ihr SHAM critical 
pa.th: based on PU-SO1 SPICE results. 
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