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ABSTRACT 
A new architecture is proposed for the 

Normalized Delayless LMS (NDLMS) adaptive 

subband filter. The proposed architecture is based 

on the hardware-efficient pipelined architecture for 

the LMS adaptive filter and subband methodolow, 

and it can achieve good convergence 

characteristics, short latency and high throughput 

simultaneously without adaptation delays. In 

addition, it remains the advantage of the NLMS i.e., 

the step size assures that the convergence rate is 

determined automaticalb. Computer simulation 

results that confirm that the proposed architecture 

achieves satisfied convergence rate identical to 

those of the NLMS in frequency- domain. 

1. INTRODUCTION 

In this paper, we propose a new approach for 

the architecture adaptive digital filters (ADFs) 

based on the normalized least mean square 

(normalized LMS: NLMS) algorithm in fkequency- 

domain. It maintains the advantage of the NLMS, 

which is that the value of step-size parameter is 

determined automatically, thereby ensuring 

convergence. 

Recently, the conversion algorithm fiom 

DLMS to LMS [ I ]  is deserved much attention due 

to the. improvement of convergence by adding 

correctional term to the DLMS. Although this 

action improves the convergence, it requires a large 

amount of calculations to be implemented. 

Pipelined processing of gradient-type ADFs has 

been considered [2-51 as a possibly way to meet the 

requirements of processing signals at very high 

speed. The new approach for LMS algorithm was 

classified by Shynk [6] in frequency-domain. He 

has pointed out the frequency domain has primary 

two advantages compared to time-domain 

implementations. The first is the potential large 

saving in the computational complexity. Second, it 

is the DFT and filter bank structures to generate 

signals that are approximately uncorrelated 

(orthogonal) without the effect of delay. It is the 

motivation for us to implement it to transform 

NDLMS to NLMS to save the calculation time in 

frequency-domain. 

This paper is organized as following. Section 

2 is the problem formulation. Then, we give the 

derivation of the proposed architecture in Section 3. 

In Sect. 4, simulation results of the characteristics 

of the proposed architecture with the conventional 

ones are shown. It is shown, in Section 5, to have 

good convergence characteristics, short latency and 

high throughput, which i s  identical to the NLMS in 

frequency-domain. 
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2. Problem Formulation 

NDLMS Algorithm 

Let us consider the least mean square adaptive 

filter with delay problem. The NDLMS has D 

(01 D ~ N ) u n i t s  of delay in the error feedback 

path. An N th tap standard time-domain NDLMS 

algorithm has the following nonblock coefficient 

(weight) update equations: 

(IC) 
= d(n- 0) - w'(n - D+ 6)x(n  - 0) 

D-l 
+ p z e ( n  - 2 0 +  i)x (n - 2 0 +  i)x(n - 0) 

i=O 

where d(n) and y(n) denote the desired signal, and 

output signal, respectively. a and y are some 

constants chosen by user to get the robust step-size 

used for adaptation of the weight vector. 

We can rewrite Eq. (1 c) as 

& ( n - D ) = e ( n - D ) - A ( n ) >  ( 2 4  

+-D) = d ( n - ~ )  - J ( ~ - D + W ~ - D ) - A ( ~ ) ,  (2b) 

D-1 

A(n)  = p x e ( n  - 2 D + i ) x ( n  -2D+i) 'x(n - D) ' 

where ~ ( ~ 1  is the correctional term [l]. By adding 

the correctional term to the error signal of the 

NDLMS, we can decrease the time lag between w(n) 

in Eq. (la). 

(2c)  
, = I  

Consider a block recursion in (1) of the weights 

from time n to time n+L based on the L data 

samples accumulated. Without loss of generality, we 

can substitute n = kL where n is an integer 

multiple of k. The block gradient estimate is given 

by the following summation: 

W ( k + I ) = W ( k ) + 2 p ~ " ( k - D ) E ( k - D ) ,  (3a) 

y ( k )  = C x,,  ( k ) ~ ( k ~  + m - D) , (3b) 
L - l  

4k-0)  =d(k-D)-Wr(k-D+6)dk-D) (3c) 
-44 

D-I 

A(k) = p x  E ( k  - 2 0  + i )X(k  - 2 0  + i ) N  X ( k  - 0)  
,=o 

2 ( 3 4  

where XL(k)is the m-th row of X ( k ) = ~ - l ~ ( k ) ~  

and F is a full matrix (but with rank s 2~ DFT 

matrix. It is also possible to rewrite the output 

vector in (3b) using similar matrix representation: 

y ( k )  = k F - ' Y ( k ) ,  (4) 

k = [ o N  I N 1  ( 5 )  

where k is the following constraint matrix: 

The FFT algorithm should be used to compute the 

The block NDLMS (BNDLMS) algorithm in (3) 

essentially minimizes the same MSE performance 

function as the nonblock LMS algorithm in (1). For 

wide-sense stationary signals, the steady-state 

weight vector (Wiener solution), misadjustment, 

and time constants of the BNDLMS algorithm are 

identical to those of the standard NDLMS algorithm. 

The main difference is that the maximum value of 

the step size such that the algorithm is stable is now 

scaled down by a factor of L [6], [7]. 

The frequency-domain weight vector is similar to 

the block update in (3). Because DFT computations 

inherently perform a circular convolution [6], the 

adaptive filters generally require data constraints in 

order to implement the desired linear convolution. 

Analogous to (1) and (2), define the frequency- 

domain weight vector as 

W(k) = [w&), ..., WM-I(~)]~. 

X k )  = diag{x,(k), ..., xM-,(k)}, 

(7) 

and the input signal matrix as 

(8) 

where diag{.} is an operator that forms a diagonal 

matrix. The number of elements, M, depends on the 

frequency-domain analog filter (FDAF) 

m=O 
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configuration (usually A4 = N or M = 2N). With 

these definitions, the general form of the FDAF 

algorithms can be expressed as 

W(k+I) = W(k) + 2,u(k) X (k-D)E(k-D). (9) 

Where the superscript H denotes complex 

conjugate transpose. Generally, each step size is 

varied according to the signal power in that 

frequency bin. We could have p,(k) = a/(l+ylcY,(k- 

D)ll’) where m is a fixed scalar and Pm(k) is an 

estimate of the signal power in the mrh bin, which 

might be computed as 

Pm(k) = hPm(k-1) + aKm(k)l2, m= 0, ..., N-1 (10) 

where h = 1-a is a forgetting factor. If the data are 

statistically stationary, the step-size matrix may be 

fixed such that p,(k) = pm, or each step-size may 

even be identical. The complete algorithm, which 

was first derived by Dentino et al. [SI, is 

summarized in Table 1. 

Table 1. 
FDAF Algorithm Based on Circular Convolution 
Initialization: 
W(0) = [0, ..., OIT; Pm(0) = S,, m = 0, ..., N-1. 
Matrix Definition: 

For each new block of N input samples: 
X(k) = diag{F{x(kN), ..., x(kN+N-I)}T} 
D(k) = Fd(k) 
Y(k) = X(k) W(k) 
E(k) = D(k)- Y(k) 
P,,,(k) = hPm(k-I) + alXm(k)I2, m = 0, ..., N-I. 
p ( k )  = ,U diag{P;’(k), ..., P \ - ! , ( k ) }  

F = NxN DFT matrix 

W ( k  + 1) = W ( k ) +  2 , U ( k ) X f ’ ( k ) E ( k )  

3. Transform NDLMS to NLMS without Delay 

Effect in Frequency-Domain. 

channel I 

Fig. 1 Adaptive linear equalizer with training. 

One block 

Each FFT has 
N Pants 

Desired - 1  

Fig. 2. Circular-Convolution FD Analog Filter 

This paper is focused on the NDLMS algorithm 

transformed to NLMS which has a linear error 

function, i.e. e(k) = d(k) - y(k). As such, the 

structure of adaptive linear equalizer described in 

Fig. 1 [6]  are often equivalent and it is usually 

straight forward to develop FDAF algorithms where 

the error is computed in either the time or frequency 

domains. The FDAF algorithm based on circular 

convolution is plotted in Fig. 2 [ 6 ] .  

~ ( n k  Correctional term 
a 

w, (n + 1) = w,(n) + 

~ ( n )  = C p e ( n  - 20 +i)x‘(n - 2 ~ + i ) x ( n  - D )  

x ( n - k - D ) ( e ( n - D ) - A ( n - k ) )  
P + I(x(n - WIf 

D-I 

1-1 

Fig. 3a Transform from DLMS to LMS in Time-Domain by 
correctional term. 
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Figure 3a shows that the block diagram of the 

modified DLMS architecture is transformed fiom 

DLMS to LMS by correctional term in [ 5 ] .  Note that 

when 6= 0, this algorithm is reduced to the DLMS. 

When 6 = D, this algorithm is reduced to LMS in 

equation (3c). Analogously, by observing the 

structure of Fig. 2 in frequency domain, the 

inserting correctional term in the feedback path 

section will create the same effect with that of in 

time domain. The equation-error formulation is 

related to adaptive FIR filtering because there is no 

output feedback in the filter. As a result, the 

convergence properties of this adaptive filter are 

well understood and readily predicted. The main 

difference is that the desired response is filtered by 

a set of “feedback” coefficients, which is analogous 

to the set of feedforward coefficients that weight the 

input signal [ 6 ] .  All of the previous FDAF 

configurations can be modified to accommodate the 

equation-error formulation, as demonstrated here 

for the overlap-save linear convolution method. 

Fig. 3b and 3c show the structure of the signal 

flow graph (SFG) of the K-N-K model [ 5 ] .  The K- 

N-K model has proven a new pipelined architecture 

for LMS adaptive filter, which performs good 

convergence characteristics, short latency and high 

throughput characteristics. The pipelined 

correctional DLMS is called PcDLMS for short 

writing. 

i” 

(b) d l e  k 
(a) SFG of Pipelined c D M  

Fig. 3b Signal How Graph (SGF) of K-N-Ks PcDLMS. 

I I------- 
I I ’  ~ 

\ I f Y  1 ) (d) Binary-Tree adder 

0 Correctional term A’(n) 
Fig. 3c SFG of K-N-K’s PcDLMS 

Inherited from this good pipelined structure, we 

extend it to the frequency-domain from Fig. 2 to Fig. 

3d. 

&>):Concatenate T w  Block 

Y(rrD’+l) (b) d l e  k 
(a) SFG of PcDLhB 

Fig 3d. ?he proposed SFG of modified K-N-K‘s PcDLMS. 

It shall be noticed that the proposed SFG of 

modified K-N-K’s PcDLMS is built with the same 

structure of correctional term and binary-tree adder 

as those of in Fig. 3c. 

4. Simulation 

To verify the validity of the proposed architecture, 

we show the results of computer simulation for 
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system identification. The unknown system is a 10- 

taps lowpass FIR filter with delay 16, whose 

frequency response is defined as follows: 

e- Jw(N-') '  , O I / w / < n  
H ( e J w )  = { (11) 

0, otherwise. 

Transversal filter containing 32-taps and using step- 

size equal to 0.001 is the identified structure 

performed with NLMS, DNLMS, while the input 

sequence is Gaussian distribution, zero-mean 

random process. The implementation of adaptive 

noise cancellation scheme and adaptive DLMS filter 

are shown in Fig. 4. The detail design of connected 

FDAF without delay effect is shown in Fig. 5. The 

performance of error is shown in Fig. 6. 

(a) Adaptive Noise Cancellation Scheme 

(b) Detail Design of DLMS filter in Frequency domain 

Fig. 4. Implementation of Adaptive DLMS Filter 

ul I I  
@) lmplemntation of Normalbation of N D M  

(a) Bock Diagram of A r c h i m  bwd on the c D l M 5  

Fig 5. Detail design of corrected FDAF without delay effect. 

~ 
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Fig. 6 The output of the proposed FDAD architecture. 

In Fig. 6, the performance of the proposed 

architecture is equivalent to that of the NLMS. The 

detail circuit of realization the proposed PcDLMS is 

shown in Fig. 7. 

Fig. 7. The detail circuit of realization the proposed 

PcDLMS Adaptive Filter 

5. CONCLUSIONS 

In this paper, we propose a new architecture for 

DLMS algorithm in frequency-domain. This 

architecture enables us to simultaneously achieve 



good convergence characteristics, short latency and 

high throughput simultaneously without adaptation 

delays. To verify the validity of the proposed 

architecture, we show the results of the computer 

simulation of system identification by Simulink 

tMatlab5.31 and compare the characteristics of the 

proposed architecture with the conventional ones. In 

addition, it remains the advantage of the NLMS i.e., 

the step size assures that the convergence rate is 

determined automatically. 
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