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I. Introduction

Discontinuity problems in dielectric waveguides are important in designing compo-
nents such as gratings or corrugations, dielectric rod antennas, etc., in millimeter-wave,
submillimeter-wave and optical integrated circuits. There are two classes of waveguides:
the closed-type and the open-type. Discontinuities in the closed-type waveguide have
been studied for many years [1}-{3]. However, those in the open-type waveguide were
only solved by making various approximations, e.g., in [4], due to the complexity of
the continuous spectrum of its radiation modes. Until recently, they are treated more
rigorously {5]-{7).

It is customary to discretize the continuum in the open-type waveguides by intro-
ducing the Laguerre transform [5]). Rozzi [6] employed the Laguerre transform in a
Ritz-Galerkin variational solution, while Chung [7] did it in his partial variational prin-
ciples (PVP). These rigorous approaches can give more complete information about the
discontinuities of the planar dielectric guides, e.g., tr itted (reflected) guided
power, radiated power, radiation patterns, etc. But, owing to the continuum of radiation
modes, their approaches need complicated formulations and calculations.

Almost all the approximate methods for the open-type waveguides neglect some terms
in the formulation, e.g., the reflected radiated fields. Brooke and Kharadly [8] proposed a
different approach. They used a bounded system to approximate the original unbounded
problem by placing two perfect conductors distant from the dielectric slab as shown in
Fig. 1. After placing the perfect conductors, the open-type system becomes a closed-type
one and the continuous spectrum is replaced by a discrete set of modes. For the new
closed-type system, we can use mode-matching method straight to solve the discontinuity
problems. It is often to take the perfect conductors as perfect electric conductors (PEC’s).
We thus call this approach the PEC approximation.

Until now, all the approximate methods have been used to calculate powers only.
In this paper we use the PEC approximation to calculate the radiation pattern of the
step discontinuity in a planar dielectric waveguide. In the following section we give
the formulation. Then, we present the radiation patterns for some transverse-electric
(TE) cases in Section III and compatre our results with those obtained from the rigorous
approaches given by Rozzi and Chung. Finally, some conclusions in this study are made
in Section IV.

I1. The PEC Approximation

In the open-type dielectric waveguides, there are three classes of modes: guided,
propagating radiation and evanescent radiation modes. They correspond respectively to
slow, fast and evanescent modes in the closed-type waveguides (see Table 1 in [8]). In
the PEC approximation, we use a closed-type system to appraximate the open-type one.
But for the sake of convenience, we will use the terms in the open-type waveguides to
indicate the modes in the new closed-type system after taking the PEC approximation.

It is natural and necessary not to affect the guided modes when we adopt the PEC
approximation. But the continuous spectrum of the radiation modes is now replaced
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by a discrete set of modes. The effect of the PEC’s on the radiation modes is that of
sampling. The sampled (radiation) modes are those with zero tangential E-field (E, and
E, in Fig. 1) at the locations of the PEC's. If we change the locations of the PEC’s,
different set of modes are sampled. These sampled modes must be renormalized in the
closed-type system.

The standard approach for the discontinuity problems is to use local normal mode ex-
pansion and match the boundary conditions at the interface. Because the mode spectrum

now is discrete, we can solve it directly. We use cs.' ) and hs.") to represent the transverse
electric and magnetic field components of the nth mode in the ith section of the waveg-
uide system. Suppose that the incident wave is the fundamental mode in section 1 with

(1)

e; ’, the continuity of these transverse fields at the interface is expressed as
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Using the orthogonality condition, we obtain the following equations for the coefficients
a,, and b,:
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where [a] = (1,02, --)7, [8] = (b1, b2,+-+)7, and the elements of [R] and [S] are
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with ﬁ,m being the propagation constant corresponding to the ith mode in section 1. We
solve a,, and b, from (3) and (4) and the radiation properties of the discontinuity can be
obtained as described in the following section.

III. The Radiation Patterns

The radiation patterns are important in many applications such as in semiconductor
laser devices and dielectric rod antennas. So far as we know, the only way to obtain the
radiation patterns is to deal with the continuum of radiation modes rigorously like in [6)

and [7).

In the rigorous form, the continuity conditions at the interface are

Ng =3 Noa 00
P+ Y e+ [ clo)e Do)=Y bue?+ [ )it )
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where Ny, and Ny, are the numbers of guided modes in sections 1 and 2, respectively,
and p is the transverse wavenumber. The total transmitted and reflected radiated powers
are f: ° | d(p) |? dp and f: ® 1 ¢(p) |? dp, respectively, where ko is the wavenumber in free
space. Because p = kosin 8 ( 8 is shown in Fig. 1), dp = ko cos #df. We can use 6 as the
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integration variable in the expression of the radiated power, and the integrand, P(8), is
the radiation pattern. That is,

_ [ 1d(p) P Rocosd for 0° <8< 90°
Pi)= { fe(p) [P kocos® for 90° < 6 < 180°. U]

The coefficients a, (n > Nj) and b, (n > N,5) in (1) and (2) play similar roles
as do ¢(p) and d(p) in (5) and (6), respectively. Because the PEC approximation has
the sampling effect, we expect an = Cc(p,) and by, = Cd(pp,) if their corresponding
propagation constants are the same (i.e., 43 = BN(p,) and B2 = A (p,,)), where
C is a constant. Equation (7) tells that we can calculate the radiation patterns from
the coefficients of the propagating radiation modes (with 0 < p, < ko) in the the PEC
approximation. Certainly, we can only obtain the radiation pattern at the sampled
angles, 6y, this is,

P(6.) = | b, I kgcos, for 0° < 6, < 90°
"7\ |an P kocosbp for 90° < 6, < 180°.

Fig. 2(a) shows a step discontinuty in a planar dielectric waveguide. We take the
value of kod to be 1 and the refractive index of the slab, n, to be v/5. The radiation
patterns calculated by Rozzi based on a rigorous variational approach [6] and us are given
in Fig. 2(b). Excellent agreement has been obtained. Fig. 3(a) shows an abruptly ended
dielectric waveguide. The abruptly ended dielectric waveguides can serve as dielectric
rod antennas. The values of kod and n are taken to be 0.8 and 2.236, respectively. The
length of the second section, £, is chosen as 0 and 1.7d in the calculation. Fig. 3(b)
shows our results and those of [7] based on a rigorous partial variational formulation.
Again, the agreement is good. The comparisons given in Figs. 2 and 3 demonstrate the
usefulness of the PEC approximation in calculating the radiation patterns.

IV. Conclusions

In conclusion, we have demonstrated that the PEC approximation can be used to
calculate the radiation patterns of the step discontinuities in planar dielectric waveguides.
Although the results are given at discrete angles, interpolation can be used to obtain the
entire pattern. Moreover, the larger the distance between the two PEC’s we place, the
more modes we sample and the more points of the radiation pattern we obtain. The
PEC approximation enables us to use a simple model to solve the discontinuity problems
in the open-type waveguides. It does not require complicated computations, but can
provide accurate information about the dielectric waveguide discontinuities.
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Fig. 1 The system of the step discontinuity in a planar dielectric waveguide under the
PEC approximation.
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Fig. 2 Radiation from a step discontinuity in a planar dielectric waveguide: (2) sketch
of the structure, (b) the calculated radiation pattern.
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Fig. 3 Radiation form an abruptly ended dielectric waveguide: (a) sketch of the struc-
ture, (b) the calculated radiation pattern.
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