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Abstract

We used back propagation neural network for cardiac wall motion detection on
catheterization angiocardiography. Phantom images of two circular discs were generated to
simulate the left ventricle. Training data sets were selected from the phantom images. After
training, the neural network can perform cardiac wall motion detection for the phantom

one patient with normal cardiac wall motion and two patients with abnormal cardiac wall
motion were acquired for cardiac wall motion detection. The results were displayed in the
formats of vector fields superimposed on the original angiocardiographic images. The study
showed that back propagation neural network was useful in the evaluation of cardiac wall
motion on catheterization angiocardiography.

1. Introduction

Cardiac wall motion detection is an important analysis of various kinds of cardiac
images, such as catheterization contrast angiocardiography, cardiac ultrasonography,
and cardiac cine MRI. The analysis is useful for the clinical diagnosis of various heart
diseases. The conventional approaches for motion detection were matching, gradient
methods, pattern recognition, temporal texture, optical flow methods [1], block-based
methods, pel-recursive methods, and Bayesian methods [2]. Motion detection by neural
networks is a relatively new method, and has become more successful in various kinds
of simulation studies. Local motion detection and its extension for arbitrary motion
detection were achieved by back propagation neural network [3]. Detection of moving
and standing objects was achieved by cellular neural networks [4]. In our previous
study, the neural network was useful in cardiac wall motion detection of Tc-99m MIBI
myocardial GSPECT [5]. The catheterization contrast angiocardiography is an
important imaging modality for the evaluation of cardiac wall motion and very useful in
the clinical study of various heart diseases [6]. In this study we used back propagation
neural network for cardiac wall motion detection on angiocardiography.

2. Material and methods

2.1. Back propagation neural network

We used a three-layer back propagation neural network for motion detection (Fig. 1).
For any arbitrary center pixel (i, j) with its surrounding 8 pixels, the 9 pixels form a 3x3
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Figure 1. Three-layer back propagation neural network consists of 18
nodes in input layer and 9 nodes in output layer.

matrix. The brightness values of the matrix I(tn) and the next image I(tn+1) of the same
location were selected as input data as an 18x1 column vector:
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The input data were chosen in the format of 3x3 matrices so that the algorithm can act
like a convolution mask filter for all pixels in the images. The brightness values
between 0 and 255 were linearly transformed into the interval between 0 and 1. The
column vector was fed to the input layer. The hidden layer consisted of 14 nodes. The
unit functions for input layer and hidden layer were logarithmic sigmoid transfer
function.
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There were 9 output nodes. The first output node represented no motion of the center
pixel between the two successive images. The rest 8 nodes represented 8 directions of
motion of the center pixel. The assumed output node was activated according to the
motion direction of the center pixels between the two successive images (Table 1). The
back propagation was Levenberg-Marquardt back propagation that updates weight and
bias values according to Levenberg-Marquardt optimization. The back propagation is
used to calculate the Jacobian of the performance with respect to the weight and bias
variables. The learning function was gradient descent with momentum weight/bias
learning function:
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dW = mc * dWprev + (1-MC) * LR * gW (3)

where weight change dW for a given neuron was calculated from the neuron's input,
error, the weight or bias learning rate LR, and momentum constant MC, according to the
gradient descent with momentum. The performance function was mean squared error
performance function.

2.2. Training data sets extracted from phantoms

Phantom images were designed as two circular discs with diameters of 84 and 81 pixels.
The discs were filled with representative pixels taken from a 10x10 rectangle on the left
ventricular center (i0, j0) to simulate the inhomogeneous contrast medium. For the systolic
sequence, the larger circular disc was placed at time tn and the smaller disc was placed at time
tn+1 (Fig. 2). There is contraction of 1.5 pixels along the margin of the circular discs in the
systolic sequence, simulating roughly the contraction of the left ventricle. The motion of
contraction was assumed only around the margin of the discs of the left ventricle. The
directions of motion were given by
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The expected output node for each pixel could be derived by the direction of motion. For the
diastolic sequence, the smaller disc was placed at time tn and the larger disc was placed at
time tn+1. There was expansion of 1.5 pixels along the margin of the circles in the sequence,
simulating roughly the dilatation or relaxation of the left ventricle. There were total 3137

Table 1. The examples of training data sets taken from phantom images, in
relation with their assumed directions of motion, motion vectors,
and assumed output nodes.

Examples of training data sets
(for 18 input nodes)

Directions of
motion Motion vectors

Assumed output
nodes

( 0, 0 ) 1

( 1, 0 ) 2

( 2/1 , 2/1 ) 3

( 0, 1 ) 4

( 2/1 , 2/1 ) 5

( -1, 0 ) 6

( 2/1 , 2/1 ) 7

( 0, -1 ) 8

( 2/1 , 2/1 ) 9
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Figure 2. A phantom circular disc randomly filled with the representative
pixels to simulate the left ventricle (a). Motion vectors were
assumed along the margin of the contracting circular disc (b).

training data sets selected from the phantom images. The neural network was trained
until a convergence of less than 0.01 was achieved. After training, the neural network
can perform motion detection for the phantom images and the whole sequences of

The computation was implemented by a personal computer
with Pentium-IV 1.5GHz CPU and 768MB RAM, using MATLAB v6.1 (Mathworks,
Inc. Massachusetts, U.S.A.) with neural network toolbox v4.0. The averaged training
time cost about 7 hours.

2.3. Motion detection on p angiocardiography

The angiocardiography was done routinely with Philips Integris BH5000 (Philips Inc.,
U.S.A.). The LAO view images of the left ventricle were acquired by fluoroscopy. The
cine movies were output onto DICOM III CD-ROM. The serial images were 512x512
matrices with frame rate of 30 frames per second. Three patients were selected. One
patient had normal cardiac wall motion over the left ventricle. The other two patients
had heart disease with abnormal cardiac wall motion. For general patients, there are
usually 20 to 30 frames of cine angiocardiographic images in each heart cycle. The pre-
processing of the cine images were gray scale modification and re-sampling to reduce
the matrices to 128x128. The gray scale modification was linear and made the gray
scale of left ventricular contrast medium to be about 0.08 (20/255) and the brightest
area to be 1. After pre-
network for motion detection. The outputs of the motion detection were displayed in
motion vector fields superimposed on the original image at time tn. The neural network
can perform motion detection for all series of the sequential images at any time tn and
tn+1. The motion detection for the whole sequence of systolic and diastolic motion cost
about 30 minutes.
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Figure 3. Motion vectors of normal cardiac wall motion. Centripetal motion
(arrows) was observed in the systolic sequence (a), and
centrifugal motion (arrows) in the diastolic sequence (b).

Figure 4. Motion vectors of a patient with abnormal cardiac wall motion.
Inconsistent centrifugal motion (arrow head) was observed over
the septal wall in the systolic sequence.

3. Results

The outputs for motion detection on the phantom images showed good performance
with 100% accuracies for both systolic and diastolic phantom sequences. The result was
displayed in the format of vector fields superimposed on the phantom image and
showed the same as Figure 2b.

The results of motion detection on patient angiocardiography were displayed in the
formats of vector fields. For the patient with normal cardiac wall motion, the systolic
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sequence showed normal centripetal motion over the lateral wall, anterior wall, and
septum (Fig. 3a). The motion of the catheter was also detected and shown. In the
diastolic sequence there were normal centrifugal motion over the anterolateral wall,
lateral wall, inferior wall, and septum (Fig. 3b). There was turbulent flow with the
contrast medium observed over the upper part of the left ventricle.

Motion detection the diseased patients with abnormal cardiac wall motion showed no
motion (akinesia) over the anterior wall and inferior wall, and some inconsistent
centrifugal motion (dyskinesia) over the septum (arrow head in Fig. 4). In the diastolic
sequence there was no motion observed over anterior wall, septum, and inferior wall
(Fig. 4). The results of motion detection by the neural network can reflect akinesia and
dyskinesia of the abnormal cardiac wall motion. The above results were consistent with
the ultrasonographic and angiocardiographic findings, which were made by the
experienced cardiologists.

4. Conclusion and discussions

The construction of phantom images and selection of training data sets are important
for the performance of the back propagation neural network. The more the phantom
images resemble the original images, the better the performance. Because the left
ventricle of a real patient is never ideally circular, extracting training data directly from
the boundaries of the left ventricle cannot easily be implemented. Constructing the
phantom images by two circular discs was a more intuitive and simpler way. The
convergence of the training process and good performance revealed the appropriateness
of the phantom construction. The fuzzy reasoning and the fault tolerance of the neural
network allowed the detection of more complex motion of real patients images than the
ideal phantom images.

The performance of motion detection by the back propagation neural network was
perfect for the phantom images. The performance of motion detection by the neural

of normal wall motion and akinesia showed acceptably good results. The results were
obvious by visual inspection on the vector fields. The study showed that back
propagation neural network was useful in the analysis of cardiac wall motion on
angiocardiography. The study suggests that other cardiac imaging modalities, such as
cardiac cine MR or electron beam CT may gain useful information by this method.
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