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Abstract

This paper will address the problem of
controlling an unknown MIMO nonlinear affined
system. A fuzzy sliding mode controller (FSMC)
is used to approximate the equivalent control by
using an on-line fuzzy adaptation scheme, and
then the hitting control is appended to show that
the proposed FSMC can result in a closed-loop
system, which is stable. This scheme also
provides the designers flexibility to design and to
implement fuzzy rule base without domain
experts and without mathematical model. The
robust adaptive scheme is shown to be able to
guarantee that the output tracking error can
converge to a residual set ultimately by a two-
dimensional inverted pendulum system.
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1 Introduction

Sliding mode control (SMC), or variable
structure control, employs a discontinuous
control law to drive state trajectory toward a
specified sliding surface and maintain its motion
along the sliding surface in the state space [1, 2,
3]. It has successfully been applied to a wide
variety of systems having uncertainties and
invariance to unknown disturbance [4]. However,
the control chattering problem caused by the
discontinuity of the control action is undesirable
in most applications [5].

Recently, integrating fuzzy set theory and
SMC into fuzzy controller design have acquired
superior performance [4, 6, 7, 8]. This approach
retains the positive property of SMC but
alleviates the chattering, and the fuzzy control
rules can be determined systematically by the
reaching condition of the SMC. Therefore, the
major difficulty of the method is to
simultaneously guarantee the stability of the
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fuzzy control system as well as to obtain a
suitable equivalent control system if the system
dynamic model is unknown in advance.
Furthermore, it is usually difficult to directly
extend the design approach into multiple-input
multiple-output (MIMO) systems when the
system dimension increases and the coupling is
unknown.

This paper will address the problem of
controlling an unknown MIMO nonlinear affined
system. First, a FSMC is used to approximate the
equivalent control by using an on-line fuzzy
adaptation scheme, and then the hitting control is
appended to show that the proposed FSMC can
result in a closed-loop system, which is stable.

2 Problem formulation

Consider a MIMO nonlinear system whose
equations of motion can be governed by

y" = f®)+Gxu
y =[}’1,"‘;}’m]T
yO =y, ym) T denote the output vector

M

where and

and its derivative, respectively, r=[r,-,1,]
with Z::lri =n is defined as the system
relative degree, u ={u,,"-,u,,)" is the input,

¥ =0y, 1 =y yV0 ey OV
is the state vector, f(x)=[f;(X),,f,OI7,
G(x)=[8(x),~8n(¥)] fi(x) and g;(x)=
[, (%), 8 (X)) are unknown functions.

Let y4 =[Ya Vg Y5 V1" represents the
known desired trajectory for y (), i=1,---,7.
Let the tracking error as g=[e1,--',em]T with

€ =Yg~y Vg~ }.'h""yz(i?_l)_' Yi("'—l)]T )
and A=[A,, - A;], with A, =[e,-,a; 1"
€ R" be such that all roots of the polynomial
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are in the open left-half plane, i =1,---,m . The
control aim is to determine a controller for the
composite nonlinear system described by (1) so
that the tracking error e =[e,,"-,e,,]° will be
attenuated to an arbitrarily small residual
tracking error set.

Conceptually, the control strategy consists
of two design goals: the first is to force the
system toward a desired dynamics and the
second is to maintain the system on that
differential geometry. The equivalent control
G, is estimated by using an adaptive
mechanism that forces the system state to slide
on the sliding surface. Another is the hitting

control @, that drives the states toward the

sliding surface. Thus the control law can be
represented as

@

(disturbance)
d

Fig. 1:The configuration of the adaptive fuzzy
sliding mode control system

3 Design of the fuzzy sliding mode
controller

The proposed robust fuzzy sliding mode
controller is composed of the following three
parts: a MIMO SMC, a fine-tuning mechanism
on the consequent membership functions of
multi-layer fuzzy system, and a decoupling
network. Fig. 1 shows the configuration of the
MIMO sliding mode controller and the
interconnections compensating network of the
adaptive fuzzy control system. The multi-layer
fuzzy system and the decoupling network are
nominal designs based on on-line approximation
of the unknown nonlinear functions of the plant,
The fine-tuning mechanism is designed to
encounter the equivalent uncertainty resulted by
the plant uncertainty, the function approximation
error, or the external disturbances.

For the systems given in (1), the ith sliding
surface is s;. Hence, this MIMO SMC also has

m switching surfaces to form a switching
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manifold so that the system exhibits desirable
behavior when its trajectories are confined in the
sliding surface. Define a generalized error vector
as follows:

§= [sl(elyt)ysz(ez;t)s"'ssm(em!t)]T

R-1) (r-2)
ef TV toyet T A0 ey

€ el

&)

ot 0 1€

emV ta, e D v, e,
Since (5) satisfies Hurwitz stability criterion
from (3), maintaining system states on surface s(t)
for all r>0 is equivalent to the tracking
problem y =y, . The tracking control problem
can be formulated by keeping the error vector ¢
on the sliding surface defined as follows:

n-l (n-i)
a;e’t
it 11

n-l (ry~i)
o -y 4] Ty o

S ot
i=1

mii“m

In the design of sliding mode controller, an
equivalent control is given first such that each
state Lyapunov-like condition holds for system
stability [2]:

1ehHy<nls| 1 >0, i=1m
or in sum:

~1-ii—.(szs) < —in»ls‘l, 7, >0,i=L-,m (8)

2 dt HW i

i=1

Therefore the control problem is to obtain the

©

Q)

optimal control input #" that guarantees the
sliding condition (8).

If the control of nonlinear MIMO systems (1)
uses SMC directly but does not take the
interconnections among  subsystems into
consideration, then the control law #° can be
chosen as follows

S el
R Bl n=D
W =D 2 %2e2" " |- f(x)+y§ - Ksgnis))
St
fi=1
where K is mXm positive definite diagonal gain
matrix, D = Block diag[gﬁ] and

K sgn(s) =[K, sgn(s,), -, K, sgn(s, )" (10)
where K; >0and sgn(s;) is defined as

)

1 5>0
sgn(s;)=<0 s, =0 (1)
-1 s5;<0



Fig. 2: Diagrammatic representation of fuzzy
system with adjustable rule credit assignment.

Since exact decoupling requires exact
mathematical model of the controlled plant, the
interconnections compensating network is
needed. The proposed fuzzy sliding mode
controller has a neural part to release the
interaction among the subsystems and a fuzzy
part to asymptotically cancels the non-linearity
in the system. The output of the controller is
combined with #° and its modification by
decoupling network

u(®) =u’(t) + Mu® (¥ 12)
_ To derive a stable weight adaptation in control
matrix, the matrix M be chosen as

M=-1,+C'D)?! 13)
where I, denotes a m X m identity matrix and

0 g &im
c=|fn 9 o 8 (14)
&m 8m ' 0

Using (9), (12), (13) and the matrix inversion
(A+BCD) ' = A - A7 B(DAT'B+C ) DA™
[91, the formulation of SMC resolves into

n-1 —
il=1 a“ef" ?
nl o (n) 15
u=G( %aes’ —f(x)+y5,"—xsgn(s»( )

=1
2’“‘0; e Un=D)
i=1 mm
where G=C+D . By plugging # into (6), we
will have §=-Ksgn(s) . Thus, the sliding
condition (7) can be easily verified.
However, f and G are unknown, only their

estimations G and f can be used to construct &.

To solve this problem, we propose the adaptive
scheme using the fuzzy logic system.

4 Description of the adaptive fuzzy
system

The fuzzy system can uniformly approximate
nonlinear continuous functions to arbitrary
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accuracy [10, 11]. Thus we will introduce fuzzy
systems, which are expressed as a series
expansion of fuzzy basis functions, to model the
uncertainties G(x) and f(x) by tuning the
parameters of the corresponding fuzzy systems.
The basic configuration of the fuzzy logic
system comprises four principal components:
fuzzifier, fuzzy rule base, fuzzy inference engine
and defuzzifier [10]. The configuration of the
fuzzy system with adjustable rule credit
assignment is shown in Fig. 2 [12].

The fuzzy logic system performs a mapping -
from UcR" to VcR™. Let U=U,x---xU,
V=V, XXV, U,cR ,
k=120 and V;C R, i=12,;m . A

multivariable system can be controlled by the
following N linguistic rules

RY: IF Xy isAf and --- and x,, isA,’,

THEN z,is B and --- and z,, is B, (16)
where [=1,---, N, x;,k=12,---,n, are the input
variables to the fuzzy system, z;,i=12,---,m,
are the output variables of fuzzy systems, and the
antecedent fuzzy sets A,i in Ug and the

and ‘where

consequent fuzzy sets B! in V; are linguistic
terms characterized by the fuzzy membership
functions u A,i(xk) and /,tB:(z,-) . The fuzzy

logic systems with center-average defuzzifier,
product inference and singleton fuzzifier is
defined as [10]

N
2H @ g
N o

P )

where ! (x)=Ij u 4 (%) is the matching

(%)=

an

degree of the Ith, and g is the center of the
consequent membership function of the Ith rule.
If g; is chosen as the design parameter, the

adaptive fuzzy system can be viewed as the type
of neural network.
Therefore, (17) can be rewritten as

2(x)=¢"y(x) (18)
where ¢ =[q},--,¢/'}7 is a parameter vector,
and y = (&,,+-,Ey)" is a regressor, and where
the fuzzy basis function is defined as [10]

HZ=1I-‘A; (x)

51 = N
ZH G;Lu“ met ))

(19)



5 Learning algorithm and
performance analysis
In this section, we show how to derive an

adaptive law to adjust the regulating factor such
that the estimated equivalent control 4,, can be

optimally approximated to the equivalent control
of the SMC under the situations of unknown
function f and G. Then, we construct the hitting
control to guarantee system’s stability.

We now define the control u=i,, +i,

where auxiliary input as
i D
2"]:1 a”el'l '
Bl i)
.y =G 2y Ot
el i
m (=)
Zi:[ i€

and the hitting control &, = G 'u;,. Define the

—F@+y5” +Ksgn(xma)

parameters 6: and w,-;- of the best function
approximation as

6; =arg min [sup | f;(x)~ fi(x16)1]

€ xeQ_

w; =arg min [sup | g;(x)~g;(xwy)1] 21)

Wy xeQ

0

where Qg and ng are constraint sets for 6;
and w; , defined as Q, ={9, jo|<M,, } and

Q,, ={w; 1”,‘.}!5 My, ) where Mﬂm M Wy tas

are specified by the designer. The fuzzy logic

systems f,(x16,) and 8;(xtwy) are
fi(x16)=0]¢; ()=, (x)6; (22)
gy(xlwy)=wit, ()= (0w,  (23)

where & £(x) and ég(x) are vectors of fuzzy

bases, 8, and w;

¥
parameters of fuzzy logic
equation (6) can be rewritten as
§=[F69)~ £+ IG(x) - G(x)lii,, ~u, =K -5g0(5) N5
=18 - Fale N+ [y~ Glafw iy
+8 s +8al., ~uy — K -sgn(s)-n,

are the corresponding

systems. Thus

=T ~ 7 - -
0, ¢ f leigg W12§g ' Wlmég Ueq1
=T ~ ~T ~7 -

. 6, ¢, + nggg Wby v Wby [ Be2
aT ~T ~T ~ ~
0087 [Pmbe Wmbe - Wmmby | Yeam

K, -sgn(s;) Na;
K, -sgn(s;) Naz

—uy +g/ +gGﬁtq

Km ’Sgn(sm)'nAm
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*

i denotes the

parameter estimation errors, the minimum
approximation errors as

{r=f@)-Fx187), {5 =Gx)-GxIw).
Our design objective involves specifying the
control and adaptive laws for 6; and w; such
that the sliding condition (8) is guaranteed.
Theorem 1: Consider nonlinear plant (1)

with controller (4), the tracking error allows us
to use the following adaptive law

~ * ~
where 6, =6, -6, , W; =w; —w

6; =-s,7y o
Wi ==5;ByS,llg =
up; =sgn(s) f; Ypnax +2j=1‘ 85 loux eg I(26)

r~1 .1
+lyh L+l ij:laliei(r’ n
Proof: Now consider the Lyapunov candidate
V=V+V, +---+V, @2n

T Ty m ~T o~
where V; =1(s;5;+ 16, 6,‘+2]_=j;w,-jwij) .

By the fact §; =6, , fv‘v =w; , we obtain the
derivative of V, as

V=V ++V,,

s _Ta L 1ATH moy T
V; =sj s,-+7i8,- 0"+2;'=1WW‘7W""

(28

=Si[6.'T€f +8s+ (Vv.-fég + 86y Vtey

j=1
o~ m T
~K; -sgn(s;) -1y —um]+%9i79, +Zj=lil—w,-§w,j
= 7‘,‘97[3:'7;5,* +8,1+ zdel”W;[siByégﬁqf + W.,]
m A
+5;8 5 —5;K; -sgn(s;) 1y + sizi_ICGijucqj = Silp
If we choose the adaptive law as 6; = —s;78 ¢

and Wy =—s;B,E,i,, , then

. m N
VissGp+ Sizj=1€6ijuﬁ = S;lby

where we use the fact that u; has the same sign
with 8.

In order to complete the FSMC design, it is
necessary to show that the hitting control is
enough to force the state trajectory toward the
sliding surface as well as to establish asymptotic
convergence of the tracking error. Consider the

Lyapunov function candidate:
V,=1s] (29)

Taking the derivative of (29), one has



B m N ri—1 (r;-1)
Vi=s5:(-f; _21’=1 8ijleqgi +2j=1aljei !

+ Y5 - Sy 30)
To ensure (30) is less than zero, the hitting
control should be selected as

m ~
upi =gl f lpax + j=1|gij lnax 1 ltegj |

ri—1 (r=1)
+yh 1+l Z},’:laljei Dy

This means that the inequality V, =s,5; <0 is
obtained and the hitting control actually achieves
a stable FSMC system.

From the above discussion, we use a FSMC
to estimate the equivalent control of SMC
system. Conceptually, the equivalent control is
desired when the state trajectory is near s;=0,
while the hitting control is determined in the case
of 5;70 [3]. A fuzzy rule base is of the form

Ifs;is ZO Thenw;is u; =i,y @31

Ifs;isNZ Thenu;is u; = ﬁ,qi (32)
where ZO and NZ denote zero and nonzero fuzzy
sets, respectively, and input variable s; is given in
(5). The control law of the fuzzy controller is
u = Hzo (S)ﬁeqi +Unz (S)[ﬁeq +ﬁhi]

' Hzo()+ Uz (5)
where p,,(s) and py,(s) is the membership
functions of fuzzy sets ZO and NZ, respectively.
The membership functions of fuzzy sets ZO and
NZ are selected to overlap and be symmetric to
satisfy fyo(s)+ Upz(s)=1.

Za

+ iy

(33)

(8

w,

Figure 3:An inverted 2D pendulum system.

6 Simulation

In this section we demonstrate the geometric
configuration of an inverted pendulum
manipulator with 2 degrees of freedom in the
rotational angles described by Euler angles g
and g, [13], as shown in Fig. 3. On the

assumption that the rotational angles of the two
planar pendulums are small, motions of the two
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planar pendulums can be considered independent
of each other. The external forces, u; and u,,
are applied to keep the pendulum at the upright
position in X and Y direction, m, and m; are the
mass of the carriage and pendulum., respectively.

The dynamic equations describing the
motion of an inverted pendulum system are
derived by the Lagrange scale function L(q.q)
[14]. After some manipulation, the dynamic
equations are of the following form

H H, g Ci(q,9) u d
[ 1 12 ?1 + 1‘1@ +Z(q)=N 1[4
Hy Hylgy Cy(q.9) uy| |d,
where
— 2 2 a2 a2
Hy =ml*(%+cos® g, +sin® g sin” g,)
22 2 . .2
- %b+n;,)(°052 qycos” g, +sin’ g sin” g,)
252 . .
Hyy = Hyy =1/ ) —my1% 1cos gy sing, cos g, sing,
Hy =mi* (¥ +sin® q, +cos® g, cos” g,)
22 . N
= (0 m)sin® gy sin® g, +cos? g, cos” g)
G = NG+ ) cos g sin gy (cos? g, ~sin® g,)
+ ML Yida(coS? g, —sin? g))cos g, sin g,
+mi?(gf +d3)cos g sin g, sin® g, - 2mI*gig, cos” g cos g, sin g,
Cy = )@ + &5 Ncos” gy —sin’ ) cosg, sing,
+ (m‘l%-v-m,)élq’z cos g sin 41(9082 23 —sin? @)
+mi*(gf +43)sin’ ¢ cosq, sin g, —~ 2myIgydy cosq; sin gy cos” g,
Z =-m, gl[sin g, cos q,,c0sq, sin g, 17

N =mi l: —sin ‘llsqu]
mg+my

€OS q; COS g5

The kinematics and inertial parameters of
the pendulum system are chosen as my =1kg,
m;=05kg , 1=05m , and initial states
4,(0)=g,(0)=0.2rad » ¢,(0)=g,(0)=0rad/s . The
trajectories to be followed are described by two
decoupled linear systems, the desired
coefficients are specified to be a;; =2, o, =1,
i=12. The pendulum is given the following
target joint rotations:
g4, = (m/15)sint,q 4, = (®/15)cost + (7 /30) cost
The membership functions of states ¢;, ¢,, ¢,

€OS gy COS ¢,
—sin ¢, sin g,

and g, (represented by generic variable x;) for
the qualitative statements are defined as
NB:exp(-0.5(x; +0.4)%), NS :exp(-0.5(x; +0.2)%),
PB:exp(—0.5(x; —0.4)?), PS:exp(-0.5(x; —0.2)%),
ZE : exp(-0.5x?) . Consider the design parameters
are given by y; =0.1, B; =0.01, | f; |, =16,
185 lmax =19, K; =1, 71,; =002, i,j=12.
The curves and phase plane of g,(¢) and g(¥)
are given in Fig. 4-7, respectively. From these

simulation results, the track error has been
attennated efficiently. Thus we see that cur



adaptive fuzzy sliding mode controller can
control the inverted pendulum to follow the
desired trajectory without using any linguistic
information.
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Fig. 4:The tracking curves of the g; and g
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7 Conclusions

In this paper, a fuzzy controller based
sliding mode is proposed for the trajectory
tracking of MIMO system with unknown
nonlinear dynamics. When matching with the
model occurs, the overall control system is
equivalent to a stable dynamic system. The

bounds of the fuzzy modeling error are estimated
adaptively using an learning algorithm and the
global asymptotic stability of the algorithm is
established via Lyapunov function. The overall
robust adaptive scheme is shown to guarantee
that the output tracking error can converge to a
residual set ultimately.
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